

... not crucial if you're motivated enough, though.

When/Where to Talk to Me?
Algorithm (Your First Algorithm) 1: Course blog http://ubcse531.wordpress.com/
 2: email (hungngo@cse.buffalo.edu) 3: office hours - 238 Bell Hall, 9:30-10:30 Tue & Thu 4: sneak in whenever the door is opened 5: goto 1
Hung Q. Ngo (SUNY at Buffalo) CSE 531 6 / 22
What is the course about?
 Have fun learning! Grasp a few essential ideas of algorithm analysis and design asymptotic notations and analysis fundamental algorithm design methods: divide and conquer, greedy, dynamic programming, linear programming, network flow the notions of NP-Completeness, approximation algorithms, and possibly randomized algorithms
 Gain substantial problem solving skills in designing algorithms and in solving discrete mathematics problems

Course Materials

Required textbook

Cormen, Leiserson, Rivest, Stein, Introduction to Algorithms (2e), MIT Press.

Online Materials

http://www.cse.buffalo.edu/hungngo/classes/2007/Fall-531

Recommended references

Knuth's Classic three volume *The Art of Computer Programming*. Kleinberg and Tardos, *Algorithm Design*, Addison Wesley. Garey and Johnson, *Computers and Intractability: A Guide to the Theory of NP-Completeness*, W. H. Freeman Company.

Hung Q. Ngo (SUNY at Buffalo)

Work Load

CSE 531

• Heavy! So, start early!

- Approx. 30 pages of **dense** reading per week
- 6 written homework assignments (to be done individually)
- 1 midterm exam (in class, closed book/notes)
- 1 final exam (in class, closed book/notes)

- Ask questions in class
 The only stupid question is the question you don't ask
- Suggestions are always welcome
- Attend lectures
- Do homework/reading assignments early!
- At least, skim through reading assignments before lectures
- Print out lecture notes before attending lectures

We, the TAs and I, are here to help. Don't hesitate to ask.

Hung Q. Ngo (SUNY at Buffalo)

CSE 531

A few motivating examples

Example (Fibonacci numbers)

Write an algorithm to calculate the *n*th Fibonacci number, given *n*

$$F_0 = 0$$

 $F_1 = 1$
 $F_n = F_{n-1} + F_{n-2}, n \ge 2$

Example (Primality testing)

Given a natural number n, return

- YES if it is a prime number
- NO otherwise

(Agrawal, Kayal, Saxena – 2002)

Example (Shortest Path)

Devise an algorithm to find a shortest path from a source (e.g. your computer) to a destination (e.g. www.nfl.com) in the Internet

Example (Steiner Tree)

Given a set of cities, find an algorithm to assist in building a highway system connecting all these cities, so that that total length of highways is minimized.

Hung Q. Ngo (SUNY at Buffalo)

CSE 531

Aha - Algorithms!

Algorithm (FibA)

Input: non-negative integer *n*.

- 1: if $n \le 1$ then
- 2: return n
- 3: **else**
- 4: return (FibA(n 1) + FibA(n 2))
- 5: **end if**

Aha - Algorithms!

Algorithm (FibB)

Input: non-negative integer n.

- 1: if $n \le 1$ then 2: return n; 3: else 4: $a \leftarrow 0$; $b \leftarrow 1$; 5: for i from 1 to n - 1 do 6: temp $\leftarrow a$; $a \leftarrow b$; 7: $b \leftarrow temp + a$; 8: end for 0: return b;
- 9: return b;
- 10: **end if**

Question

What are the pros and cons of FibA and FibB?

```
Hung Q. Ngo (SUNY at Buffalo)
```

CSE 531

Analyzing Algorithms

- mean of "roughly predicting" the resources required
- Resources:
 - How fast: time complexity
 - Memory requirement: space complexity
 - Others: communication bandwidth, hardware costs, ...

Need a specific machine model: Turing machine, RAM, parallel computers, quantum computers, DNA computers, ...

- We're mostly concerned with time complexity: a rough estimate of running time wrt the **input size**
- We will be very informal until NP-completeness is discussed

Approaches for Designing Algorithms

- Ask someone Hack around 'til it works Brute force Incremental Divide and conquer • Greedy Dynamic programming • Formulate the problem as something we already known how to solve (e.g, network flow, linear/non-linear programming, etc.) • A stroke of genius Give up Note: "programming" is not programming Hung Q. Ngo (SUNY at Buffalo) CSE 531 Lastly
 - Hope to learn as much from you as you'd learn from me
 - Enjoy the ride!