
Agenda

We’ve done

Greedy Method

Divide and Conquer

Dynamic Programming

Network Flows & Applications

NP-completeness

Now

Linear Programming and the Simplex Method
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Linear Programming Motivation: The Diet Problem

Setting

n foods (beef, apple, potato chips, pho, bún bò, etc.)

m nutritional elements (vitamins, calories, etc.)

each gram of jth food contains aij units of nutritional element i

a good meal needs bi units of nutritional element i

each gram of jth food costs cj

Objective

design the most economical meal yet dietarily sufficient

(Halliburton must solve this problem!)
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The Diet Problem as a Linear Program

Let xj be the weight of food j in a dietarily sufficient meal.

min c1x1 + c2x2 + · · ·+ cnxn

subject to a11x1 + a12x2 + . . . + a1nxn ≥ b1

a21x1 + a22x2 + . . . + a2nxn ≥ b2
...

... . . .
...

...
...

am1x1 + am2x2 + . . . + amnxn ≥ bm

xj ≥ 0,∀j = 1, . . . , n,
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Linear Programming Motivation: The Max-Flow Problem

Maximize the value of f :

val(f) =
∑

e=(s,v)∈E

fe

Subject to
0 ≤ fe ≤ ce, ∀e ∈ E∑

e=(u,v)∈E

fe −
∑

e=(v,w)∈E

fe = 0, ∀v 6= s, t
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Formalizing the Linear Programming Problem

Linear objective function

max or min−8
3
x1 + 2x2 + x3 − 6x4 + x5

Linear constraints, can take many forms

Inequality constraints

3x1 + 4x5 − 2x6 ≥ 3
2x1 + 2x2 + x3 ≤ 0

Equality constraints

−x2 − x4 + x3 = −3

Non-negativity constraints (special case of inequality)

x1, x5, x7 ≥ 0
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Some notational conventions

All vectors are column vectors

c =


c1

c2
...

cn

 ,x =


x1

x2
...

xn

 ,A =


a11 a12 . . . a1n

a21 a22 . . . a2n
... . . . . . .

...
am1 am2 . . . amn

 ,b =


b1

b2
...

bm

 .
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Linear Program: Standard Form

min / max c1x1 + c2x2 + · · ·+ cnxn

subject to a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2
...

... . . .
... =

...
am1x1 + am2x2 + . . . + amnxn = bm

xj ≥ 0,∀j = 1, . . . , n,

or, in matrix notations,

min / max
{
cTx | Ax = b,x ≥ 0

}
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Linear Program: Canonical Form – min Version

min c1x1 + c2x2 + · · ·+ cnxn

subject to a11x1 + a12x2 + . . . + a1nxn ≥ b1

a21x1 + a22x2 + . . . + a2nxn ≥ b2
...

... . . .
... ≥

...
am1x1 + am2x2 + . . . + amnxn ≥ bm

xj ≥ 0,∀j = 1, . . . , n,

or, in matrix notations,

min
{
cTx | Ax ≥ b,x ≥ 0

}
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Linear Program: Canonical Form – max Version

max c1x1 + c2x2 + · · ·+ cnxn

subject to a11x1 + a12x2 + . . . + a1nxn ≤ b1

a21x1 + a22x2 + . . . + a2nxn ≤ b2
...

... . . .
... ≤

...
am1x1 + am2x2 + . . . + amnxn ≤ bm

xj ≥ 0,∀j = 1, . . . , n,

or, in matrix notations,

max
{
cTx | Ax ≤ b,x ≥ 0

}
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Conversions Between Forms of Linear Programs

max cTx = min(−c)Tx∑
j aijxj = bi is equivalent to

∑
j aijxj ≤ bi and

∑
j aijxj ≥ bi.∑

j aijxj ≤ bi is equivalent to −
∑

j aijxj ≥ −bi∑
j aijxj ≤ bi is equivalent to

∑
j aijxj + si = bi, si ≥ 0. The

variable si is called a slack variable.

When xj ≤ 0, replace all occurrences of xj by −x′j , and replace
xj ≤ 0 by x′j ≥ 0.

When xj is not restricted in sign, replace it by (uj − vj), and
uj , vj ≥ 0.
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Example of Converting Linear Programs

Write
min x1 − x2 + 4x3

subject to 3x1 − x2 = 3
− x2 + 2x4 ≥ 4

x1 + x3 ≤ −3
x1, x2 ≥ 0

in standard (min / max) form and canonical (min / max) form.
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LP Geometry: Example 1

max 2x + y
subject to −2x + y ≤ 2

5x + 3y ≤ 15
x + y ≤ 4

x ≥ 0, y ≥ 0
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Example 1 – Feasible Region
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Example 1 – Objective Function
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LP Geometry: Example 2

max 2x + y
subject to 2x + 3y ≥ 8

8x + 3y ≥ 12
4x + 3y ≥ 24
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Example 2 – Feasible Region

Hung Q. Ngo (SUNY at Buffalo) CSE 531 19 / 59



Example 2 – Objective Function
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Half Space and Hyperplane

Each inequality aTx ≥ b defines a half-space.

a

aTx ≥ b

aTx ≤ b

Each equality aTx = b defines a hyperplane.
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Polyhedron, Vertices, Direction of Optimization

A polyhedron is the set of points x satisfying Ax ≤ b (or equivalently
A′x ≥ b′)

cT x = d2

vertex

cT x = d1

moving along

this direction

cT x is improved

d2 < d1

c

Hung Q. Ngo (SUNY at Buffalo) CSE 531 22 / 59

Linear Programming Duality: A Motivating Example

max 3x1 + 2x2 + 4x3

subject to x1 + x2 + 2x3 ≤ 4
2x1 + 3x3 ≤ 5
4x1 + x2 + 3x3 ≤ 7

x1, x2, x3 ≥ 0.

Someone claims xT =
[
1 3 0

]
is optimal with cost 9.

Feasibility is easy. How could we verify optimality?
We ask the person for a proof!
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Her Proof of the Optimality of x

5
3 · ( x1 + x2 + 2x3 ) ≤ 5

3 · 4
0 · ( 2x1 + 3x3 ) ≤ 0 · 5
1
3 · ( 4x1 + x2 + 3x3 ) ≤ 1

3 · 7
. . .
Ma ia hii Ma ia huu
Ma ia hoo Ma ia haha
. . .
⇒ 3x1 + 2x2 + 4x3 ≤ 9

Done!
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OK, How Did . . . I do that?

Beside listening to Numa Numa, find non-negative multipliers

y1 · ( x1 + x2 + 2x3 ) ≤ 4y1

y2 · ( 2x1 + 3x3 ) ≤ 5y2

y3 · ( 4x1 + x2 + 3x3 ) ≤ 7y3

⇒ (y1+2y2+4y3)x1+(y1+y3)x2+(2y1+3y2+3y3)x3 ≤ (4y1+5y2+7y3)

Want LHS to be like 3x1 + 2x2 + 4x3. Thus, as long as

y1 + 2y2 + 4y3 ≥ 3
y1 + y3 ≥ 2
2y1 + 3y2 + 3y3 ≥ 4

y1, y2, y3 ≥ 0.

we have
3x1 + 2x2 + 4x3 ≤ 4y1 + 5y2 + 7y3
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How to Get the Best Multipliers

Answer: minimize the upper bound.

min 4y1 + 5y2 + 7y3

y1 + 2y2 + 4y3 ≥ 3
y1 + y3 ≥ 2
2y1 + 3y2 + 3y3 ≥ 4

y1, y2, y3 ≥ 0.
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What We Have Just Shown

If x is feasible for the Primal Program

max 3x1 + 2x2 + 4x3

subject to x1 + x2 + 2x3 ≤ 4
2x1 + 3x3 ≤ 5
4x1 + x2 + 3x3 ≤ 7

x1, x2, x3 ≥ 0.

and y is feasible for the Dual Program

min 4y1 + 5y2 + 7y3

y1 + 2y2 + 4y3 ≥ 3
y1 + y3 ≥ 2
2y1 + 3y2 + 3y3 ≥ 4

y1, y2, y3 ≥ 0.

then
3x1 + 2x2 + 4x3 ≤ 4y1 + 5y2 + 7y3
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Primal-Dual Pairs - Canonical Form

min cTx (primal/dual program)

subject to Ax ≥ b

x ≥ 0

max bTy (dual/primal program)

subject to ATy ≤ c

y ≥ 0.

Note

The dual of the dual is the primal!
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Primal-Dual Pairs - Standard Form

min / max cTx (primal program)

subject to Ax = b

x ≥ 0

max / min bTy (dual program)

subject to ATy ≤ c no non-negativity restriction!.
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General Rules for Writing Dual Programs

Maximization problem Minimization problem

Constraints Variables
ith constraint ≤ ith variable ≥ 0
ith constraint ≥ ith variable ≤ 0
ith constraint = ith variable unrestricted

Variables Constraints
jth variable ≥ 0 jth constraint ≥
jth variable ≤ 0 jth constraint ≤

jth variable unrestricted jth constraint =

Table: Rules for converting between primals and duals.

Note

The dual of the dual is the primal!
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Weak Duality – Canonical Form Version

Consider the following primal-dual pair in canonical form

Primal LP: min{cTx | Ax ≥ b,x ≥ 0},
Dual LP: max{bTy | ATy ≤ c,y ≥ 0}.

Theorem (Weak Duality)

Suppose x is primal feasible, and y is dual feasible for the LPs defined
above, then cTx ≥ bTy.

Corollary

If x∗ is an primal-optimal and y∗ is an dual-optimal, then cTx∗ ≥ bTy∗.

Corollary

If x∗ is primal-feasible, y∗ is dual-feasible, and cTx∗ = bTy∗, then x∗ and
y∗ are optimal for their respective programs.
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Weak Duality – Standard Form Version

Consider the following primal-dual pair in standard form

Primal LP: min{cTx | Ax = b,x ≥ 0},
Dual LP: max{bTy | ATy ≤ c}.

Theorem (Weak Duality)

Suppose x is primal feasible, and y is dual feasible for the LPs defined
above, then cTx ≥ bTy.

Corollary

If x∗ is an primal-optimal and y∗ is an dual-optimal, then cTx∗ ≥ bTy∗.

Corollary

If x∗ is primal-feasible, y∗ is dual-feasible, and cTx∗ = bTy∗, then x∗ and
y∗ are optimal for their respective programs.
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Strong Duality

Theorem (Strong Duality)

If the primal LP has an optimal solution x∗, then the dual LP has an
optimal solution y∗ such that

cTx∗ = bTy∗.

Dual
Feasible Infeasible

Optimal Unbounded

Feasible Optimal X Nah Nah
Primal Unbounded Nah Nah X

Infeasible Nah X X
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The Diet Problem Revisited

The dual program for the diet problem:

max b1y1 + b2y2 + · · ·+ bmym

subject to a11y1 + a21y2 + . . . + am1ym ≥ c1

a12y1 + a22y2 + . . . + a2nym ≥ c2
...

... . . .
...

...
...

a1ny1 + a2ny2 + . . . + amnym ≥ cn

yj ≥ 0,∀j = 1, . . . ,m,

(Possible) Interpretation: yi is the price per unit of nutrient i that a
whole-seller sets to “manufacture” different types of foods.
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The Max-Flow Problem Revisited

The dual program for the Max-Flow LP Formulation:

min
∑

uv∈E

cuvyuv

subject to yuv − zu + zv ≥ 0 ∀uv ∈ E
zs = 1
zt = 0
yuv ≥ 0 ∀uv ∈ E

Theorem (Max-Flow Min-Cut)

Maximum flow value equal minimum cut capacity.

Proof.

Let (y∗, z∗) be optimal to the dual above. Set W = {v | z∗v ≥ 1}, then
total flow out of W is equal to cap(()W,W ).
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The Simplex Method: High-Level Overview

Consider a linear program min{cTx | x ∈ P}, P is a polyhedron

1 Find a vertex of P , if P is not empty (the LP is feasible)
2 Find a neighboring vertex with better cost

If found, then repeat step 2
Otherwise, either report unbounded or optimal solution

Hung Q. Ngo (SUNY at Buffalo) CSE 531 38 / 59

Questions

1 When is P not empty?

2 When does P have a vertex? (i.e. P is pointed)

3 What is a vertex, anyhow?

4 How to find an initial vertex?

5 What if no vertex is optimal?

6 How to find a “better” neighboring vertex

7 Will the algorithm terminate?

8 How long does it take?
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3. What is a vertex, anyhow?

vertex v

+y

u
w

−y

Many ways to define a vertex v:

v ∈ P a vertex iff 6 ∃y 6= 0 with v + y,v − y ∈ P

v ∈ P a vertex iff 6 ∃u 6= w such that v = (u + w)/2
v ∈ P a vertex iff it’s the unique intersection of n independent faces
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Questions

1 When is P not empty?

2 When does P have a vertex? (i.e. P is pointed)

3 What is a vertex, anyhow?

4 How to find an initial vertex?

5 What if no vertex is optimal?

6 How to find a “better” neighboring vertex

7 Will the algorithm terminate?

8 How long does it take?
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2. When is P pointed?

Question

Define a polyhedron which has no vertex?

Lemma

P is pointed iff it contains no line

Lemma

P = {x | Ax = b,x ≥ 0}, if not empty, always has a vertex.

Lemma

v ∈ P = {x | Ax = b,x ≥ 0} is a vertex iff the columns of A
corresponding to non-zero coordinates of v are linearly independent
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Questions

1 When is P not empty?

2 When does P have a vertex? (i.e. P is pointed)

3 What is a vertex, anyhow?

4 How to find an initial vertex?

5 What if no vertex is optimal?

6 How to find a “better” neighboring vertex

7 Will the algorithm terminate?

8 How long does it take?
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5. What if no vertex is optimal?

Lemma

Let P = {x | Ax = b,x ≥ 0}. If min
{
cTx | x ∈ P

}
is bounded (i.e. it

has an optimal solution), then for all x ∈ P , there is a vertex v ∈ P such
that cTv ≤ cTx.

Theorem

The linear program min{cTx | Ax = b,x ≥ 0} either

1 is infeasible,

2 is unbounded, or

3 has an optimal solution at a vertex.
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Questions

1 When is P not empty?

2 When does P have a vertex? (i.e. P is pointed)

3 What is a vertex, anyhow?

4 How to find an initial vertex?

5 What if no vertex is optimal?

6 How to find a “better” neighboring vertex

7 Will the algorithm terminate?

8 How long does it take?
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6. How to find a “better” neighboring vertex

The answer is the core of the Simplex method

This is basically one iteration of the method

Consider a concrete example:

max 3x1 + 2x2 + 4x3

subject to x1 + x2 + 2x3 ≤ 4
2x1 + 3x3 ≤ 5
4x1 + x2 + 3x3 ≤ 7

x1, x2, x3 ≥ 0.
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Sample execution of the Simplex algorithm

Converting to standard form

max 3x1 +2x2 +4x3

subject to x1 +x2 +2x3 +x4 = 4
2x1 +3x3 +x5 = 5
4x1 +x2 +3x3 +x6 = 7

x1, x2, x3, x4, x5, x6 ≥ 0.

x =
[
0 0 0 4 5 7

]T
is a vertex!

Define B = {4, 5, 6}, N = {1, 2, 3}.
The variables xi, i ∈ N are called free variables.

The xi with i ∈ B are basic variables.

How does one improve x? Increase x3 as much as possible! (x1 or x2

works too.)
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Sample execution of the Simplex algorithm

x3 can only be at most 5/3, forcing x4 = 2/3, x5 = 0, x5 = 2
xT =

[
0 0 5/3 2/3 0 2

]
is the new vertex (why?!!!)

The new objective value is 20/3
x3 enters the basis B, x5 leaves the basis

B = {3, 4, 6}, N = {1, 2, 5}

Rewrite the linear program

max 3x1 +2x2 +4x3

subject to −1
3x1 +x2 +x4 = 2

3
2
3x1 +x3 +1

3x5 = 5
3

2x1 +x2 +x6 = 2

x1, x2, x3, x4, x5, x6 ≥ 0.
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Sample execution of the Simplex algorithm

We also want the objective function to depend only on the free variables:

3x1 + 2x2 + 4x3 = 3x1 + 2x2 + 4
(

5
3
− 2

3
x1 −

1
3
x5

)
=

1
3
x1 + 2x2 −

4
3
x5 +

20
3

The linear program is thus equivalent to

max 1
3x1 +2x2 −4

3x5 + 20
3

subject to −1
3x1 +x2 +x4 = 2

3
2
3x1 +x3 +1

3x5 = 5
3

2x1 +x2 +x6 = 2

x1, x2, x3, x4, x5, x6 ≥ 0.

Increase x2 to 2/3, so that x2 enters, x4 leaves.
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Sample execution of the Simplex algorithm

max x1 −2x4 + 8

subject to −1
3x1 +x2 +x4 = 2

3
2
3x1 +x3 +1

3x5 = 5
3

7
3x1 −x4 −1

3x5 +x6 = 4
3

x1, x2, x3, x4, x5, x6 ≥ 0.

At this point, only x1 to increase.

If all its coefficients are non-positive (like −1/3 above), then the LP
is unbounded

Fortunately, this is not the case here

Increase x1 to 4/7, so that x1 enters, x6 leaves.
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Sample execution of the Simplex algorithm

max −11
7 x4 +1

7x5 −3
7x6 + 60

7

subject to +x2 +6
7x4 −5

7x5 +1
7x6 = 6

7

+x3 +2
7x4 +3

7x5 −2
7x6 = 9

7

x1 −3
7x4 −1

7x5 +3
7x6 = 4

7

x1, x2, x3, x4, x5, x6 ≥ 0.

Now, x5 enters again, x3 leaves.
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Sample execution of the Simplex algorithm

max −1
3x3 −34

21x4 −1
3x6 + 9

subject to +x2 +49
15x3 +188

105x4 −1
3x6 = 3

+7
3x3 +2

3x4 +x5 −2
3x6 = 3

x1 +1
3x3 −1

3x4 +1
3x6 = 1

x1, x2, x3, x4, x5, x6 ≥ 0.

Yeah! No more improvement is possible. We have reached the optimal
vertex

v =
[
1 3 0 0 3 0

]T
.

The optimal cost is 9.
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Questions

1 When is P not empty?

2 When does P have a vertex? (i.e. P is pointed)

3 What is a vertex, anyhow?

4 How to find an initial vertex?

5 What if no vertex is optimal?

6 How to find a “better” neighboring vertex

7 Will the algorithm terminate?

8 How long does it take?
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7&8 Termination and Running Time

Termination

There are finitely many vertices (≤
(

n
m

)
)

Terminating = non-cycling, i.e. never come back to a vertex

Many cycling prevention methods: perturbation method,
lexicographic rule, Bland’s pivoting rule, etc.

Bland’s pivoting rule: pick smallest possible j to leave the basis, then
smallest possible i to enter the basis

Running time

Klee & Minty (1969) showed that Simplex could take exponential time
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Summary: Simplex with Bland’s Rule

1 Start from a vertex v of P .

2 Determine B and N ; Let yT
B = cT

BA−1
B .

3 If
(
cT
N − yT

Baj

)
≥ 0, then vertex v is optimal. Moreover,

cTv = cT
BvB + cT

NvN = cT
B

(
A−1

B b−A−1
B ANvN

)
+ cT

NvN

4 Else, let
j = min

{
j′ ∈ N :

(
cj′ − yT

Baj′
)

< 0
}

.

5 If A−1
B aj ≤ 0, then report unbounded LP and Stop!

6 Otherwise, pick smallest k ∈ B such that
(
A−1

B aj

)
k

> 0 and that

(A−1
B b)k(

A−1
B aj

)
k

= min

{
(A−1

B b)i(
A−1

B aj

)
i

: i ∈ B,
(
A−1

B aj

)
i
> 0

}
.

7 xk leaves, xj enters: B = B ∪ {j} − {k}, N = N ∪ {k} − {j}.
Go back to step 3.
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By Product: Strong Duality

Theorem (Strong Duality)

If the primal LP has an optimal solution x∗, then the dual LP has an
optimal solution y∗ such that

cTx∗ = bTy∗.

Proof.

Suppose Simplex returns vertex x∗ (at B and N)

Recall yT
B = cT

BA−1
B , then cTx∗ = yT

Bb

ATyB =
[
AT

B

AT
N

]
yB =

[
cB

AT
NyB

]
≤

[
cB

cN

]
= c.

Set y∗ = yT
B. Done!
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Questions

1 When is P not empty?

2 When does P have a vertex? (i.e. P is pointed)

3 What is a vertex, anyhow?

4 How to find an initial vertex?

5 What if no vertex is optimal?

6 How to find a “better” neighboring vertex

7 Will the algorithm terminate?

8 How long does it take?
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1&4 Feasibility and the Initial Vertex

In P = {x | Ax = b,x ≥ 0}, we can assume b ≥ 0 (why?).

Let A′ =
[
A I

]
Let P ′ = {z | A′z = b, z ≥ 0}.
A vertex of P ′ is z = [0, . . . , 0, b1, . . . , bm]T

P is feasible iff the following LP has optimum value 0

min

{
m∑

i=1

zn+i | z ∈ P ′

}

From an optimal vertex z∗, ignore the last m coordinates to obtain a
vertex of P
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Questions

1 When is P not empty?

2 When does P have a vertex? (i.e. P is pointed)

3 What is a vertex, anyhow?

4 How to find an initial vertex?

5 What if no vertex is optimal?

6 How to find a “better” neighboring vertex

7 Will the algorithm terminate?

8 How long does it take?
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