Agenda

We've done

- Greedy Method
- Divide and Conquer
- Dynamic Programming
- Network Flows & Applications
- NP-completeness

Now

• Linear Programming and the Simplex Method

Hung Q. Ngo (SUNY at Buffalo)

CSE 531

Linear Programming Motivation: The Diet Problem

Setting

- *n* foods (beef, apple, potato chips, pho, bún bò, etc.)
- *m* nutritional elements (vitamins, calories, etc.)
- each gram of jth food contains a_{ij} units of nutritional element i
- a good meal needs b_i units of nutritional element i
- each gram of jth food costs c_j

Objective

- design the most economical meal yet dietarily sufficient
- (Halliburton must solve this problem!)

The Diet Problem as a Linear Program

Let x_j be the weight of food j in a dietarily sufficient meal.

Hung Q. Ngo (SUNY at Buffalo)

CSE 531

Linear Programming Motivation: The Max-Flow Problem

Maximize the value of f:

$$\mathsf{val}(f) = \sum_{e = (s,v) \in E} f_e$$

Subject to

Hung Q. Ngo (SUNY at Buffalo)

Formalizing the Linear Programming Problem

Linear objective function

$$\max \text{ or } \min -\frac{8}{3}x_1 + 2x_2 + x_3 - 6x_4 + x_5$$

Linear constraints, can take many forms

• Inequality constraints

$$3x_1 + 4x_5 - 2x_6 \ge 3$$

$$2x_1 + 2x_2 + x_3 \le 0$$

• Equality constraints

$$-x_2 - x_4 + x_3 = -3$$

• Non-negativity constraints (special case of inequality)

 $x_1, x_5, x_7 \ge 0$

CSE 531

Hung Q. Ngo (SUNY at Buffalo)

Some notational conventions

All vectors are column vectors

$$\mathbf{c} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}, \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \dots & \dots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Linear Program: Standard Form

or, in matrix notations,

$$\min / \max \left\{ \mathbf{c}^T \mathbf{x} \mid \mathbf{A} \mathbf{x} = \mathbf{b}, \mathbf{x} \ge \mathbf{0} \right\}$$

Hung Q. Ngo (SUNY at Buffalo)

CSE 531

Linear Program: Canonical Form – min Version

or, in matrix notations,

$$\min\left\{\mathbf{c}^T\mathbf{x} \mid \mathbf{A}\mathbf{x} \geq \mathbf{b}, \mathbf{x} \geq \mathbf{0}\right\}$$

Linear Program: Canonical Form – max Version

or, in matrix notations,

$$\max\left\{\mathbf{c}^{T}\mathbf{x} \mid \mathbf{A}\mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}\right\}$$

Hung Q. Ngo (SUNY at Buffalo)

CSE 531

Conversions Between Forms of Linear Programs

- $\max \mathbf{c}^T \mathbf{x} = \min(-\mathbf{c})^T \mathbf{x}$
- $\sum_{j} a_{ij} x_j = b_i$ is equivalent to $\sum_{j} a_{ij} x_j \leq b_i$ and $\sum_{j} a_{ij} x_j \geq b_i$.
- $\sum_j a_{ij} x_j \leq b_i$ is equivalent to $-\sum_j a_{ij} x_j \geq -b_i$
- $\sum_{j} a_{ij}x_j \leq b_i$ is equivalent to $\sum_{j} a_{ij}x_j + s_i = b_i, s_i \geq 0$. The variable s_i is called a *slack variable*.
- When $x_j \leq 0$, replace all occurrences of x_j by $-x'_j$, and replace $x_j \leq 0$ by $x'_j \geq 0$.
- When x_j is not restricted in sign, replace it by $(u_j v_j)$, and $u_j, v_j \ge 0$.

Example 1 – Feasible Region

Example 1 – Objective Function

LP Geometry: Example 2

2 -

0 | 0

Hung Q. Ngo (SUNY at Buffalo)

2

4

CSE 531

6

8

10

Example 2 – Objective Function

Half Space and Hyperplane

Each inequality $\mathbf{a}^T \mathbf{x} \ge b$ defines a half-space.

Each equality $\mathbf{a}^T \mathbf{x} = b$ defines a hyperplane.

Polyhedron, Vertices, Direction of Optimization

Linear Programming Duality: A Motivating Example

Someone claims $\mathbf{x}^T = \begin{bmatrix} 1 & 3 & 0 \end{bmatrix}$ is optimal with cost 9. Feasibility is easy. How could we verify optimality? We ask the person for a proof!

Her Proof of the Optimality of ${\bf x}$

Hung Q. Ngo (SUNY at Buffalo)

CSE 531

OK, How Did ... I do that?

Beside listening to Numa Numa, find non-negative multipliers

 $\Rightarrow (y_1 + 2y_2 + 4y_3)x_1 + (y_1 + y_3)x_2 + (2y_1 + 3y_2 + 3y_3)x_3 \le (4y_1 + 5y_2 + 7y_3)$ Want LHS to be like $3x_1 + 2x_2 + 4x_3$. Thus, as long as

we have

$$3x_1 + 2x_2 + 4x_3 \le 4y_1 + 5y_2 + 7y_3$$

How to Get the Best Multipliers

Primal-Dual Pairs - Canonical Form

 $\begin{array}{lll} \min & \mathbf{c}^T \mathbf{x} & (\mathsf{primal/dual program}) \\ \mathsf{subject to} & \mathbf{A} \mathbf{x} \geq \mathbf{b} \\ & \mathbf{x} \geq \mathbf{0} \end{array}$

 $\begin{array}{ll} \max \quad \mathbf{b}^T \mathbf{y} \quad (\mathsf{dual/primal program}) \\ \mathsf{subject to} \quad \mathbf{A}^T \mathbf{y} \leq \mathbf{c} \\ \mathbf{y} \geq \mathbf{0}. \end{array}$

Note

The dual of the dual is the primal!

Hung Q. Ngo (SUNY at Buffalo)

CSE 531

Primal-Dual Pairs - Standard Form

$$\begin{array}{ll} \min / \max & \mathbf{c}^T \mathbf{x} & (\mathsf{primal program}) \\ \mathsf{subject to} & \mathbf{A} \mathbf{x} = \mathbf{b} \\ & \mathbf{x} \geq \mathbf{0} \end{array}$$

 $\begin{array}{ll} \max / \min & \mathbf{b}^T \mathbf{y} & (\mathsf{dual program}) \\ \text{subject to} & \mathbf{A}^T \mathbf{y} \leq \mathbf{c} & \mathsf{no non-negativity restriction!.} \end{array}$

General Rules for Writing Dual Programs

Maximization problem	Minimization problem	
Constraints	Variables	
i th constraint \leq	i th variable ≥ 0	
i th constraint \geq	i th variable ≤ 0	
ith constraint =	<i>i</i> th variable unrestricted	
Variables	Constraints	
j th variable ≥ 0	j th constraint \geq	
j th variable ≤ 0	j th constraint \leq	
jth variable unrestricted	jth constraint $=$	

Table: Rules for converting between primals and duals.

Note

The dual of the dual is the primal!

Hung Q. Ngo (SUNY at Buffalo)

CSE 531

Weak Duality – Canonical Form Version

Consider the following primal-dual pair in canonical form

 $\begin{array}{ll} \mathsf{Primal LP:} & \min\{\mathbf{c^Tx} \mid \mathbf{Ax} \geq \mathbf{b}, \mathbf{x} \geq \mathbf{0}\}, \\ \mathsf{Dual LP:} & \max\{\mathbf{b^Ty} \mid \mathbf{A^Ty} \leq \mathbf{c}, \mathbf{y} \geq \mathbf{0}\}. \end{array}$

Theorem (Weak Duality)

Suppose \mathbf{x} is primal feasible, and \mathbf{y} is dual feasible for the LPs defined above, then $\mathbf{c}^T \mathbf{x} \ge \mathbf{b}^T \mathbf{y}$.

Corollary

If \mathbf{x}^* is an primal-optimal and \mathbf{y}^* is an dual-optimal, then $\mathbf{c}^T \mathbf{x}^* \geq \mathbf{b}^T \mathbf{y}^*$.

Corollary

If \mathbf{x}^* is primal-feasible, \mathbf{y}^* is dual-feasible, and $\mathbf{c}^T \mathbf{x}^* = \mathbf{b}^T \mathbf{y}^*$, then \mathbf{x}^* and \mathbf{y}^* are optimal for their respective programs.

Hung Q. Ngo (SUNY at Buffalo)

Weak Duality – Standard Form Version

Consider the following primal-dual pair in standard form

$$\begin{array}{ll} \mathsf{Primal LP:} & \min\{\mathbf{c^Tx} \mid \mathbf{Ax} = \mathbf{b}, \mathbf{x} \geq \mathbf{0}\}, \\ \mathsf{Dual LP:} & \max\{\mathbf{b^Ty} \mid \mathbf{A^Ty} \leq \mathbf{c}\}. \end{array}$$

Theorem (Weak Duality)

Suppose \mathbf{x} is primal feasible, and \mathbf{y} is dual feasible for the LPs defined above, then $\mathbf{c}^T \mathbf{x} \ge \mathbf{b}^T \mathbf{y}$.

Corollary

If \mathbf{x}^* is an primal-optimal and \mathbf{y}^* is an dual-optimal, then $\mathbf{c}^T \mathbf{x}^* \geq \mathbf{b}^T \mathbf{y}^*$.

Corollary

If \mathbf{x}^* is primal-feasible, \mathbf{y}^* is dual-feasible, and $\mathbf{c}^T \mathbf{x}^* = \mathbf{b}^T \mathbf{y}^*$, then \mathbf{x}^* and \mathbf{y}^* are optimal for their respective programs.

CSE 531

Hung Q. Ngo (SUNY at Buffalo)

Strong Duality

Theorem (Strong Duality)

If the primal LP has an optimal solution $\mathbf{x}^*,$ then the dual LP has an optimal solution \mathbf{y}^* such that

$$\mathbf{c}^T \mathbf{x}^* = \mathbf{b}^T \mathbf{y}^*.$$

			Dual		
		Feasible		Infeasible	
			Optimal	Unbounded	
	Feasible	Optimal	Х	Nah	Nah
Primal		Unbounded	Nah	Nah	Х
	Infeasible		Nah	Х	Х

The Diet Problem Revisited

The dual program for the diet problem:

(Possible) Interpretation: y_i is the price per unit of nutrient *i* that a whole-seller sets to "manufacture" different types of foods.

Hung Q. Ngo (SUNY at Buffalo)

CSE 531

The Max-Flow Problem Revisited

The dual program for the Max-Flow LP Formulation:

Theorem (Max-Flow Min-Cut)

Maximum flow value equal minimum cut capacity.

Proof.

Let $(\mathbf{y}^*, \mathbf{z}^*)$ be optimal to the dual above. Set $W = \{v \mid z_v^* \ge 1\}$, then total flow out of W is equal to $cap(()W, \overline{W})$.

Hung Q. Ngo (SUNY at Buffalo)

The Simplex Method: High-Level Overview

3. What is a vertex, anyhow?

Many ways to define a vertex v:

- $v \in P$ a vertex iff $\not\exists \mathbf{y} \neq 0$ with $\mathbf{v} + \mathbf{y}, \mathbf{v} \mathbf{y} \in P$
- $v \in P$ a vertex iff $\not\exists \mathbf{u} \neq \mathbf{w}$ such that $\mathbf{v} = (\mathbf{u} + \mathbf{w})/2$
- $v \in P$ a vertex iff it's the unique intersection of n independent faces

Hung Q. Ngo (SUNY at Buffalo)

CSE 531

Questions

- **1** When is P not empty?
- When does P have a vertex? (i.e. P is pointed)
- What is a vertex, anyhow?
- How to find an initial vertex?
- What if no vertex is optimal?
- O How to find a "better" neighboring vertex
- Will the algorithm terminate?
- 8 How long does it take?

2. When is P pointed?

Question

Define a polyhedron which has no vertex?

Lemma

P is pointed iff it contains no line

Lemma

 $P = {\mathbf{x} \mid \mathbf{Ax} = \mathbf{b}, \mathbf{x} \ge \mathbf{0}}, \text{ if not empty, always has a vertex.}$

Lemma

 $v \in P = \{x \mid Ax = b, x \ge 0\}$ is a vertex iff the columns of A corresponding to non-zero coordinates of v are linearly independent

Hung Q. Ngo (SUNY at Buffalo)

CSE 531

5. What if no vertex is optimal?

Lemma

Let $P = {\mathbf{x} | \mathbf{Ax} = \mathbf{b}, \mathbf{x} \ge \mathbf{0}}$. If $\min {\mathbf{c}^T \mathbf{x} | \mathbf{x} \in P}$ is bounded (i.e. it has an optimal solution), then for all $\mathbf{x} \in P$, there is a vertex $\mathbf{v} \in P$ such that $\mathbf{c}^T \mathbf{v} \le \mathbf{c}^T \mathbf{x}$.

Theorem

The linear program $\min\{\mathbf{c^Tx} \mid \mathbf{Ax} = \mathbf{b}, \mathbf{x} \ge \mathbf{0}\}$ either

- is infeasible,
- is unbounded, or
- In the second second

Hung Q. Ngo (SUNY at Buffalo)

CSE 531

- **1** When is P not empty?
- When does *P* have a vertex? (i.e. *P* is pointed)
- What is a vertex, anyhow?
- How to find an initial vertex?
- What if no vertex is optimal?
- O How to find a "better" neighboring vertex
- Will the algorithm terminate?
- 8 How long does it take?

6. How to find a "better" neighboring vertex

- The answer is the core of the Simplex method
- This is basically one iteration of the method

Consider a concrete example:

Hung Q. Ngo (SUNY at Buffalo)

CSE 531

Sample execution of the Simplex algorithm

Converting to standard form

- $\mathbf{x} = \begin{bmatrix} 0 & 0 & 0 & 4 & 5 & 7 \end{bmatrix}^T$ is a vertex!
- Define $B = \{4, 5, 6\}$, $N = \{1, 2, 3\}$.
- The variables x_i , $i \in N$ are called free variables.
- The x_i with $i \in B$ are basic variables.
- How does one improve x? Increase x_3 as much as possible! (x_1 or x_2 works too.)

Sample execution of the Simplex algorithm

- x_3 can only be at most 5/3, forcing $x_4 = 2/3, x_5 = 0, x_5 = 2$
- $\mathbf{x}^T = \begin{bmatrix} 0 & 0 & 5/3 & 2/3 & 0 & 2 \end{bmatrix}$ is the new vertex (why?!!!)
- The new objective value is 20/3
- x_3 enters the basis B, x_5 leaves the basis

•
$$B = \{3, 4, 6\}, N = \{1, 2, 5\}$$

Rewrite the linear program

Sample execution of the Simplex algorithm

We also want the objective function to depend only on the free variables:

$$3x_1 + 2x_2 + 4x_3 = 3x_1 + 2x_2 + 4\left(\frac{5}{3} - \frac{2}{3}x_1 - \frac{1}{3}x_5\right)$$
$$= \frac{1}{3}x_1 + 2x_2 - \frac{4}{3}x_5 + \frac{20}{3}$$

The linear program is thus equivalent to

Increase x_2 to 2/3, so that x_2 enters, x_4 leaves.

Sample execution of the Simplex algorithm

At this point, only x_1 to increase.

- If all its coefficients are non-positive (like -1/3 above), then the LP is UNBOUNDED
- Fortunately, this is not the case here
- Increase x_1 to 4/7, so that x_1 enters, x_6 leaves.

Hung Q. Ngo (SUNY at Buffalo)

CSE 531

Sample execution of the Simplex algorithm

Now, x_5 enters **again**, x_3 leaves.

Sample execution of the Simplex algorithm

Yeah! No more improvement is possible. We have reached the optimal vertex

$$\mathbf{v} = \begin{bmatrix} 1 & 3 & 0 & 0 & 3 & 0 \end{bmatrix}^T.$$

The optimal cost is 9.

Hung Q. Ngo (SUNY at Buffalo)

CSE 531

52 / 59

Questions • When is P not empty? When does *P* have a vertex? (i.e. *P* is pointed) What is a vertex, anyhow? 4 How to find an initial vertex? What if no vertex is optimal? O How to find a "better" neighboring vertex Will the algorithm terminate? 8 How long does it take? CSE 531

7&8 Termination and Running Time

Termination

- There are finitely many vertices $(\leq \binom{n}{m})$
- Terminating = non-cycling, i.e. never come back to a vertex
- Many cycling prevention methods: *perturbation method*, *lexicographic rule*, *Bland's pivoting rule*, etc.
 - Bland's pivoting rule: pick smallest possible j to leave the basis, then smallest possible i to enter the basis

Running time

• Klee & Minty (1969) showed that Simplex could take exponential time

Hung Q. Ngo (SUNY at Buffalo)

CSE 531

54 / 59

Summary: Simplex with Bland's Rule

- Start from a vertex \mathbf{v} of P.
- 2 Determine B and N; Let $\mathbf{y}_B^T = \mathbf{c}_B^T \mathbf{A}_B^{-1}$.
- If $(c_N^T \mathbf{y}_B^T \mathbf{a}_j) \ge 0$, then vertex \mathbf{v} is optimal. Moreover,

$$\mathbf{c}^{T}\mathbf{v} = \mathbf{c}_{B}^{T}\mathbf{v}_{B} + \mathbf{c}_{N}^{T}\mathbf{v}_{N} = \mathbf{c}_{B}^{T}\left(\mathbf{A}_{B}^{-1}\mathbf{b} - \mathbf{A}_{B}^{-1}\mathbf{A}_{N}\mathbf{v}_{N}\right) + \mathbf{c}_{N}^{T}\mathbf{v}_{N}$$

4 Else, let

$$j = \min\left\{j' \in N : \left(c_{j'} - \mathbf{y}_B^T \mathbf{a}_{j'}\right) < 0\right\}.$$

- If $\mathbf{A}_B^{-1}\mathbf{a}_j \leq 0$, then report unbounded LP and STOP!
- **(**) Otherwise, pick smallest $k \in B$ such that $\left(\mathbf{A}_B^{-1}\mathbf{a}_j\right)_k > 0$ and that

$$\frac{(\mathbf{A}_B^{-1}\mathbf{b})_k}{(\mathbf{A}_B^{-1}\mathbf{a}_j)_k} = \min\left\{\frac{(\mathbf{A}_B^{-1}\mathbf{b})_i}{(\mathbf{A}_B^{-1}\mathbf{a}_j)_i} : i \in B, \ (\mathbf{A}_B^{-1}\mathbf{a}_j)_i > 0\right\}.$$

• x_k leaves, x_j enters: $B = B \cup \{j\} - \{k\}$, $N = N \cup \{k\} - \{j\}$. GO BACK to step 3.

By Product: Strong Duality

Theorem (Strong Duality)

If the primal LP has an optimal solution $\mathbf{x}^*,$ then the dual LP has an optimal solution \mathbf{y}^* such that

$$\mathbf{c}^T \mathbf{x}^* = \mathbf{b}^T \mathbf{y}^*.$$

Proof.

- Suppose Simplex returns vertex \mathbf{x}^* (at B and N)
- Recall $\mathbf{y}_B^T = \mathbf{c}_B^T \mathbf{A}_B^{-1}$, then $\mathbf{c}^T \mathbf{x}^* = \mathbf{y}_B^T \mathbf{b}$

$$\mathbf{A}^T \mathbf{y}_B = \begin{bmatrix} \mathbf{A}_B^T \\ \mathbf{A}_N^T \end{bmatrix} \mathbf{y}_B = \begin{bmatrix} \mathbf{c}_B \\ \mathbf{A}_N^T \mathbf{y}_B \end{bmatrix} \leq \begin{bmatrix} \mathbf{c}_B \\ \mathbf{c}_N \end{bmatrix} = \mathbf{c}.$$

• Set
$$\mathbf{y}^* = \mathbf{y}_B^T$$
. Done!

Hung Q. Ngo (SUNY at Buffalo)

CSE 531

Questions

- When is P not empty?
- When does *P* have a vertex? (i.e. *P* is pointed)
- What is a vertex, anyhow?
- How to find an initial vertex?
- What if no vertex is optimal?
- How to find a "better" neighboring vertex
- Will the algorithm terminate?
- How long does it take?

1&4 Feasibility and the Initial Vertex

- In $P = {\mathbf{x} \mid \mathbf{Ax} = \mathbf{b}, \mathbf{x} \ge \mathbf{0}}$, we can assume $\mathbf{b} \ge \mathbf{0}$ (why?).
- Let $\mathbf{A}' = \begin{bmatrix} \mathbf{A} & \mathbf{I} \end{bmatrix}$
- Let $P' = \{ \mathbf{z} \mid \mathbf{A}'\mathbf{z} = \mathbf{b}, \mathbf{z} \ge \mathbf{0} \}.$
- A vertex of P' is $\mathbf{z} = [0, \dots, 0, b_1, \dots, b_m]^T$
- P is feasible iff the following LP has optimum value 0

$$\min\left\{\sum_{i=1}^m z_{n+i} \mid \mathbf{z} \in P'\right\}$$

• From an optimal vertex $\mathbf{z}^*,$ ignore the last m coordinates to obtain a vertex of P

CSE 531

Hung Q. Ngo (SUNY at Buffalo)

Questions When is P not empty? When does P have a vertex? (i.e. P is pointed) What is a vertex, anyhow? How to find an initial vertex? What if no vertex is optimal? How to find a "better" neighboring vertex Will the algorithm terminate? How long does it take?