We've done

- Greedy Method
- Divide and Conquer
- Dynamic Programming
- Network Flows \& Applications
- NP-completeness

Now

- Linear Programming and the Simplex Method

Linear Programming Motivation: The Diet Problem

Setting

- n foods (beef, apple, potato chips, pho, bún bò, etc.)
- m nutritional elements (vitamins, calories, etc.)
- each gram of j th food contains $a_{i j}$ units of nutritional element i
- a good meal needs b_{i} units of nutritional element i
- each gram of j th food costs c_{j}

Objective

- design the most economical meal yet dietarily sufficient
- (Halliburton must solve this problem!)

The Diet Problem as a Linear Program

Let x_{j} be the weight of food j in a dietarily sufficient meal.

$$
\min \quad c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}
$$

subject to $a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} \geq b_{1}$

$$
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} \geq b_{2}
$$

$$
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n} \geq b_{m}
$$

$$
x_{j} \geq 0, \forall j=1, \ldots, n
$$

Linear Programming Motivation: The Max-Flow Problem

Maximize the value of f :

$$
\operatorname{val}(f)=\sum_{e=(s, v) \in E} f_{e}
$$

Subject to

$$
\begin{aligned}
& 0 \leq f_{e} \leq c_{e}, \quad \forall e \in E \\
& \sum_{e=(u, v) \in E} f_{e}-\sum_{e=(v, w) \in E} f_{e}=0, \quad \forall v \neq s, t
\end{aligned}
$$

Formalizing the Linear Programming Problem

Linear objective function

$$
\max \text { or } \min -\frac{8}{3} x_{1}+2 x_{2}+x_{3}-6 x_{4}+x_{5}
$$

Linear constraints, can take many forms

- Inequality constraints

$$
\begin{aligned}
3 x_{1}+4 x_{5}-2 x_{6} & \geq 3 \\
2 x_{1}+2 x_{2}+x_{3} & \leq 0
\end{aligned}
$$

- Equality constraints

$$
-x_{2}-x_{4}+x_{3}=-3
$$

- Non-negativity constraints (special case of inequality)

$$
x_{1}, x_{5}, x_{7} \geq 0
$$

Some notational conventions

All vectors are column vectors

$$
\mathbf{c}=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right], \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], \mathbf{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \ldots & \ldots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right], \mathbf{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right] .
$$

Linear Program: Standard Form

$$
\begin{array}{cccccccc}
\min / \max & c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n} \\
\text { subject to } & a_{11} x_{1} & + & a_{12} x_{2} & + & \ldots & +a_{1 n} x_{n} & = \\
& a_{21} x_{1} & +a_{22} x_{2} & + & b_{1} \\
& \vdots & & \vdots & & \ldots & a_{2 n} x_{n} & = \\
b_{2} \\
& a_{m 1} x_{1}+a_{m 2} x_{2} & + & \ldots & + & a_{m n} x_{n} & = & b_{m} \\
& & & & x_{j} \geq 0, \forall j=1, \ldots, n
\end{array}
$$

or, in matrix notations,

$$
\min / \max \left\{\mathbf{c}^{T} \mathbf{x} \mid \mathbf{A} \mathbf{x}=\mathbf{b}, \mathbf{x} \geq \mathbf{0}\right\}
$$

Linear Program: Canonical Form - min Version

$$
\begin{aligned}
& \text { min } \\
& c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n} \\
& \begin{array}{ll}
\text { subject to } & a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} \geq b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} \geq b_{2}
\end{array} \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n} \geq b_{m} \\
& x_{j} \geq 0, \forall j=1, \ldots, n \text {, }
\end{aligned}
$$

or, in matrix notations,

$$
\min \left\{\mathbf{c}^{T} \mathbf{x} \mid \mathbf{A} \mathbf{x} \geq \mathbf{b}, \mathbf{x} \geq \mathbf{0}\right\}
$$

Linear Program: Canonical Form - max Version

$$
\begin{aligned}
& \text { max } \\
& c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n} \\
& \text { subject to } a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} \leq b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} \leq b_{2} \\
& \begin{array}{cccc}
\vdots & \vdots & \vdots & \leq \\
a_{m 1} x_{1} & +a_{m 2} x_{2} & +\cdots & +a_{m n} x_{n} \\
\leq & b_{m}
\end{array} \\
& x_{j} \geq 0, \forall j=1, \ldots, n,
\end{aligned}
$$

or, in matrix notations,

$$
\max \left\{\mathbf{c}^{T} \mathbf{x} \mid \mathbf{A x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}\right\}
$$

Conversions Between Forms of Linear Programs

- $\max \mathbf{c}^{T} \mathbf{x}=\min (-\mathbf{c})^{T} \mathbf{x}$
- $\sum_{j} a_{i j} x_{j}=b_{i}$ is equivalent to $\sum_{j} a_{i j} x_{j} \leq b_{i}$ and $\sum_{j} a_{i j} x_{j} \geq b_{i}$.
- $\sum_{j} a_{i j} x_{j} \leq b_{i}$ is equivalent to $-\sum_{j} a_{i j} x_{j} \geq-b_{i}$
- $\sum_{j} a_{i j} x_{j} \leq b_{i}$ is equivalent to $\sum_{j} a_{i j} x_{j}+s_{i}=b_{i}, s_{i} \geq 0$. The variable s_{i} is called a slack variable.
- When $x_{j} \leq 0$, replace all occurrences of x_{j} by $-x_{j}^{\prime}$, and replace $x_{j} \leq 0$ by $x_{j}^{\prime} \geq 0$.
- When x_{j} is not restricted in sign, replace it by $\left(u_{j}-v_{j}\right)$, and $u_{j}, v_{j} \geq 0$.

Example of Converting Linear Programs

Write

$$
\begin{array}{ccccccc}
\min & x_{1} & -x_{2} & + & 4 x_{3} & & \\
\text { subject to } & 3 x_{1} & - & x_{2} & & & \\
& & - & x_{2} & & & \\
& x_{1} & & & +x_{3} & & \\
& & & & & & \\
& x_{1}, x_{2} & \geq-3 \\
& \geq 0
\end{array}
$$

in standard (\min / \max) form and canonical (\min / \max) form.

LP Geometry: Example 1

$$
\begin{array}{cl}
\max & 2 x+y \\
\text { subject to } & -2 x+y \leq 2 \\
& 5 x+3 y \leq 15 \\
& x+y \leq 4 \\
& x \geq 0, y \geq 0
\end{array}
$$

Example 1 - Feasible Region

Example 1 - Objective Function

LP Geometry: Example 2

$$
\begin{array}{cl}
\max & 2 x+y \\
\text { subject to } & 2 x+3 y \geq 8 \\
& 8 x+3 y \geq 12 \\
& 4 x+3 y \geq 24
\end{array}
$$

Example 2 - Feasible Region

Example 2 - Objective Function

Half Space and Hyperplane

Each inequality $\mathbf{a}^{T} \mathbf{x} \geq b$ defines a half-space.

Each equality $\mathbf{a}^{T} \mathbf{x}=b$ defines a hyperplane.

Polyhedron, Vertices, Direction of Optimization

A polyhedron is the set of points \mathbf{x} satisfying $\mathbf{A x} \leq \mathbf{b}$ (or equivalently $\mathbf{A}^{\prime} \mathbf{x} \geq \mathbf{b}^{\prime}$)

Linear Programming Duality: A Motivating Example

\[

\]

Someone claims $\mathbf{x}^{T}=\left[\begin{array}{lll}1 & 3 & 0\end{array}\right]$ is optimal with cost 9 .
Feasibility is easy. How could we verify optimality?
We ask the person for a proof!

Her Proof of the Optimality of \mathbf{x}

$$
\begin{aligned}
& \frac{5}{3} \cdot\left(x_{1}+x_{2}+2 x_{3}\right) \leq \frac{5}{3} \cdot 4 \\
& 0 \cdot\left(2 x_{1}+3 x_{3}\right) \leq 0 \cdot 5 \\
& \frac{1}{3} \cdot\left(4 x_{1}+x_{2}+3 x_{3}\right) \leq \frac{1}{3} \cdot 7
\end{aligned}
$$

$$
\begin{array}{cccccc}
M a & i a & h i i & M a & \text { ia } & \text { huu } \\
M a & i a & \text { hoo } & \text { Ma } & \text { ia } & \text { haha }
\end{array}
$$

$$
\Rightarrow \quad 3 x_{1}+2 x_{2}+4 x_{3} \leq 9
$$

Done!

OK, How Did . . . I do that?

Beside listening to Numa Numa, find non-negative multipliers

$$
\begin{aligned}
& y_{1}+2 y_{2}+4 y_{3} \geq 3 \\
& y_{1} \geq y_{3} \\
& \geq 2 \\
& 2 y_{1}+3 y_{2}+3 y_{3} \geq 4 \\
& y_{1}, y_{2}, y_{3} \geq 0
\end{aligned}
$$

we have

$$
3 x_{1}+2 x_{2}+4 x_{3} \leq 4 y_{1}+5 y_{2}+7 y_{3}
$$

$$
\begin{aligned}
& y_{1} \cdot\left(x_{1}+x_{2}+2 x_{3}\right) \leq 4 y_{1} \\
& y_{2} \cdot\left(2 x_{1}+3 x_{3}\right) \leq 5 y_{2} \\
& y_{3} \cdot\left(4 x_{1}+x_{2}+3 x_{3}\right) \leq 7 y_{3} \\
& \Rightarrow\left(y_{1}+2 y_{2}+4 y_{3}\right) x_{1}+\left(y_{1}+y_{3}\right) x_{2}+\left(2 y_{1}+3 y_{2}+3 y_{3}\right) x_{3} \leq\left(4 y_{1}+5 y_{2}+7 y_{3}\right) \\
& \text { Want LHS to be like } 3 x_{1}+2 x_{2}+4 x_{3} \text {. Thus, as long as }
\end{aligned}
$$

How to Get the Best Multipliers

Answer: minimize the upper bound.

$$
\begin{aligned}
\min & \begin{aligned}
4 y_{1} & +5 y_{2}+7 y_{3} \\
& \\
y_{1} & +2 y_{2}+4 y_{3}
\end{aligned} \geq 3 \\
y_{1} & \geq y_{3} \\
2 y_{1} & \geq 3 y_{2}+3 y_{3} \\
& \geq 4 \\
y_{1}, y_{2}, y_{3} & \geq 0 .
\end{aligned}
$$

What We Have Just Shown

If \mathbf{x} is feasible for the Primal Program

$$
\begin{array}{cccc}
\max & 3 x_{1} & +2 x_{2}+4 x_{3} \\
\text { subject to } & x_{1} & +x_{2}+2 x_{3} \leq 4 \\
& 2 x_{1} & \\
& 4 x_{1} & +3 x_{3} \leq 5 \\
& & x_{2}+3 x_{3} & \leq 7 \\
x_{1}, x_{2}, x_{3} & \geq 0 .
\end{array}
$$

and \mathbf{y} is feasible for the Dual Program

$$
\begin{aligned}
\min & \begin{aligned}
4 y_{1} & +5 y_{2}+7 y_{3} \\
y_{1} & +2 y_{2}+4 y_{3}
\end{aligned} \geq 3 \\
y_{1} & \geq y_{3} \\
2 y_{1}+3 y_{2}+3 y_{3} & \geq 4 \\
& y_{1}, y_{2}, y_{3}
\end{aligned} \geq 0 .
$$

then

$$
3 x_{1}+2 x_{2}+4 x_{3} \leq 4 y_{1}+5 y_{2}+7 y_{3}
$$

Primal-Dual Pairs - Canonical Form

$$
\begin{array}{rcc}
\min & \mathbf{c}^{T} \mathbf{x} & \text { (primal/dual program) } \\
\text { subject to } & \mathbf{A x} \geq \mathbf{b} & \\
& \mathbf{x} \geq \mathbf{0} & \\
\max & \mathbf{b}^{T} \mathbf{y} \quad \text { (dual/primal program) } \\
\text { subject to } & \mathbf{A}^{T} \mathbf{y} \leq \mathbf{c} \\
& \mathbf{y} \geq \mathbf{0} .
\end{array}
$$

Note

The dual of the dual is the primal!

Primal-Dual Pairs - Standard Form

$$
\begin{array}{cc}
\min / \max & \mathbf{c}^{T} \mathbf{x} \quad \text { (primal program) } \\
\text { subject to } & \mathbf{A x}=\mathbf{b} \\
& \mathbf{x} \geq \mathbf{0}
\end{array}
$$

$\max / \min \quad \mathbf{b}^{T} \mathbf{y} \quad$ (dual program)
subject to $\mathbf{A}^{T} \mathbf{y} \leq \mathbf{c}$ no non-negativity restriction!.

General Rules for Writing Dual Programs

Maximization problem	Minimization problem
Constraints	Variables
i th constraint \leq	i th variable ≥ 0
i th constraint \geq	i th variable ≤ 0
i th constraint $=$	i th variable unrestricted
Variables	Constraints
j th variable ≥ 0	j th constraint \geq
j th variable ≤ 0	j th constraint \leq
j th variable unrestricted	j th constraint $=$

Table: Rules for converting between primals and duals.

Note

The dual of the dual is the primal!

Weak Duality - Canonical Form Version

Consider the following primal-dual pair in canonical form

$$
\begin{array}{rc}
\text { Primal LP: } & \min \left\{\mathbf{c}^{\mathbf{T}} \mathbf{x} \mid \mathbf{A} \mathbf{x} \geq \mathbf{b}, \mathbf{x} \geq \mathbf{0}\right\} \\
\text { Dual LP: } & \max \left\{\mathbf{b}^{\mathbf{T}} \mathbf{y} \mid \mathbf{A}^{\mathbf{T}} \mathbf{y} \leq \mathbf{c}, \mathbf{y} \geq \mathbf{0}\right\} .
\end{array}
$$

Theorem (Weak Duality)

Suppose \mathbf{x} is primal feasible, and \mathbf{y} is dual feasible for the LPs defined above, then $\mathbf{c}^{T} \mathbf{x} \geq \mathbf{b}^{T} \mathbf{y}$.

Corollary

If \mathbf{x}^{*} is an primal-optimal and \mathbf{y}^{*} is an dual-optimal, then $\mathbf{c}^{T} \mathbf{x}^{*} \geq \mathbf{b}^{T} \mathbf{y}^{*}$.

Corollary

If \mathbf{x}^{*} is primal-feasible, \mathbf{y}^{*} is dual-feasible, and $\mathbf{c}^{T} \mathbf{x}^{*}=\mathbf{b}^{T} \mathbf{y}^{*}$, then \mathbf{x}^{*} and \mathbf{y}^{*} are optimal for their respective programs.

Weak Duality - Standard Form Version

Consider the following primal-dual pair in standard form

$$
\begin{array}{cc}
\text { Primal LP: } & \min \left\{\mathbf{c}^{\mathbf{T}} \mathbf{x} \mid \mathbf{A} \mathbf{x}=\mathbf{b}, \mathbf{x} \geq \mathbf{0}\right\} \\
\text { Dual LP: } & \max \left\{\mathbf{b}^{\mathbf{T}} \mathbf{y} \mid \mathbf{A}^{\mathbf{T}} \mathbf{y} \leq \mathbf{c}\right\}
\end{array}
$$

Theorem (Weak Duality)

Suppose \mathbf{x} is primal feasible, and \mathbf{y} is dual feasible for the LPs defined above, then $\mathbf{c}^{T} \mathbf{x} \geq \mathbf{b}^{T} \mathbf{y}$.

Corollary

If \mathbf{x}^{*} is an primal-optimal and \mathbf{y}^{*} is an dual-optimal, then $\mathbf{c}^{T} \mathbf{x}^{*} \geq \mathbf{b}^{T} \mathbf{y}^{*}$.

Corollary

If \mathbf{x}^{*} is primal-feasible, \mathbf{y}^{*} is dual-feasible, and $\mathbf{c}^{T} \mathbf{x}^{*}=\mathbf{b}^{T} \mathbf{y}^{*}$, then \mathbf{x}^{*} and \mathbf{y}^{*} are optimal for their respective programs.

Strong Duality

Theorem (Strong Duality)

If the primal LP has an optimal solution \mathbf{x}^{*}, then the dual LP has an optimal solution \mathbf{y}^{*} such that

$$
\mathbf{c}^{T} \mathbf{x}^{*}=\mathbf{b}^{T} \mathbf{y}^{*}
$$

		Dual		
		Feasible		Infeasible
		Optimal	Unbounded	
Primal	Feasible	Optimal	X	Nah
	Unbounded	Nah	Nah	X
	Infeasible	Nah	X	X

The Diet Problem Revisited

The dual program for the diet problem:

$$
\begin{array}{cccccccc}
\max & b_{1} y_{1}+b_{2} y_{2}+\cdots+b_{m} y_{m} \\
\text { subject to } & a_{11} y_{1} & + & a_{21} y_{2} & +\ldots & + & a_{m 1} y_{m} & \geq \\
& a_{12} y_{1} & + & a_{22} y_{2} & +\ldots & + & a_{2 n} y_{m} & \geq \\
c_{2} \\
& \vdots & \vdots & \ldots & \vdots & \vdots & \vdots \\
& a_{1 n} y_{1}+ & a_{2 n} y_{2} & +\ldots & + & a_{m n} y_{m} & \geq & c_{n} \\
& & & y_{j} \geq 0, \forall j=1, \ldots, m,
\end{array}
$$

(Possible) Interpretation: y_{i} is the price per unit of nutrient i that a whole-seller sets to "manufacture" different types of foods.

The Max-Flow Problem Revisited

The dual program for the Max-Flow LP Formulation:

$$
\begin{aligned}
\min & \sum_{u v \in E} c_{u v} y_{u v} \\
\text { subject to } \quad y_{u v}-z_{u}+z_{v} & \geq 0 \quad \forall u v \in E \\
z_{s} & =1 \\
z_{t} & =0 \\
y_{u v} & \geq 0 \quad \forall u v \in E
\end{aligned}
$$

Theorem (Max-Flow Min-Cut)

Maximum flow value equal minimum cut capacity.

Proof.

Let $\left(\mathbf{y}^{*}, \mathbf{z}^{*}\right)$ be optimal to the dual above. Set $W=\left\{v \mid z_{v}^{*} \geq 1\right\}$, then total flow out of W is equal to $\operatorname{cap}(() W, \bar{W})$.

The Simplex Method: High-Level Overview

Consider a linear program $\min \left\{\mathbf{c}^{T} \mathbf{x} \mid \mathbf{x} \in P\right\}, P$ is a polyhedron
(1) Find a vertex of P, if P is not empty (the LP is feasible)
(2) Find a neighboring vertex with better cost

- If found, then repeat step 2
- Otherwise, either report UnBounded or optimal solution

Questions

(1) When is P not empty?
(2) When does P have a vertex? (i.e. P is pointed)
(3) What is a vertex, anyhow?
(9) How to find an initial vertex?
(5) What if no vertex is optimal?
(0) How to find a "better" neighboring vertex
(3) Will the algorithm terminate?
(8) How long does it take?

3. What is a vertex, anyhow?

Many ways to define a vertex v :

- $v \in P$ a vertex iff $\nexists \mathbf{y} \neq 0$ with $\mathbf{v}+\mathbf{y}, \mathbf{v}-\mathbf{y} \in P$
- $v \in P$ a vertex iff $\nexists \mathbf{u} \neq \mathbf{w}$ such that $\mathbf{v}=(\mathbf{u}+\mathbf{w}) / \mathbf{2}$
- $v \in P$ a vertex iff it's the unique intersection of n independent faces

Questions

(1) When is P not empty?
(2) When does P have a vertex? (i.e. P is pointed)
(3) What is a vertex, anyhow?
(9) How to find an initial vertex?
(5) What if no vertex is optimal?
(0) How to find a "better" neighboring vertex
(0) Will the algorithm terminate?
(3) How long does it take?

2. When is P pointed?

Question

Define a polyhedron which has no vertex?

Lemma

P is pointed iff it contains no line

Lemma

$P=\{\mathbf{x} \mid \mathbf{A} \mathbf{x}=\mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$, if not empty, always has a vertex.

Lemma

$\mathbf{v} \in P=\{\mathbf{x} \mid \mathbf{A x}=\mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$ is a vertex iff the columns of \mathbf{A} corresponding to non-zero coordinates of \mathbf{v} are linearly independent

Questions

(1) When is P not empty?
(2) When does P have a vertex? (i.e. P is pointed)
(3) What is a vertex, anyhow?
(9) How to find an initial vertex?
(5) What if no vertex is optimal?
(0) How to find a "better" neighboring vertex
(1) Will the algorithm terminate?
(B) How long does it take?

5. What if no vertex is optimal?

Lemma

Let $P=\{\mathbf{x} \mid \mathbf{A} \mathbf{x}=\mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$. If $\min \left\{\mathbf{c}^{\mathbf{T}} \mathbf{x} \mid \mathbf{x} \in P\right\}$ is bounded (i.e. it has an optimal solution), then for all $\mathbf{x} \in P$, there is a vertex $\mathbf{v} \in P$ such that $\mathbf{c}^{T} \mathbf{v} \leq \mathbf{c}^{T} \mathbf{x}$.

Theorem

The linear program $\min \left\{\mathbf{c}^{\mathbf{T}} \mathbf{x} \mid \mathbf{A x}=\mathbf{b}, \mathbf{x} \geq \mathbf{0}\right\}$ either
(1) is infeasible,
(2) is unbounded, or
(3) has an optimal solution at a vertex.

Questions

(1) When is P not empty?
(2) When does P have a vertex? (i.e. P is pointed)
(3) What is a vertex, anyhow?
(9) How to find an initial vertex?
(0) What if no vertex is optimal?
(0) How to find a "better" neighboring vertex
(1) Will the algorithm terminate?
(3) How long does it take?

6. How to find a "better" neighboring vertex

- The answer is the core of the Simplex method
- This is basically one iteration of the method

Consider a concrete example:

\[

\]

Sample execution of the Simplex algorithm

Converting to standard form

$$
\begin{array}{ccccc}
\max & 3 x_{1} & +2 x_{2} & +4 x_{3} \\
\text { subject to } & x_{1} & +x_{2} & +2 x_{3} & +x_{4} \\
& 2 x_{1} & & +3 x_{3} & \\
& 4 x_{1} & +x_{2} & +3 x_{3} & \\
& & & x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} & \geq 0 \\
& & \geq x_{6} & =7 \\
& & & & =0
\end{array}
$$

- $\mathbf{x}=\left[\begin{array}{llllll}0 & 0 & 0 & 4 & 5 & 7\end{array}\right]^{T}$ is a vertex!
- Define $B=\{4,5,6\}, N=\{1,2,3\}$.
- The variables $x_{i}, i \in N$ are called free variables.
- The x_{i} with $i \in B$ are basic variables.
- How does one improve \mathbf{x} ? Increase x_{3} as much as possible! (x_{1} or x_{2} works too.)

Sample execution of the Simplex algorithm

- x_{3} can only be at most $5 / 3$, forcing $x_{4}=2 / 3, x_{5}=0, x_{5}=2$
- $\mathbf{x}^{T}=\left[\begin{array}{llllll}0 & 0 & 5 / 3 & 2 / 3 & 0 & 2\end{array}\right]$ is the new vertex (why?!!!)
- The new objective value is $20 / 3$
- x_{3} enters the basis B, x_{5} leaves the basis
- $B=\{3,4,6\}, N=\{1,2,5\}$

Rewrite the linear program

$$
\begin{array}{cccccc}
\max & 3 x_{1} & +2 x_{2} & +4 x_{3} & & \\
\text { subject to } & -\frac{1}{3} x_{1} & +x_{2} & & +\mathbf{x}_{\mathbf{4}} & \\
& & & =\frac{2}{3} \\
& \frac{2}{3} x_{1} & & +\mathbf{x}_{\mathbf{3}} & +\frac{1}{3} x_{5} & =\frac{5}{3} \\
2 x_{1} & +x_{2} & & & \\
& & & & x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} & \geq 0
\end{array}
$$

Sample execution of the Simplex algorithm

We also want the objective function to depend only on the free variables:

$$
\begin{aligned}
3 x_{1}+2 x_{2}+4 x_{3} & =3 x_{1}+2 x_{2}+4\left(\frac{5}{3}-\frac{2}{3} x_{1}-\frac{1}{3} x_{5}\right) \\
& =\frac{1}{3} x_{1}+2 x_{2}-\frac{4}{3} x_{5}+\frac{\mathbf{2 0}}{\mathbf{3}}
\end{aligned}
$$

The linear program is thus equivalent to

$$
\begin{array}{cccccc}
\max & \frac{1}{3} x_{1} & +2 x_{2} & & -\frac{4}{3} x_{5} & \\
\text { subject to } & -\frac{1}{3} x_{1} & +x_{2} & & +\mathbf{x}_{\mathbf{4}} & \\
& & & & =\frac{\mathbf{2 0}}{\mathbf{3}} \\
& \frac{2}{3} x_{1} & & +\mathbf{x}_{\mathbf{3}} & & +\frac{1}{3} x_{5} \\
2 x_{1} & +x_{2} & & & =\frac{5}{3} \\
& & & & x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} & \geq \\
& & & \geq & =2
\end{array}
$$

Increase x_{2} to $2 / 3$, so that x_{2} enters, x_{4} leaves.

Sample execution of the Simplex algorithm

\max	x_{1}		$-2 x_{4}$		$+\mathbf{8}$
subject to	$-\frac{1}{3} x_{1}$	$+\mathbf{x}_{\mathbf{2}}$		$+x_{4}$	$=\frac{2}{3}$
	$\frac{2}{3} x_{1}$		$+\mathbf{x}_{\mathbf{3}}$		$+\frac{1}{3} x_{5}$
	$\frac{7}{3} x_{1}$			$=\frac{5}{3}$	
				$-x_{4}-\frac{1}{3} x_{5}+\mathbf{x}_{\mathbf{6}}$	$=\frac{4}{3}$
		$x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}$	≥ 0.		

At this point, only x_{1} to increase.

- If all its coefficients are non-positive (like $-1 / 3$ above), then the LP is UnBounded
- Fortunately, this is not the case here
- Increase x_{1} to $4 / 7$, so that x_{1} enters, x_{6} leaves.

Sample execution of the Simplex algorithm

max
subject to $+\mathbf{x}_{2}$
X_{1}

$$
\begin{array}{lllll}
-\frac{11}{7} x_{4} & +\frac{1}{7} x_{5} & -\frac{3}{7} x_{6} & +\quad \frac{60}{7}
\end{array}
$$

$$
+\frac{6}{7} x_{4} \quad-\frac{5}{7} x_{5} \quad+\frac{1}{7} x_{6}=\frac{6}{7}
$$

$$
+\mathbf{x}_{\mathbf{3}} \quad+\frac{2}{7} x_{4} \quad+\frac{3}{7} x_{5}-\frac{2}{7} x_{6}=\frac{9}{7}
$$

$$
-\frac{3}{7} x_{4} \quad-\frac{1}{7} x_{5} \quad+\frac{3}{7} x_{6} \quad=\quad \frac{4}{7}
$$

$$
x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \geq 0
$$

Now, x_{5} enters again, x_{3} leaves.

Sample execution of the Simplex algorithm

$$
\begin{aligned}
& \text { max } \\
& \text { subject to } \\
& -\frac{1}{3} x_{3} \quad-\frac{34}{21} x_{4} \quad-\frac{1}{3} x_{6} \quad+\quad \mathbf{9} \\
& +\mathbf{x}_{\mathbf{2}}+\frac{49}{15} x_{3}+\frac{188}{105} x_{4} \quad-\frac{1}{3} x_{6}=3 \\
& +\frac{7}{3} x_{3} \quad+\frac{2}{3} x_{4} \quad+\mathbf{x}_{\mathbf{5}}-\frac{2}{3} x_{6}=3 \\
& +\frac{1}{3} x_{3}-\frac{1}{3} x_{4} \quad+\frac{1}{3} x_{6}=1 \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \geq 0 .
\end{aligned}
$$

Yeah! No more improvement is possible. We have reached the optimal vertex

$$
\mathbf{v}=\left[\begin{array}{llllll}
1 & 3 & 0 & 0 & 3 & 0
\end{array}\right]^{T} .
$$

The optimal cost is 9 .

Questions

(1) When is P not empty?
(2) When does P have a vertex? (i.e. P is pointed)
(3) What is a vertex, anyhow?
(9) How to find an initial vertex?
(5) What if no vertex is optimal?
(0) How to find a "better" neighboring vertex
(1) Will the algorithm terminate?
(8) How long does it take?

7\&8 Termination and Running Time

Termination

- There are finitely many vertices $\left.\left(\leq \begin{array}{l}n \\ m\end{array}\right)\right)$
- Terminating $=$ non-cycling, i.e. never come back to a vertex
- Many cycling prevention methods: perturbation method, lexicographic rule, Bland's pivoting rule, etc.
- Bland's pivoting rule: pick smallest possible j to leave the basis, then smallest possible i to enter the basis
Running time
- Klee \& Minty (1969) showed that Simplex could take exponential time

Summary: Simplex with Bland's Rule

(1) Start from a vertex \mathbf{v} of P.
(2) Determine B and N; Let $\mathbf{y}_{B}^{T}=\mathbf{c}_{B}^{T} \mathbf{A}_{B}^{-1}$.
(3) If $\left(c_{N}^{T}-\mathbf{y}_{B}^{T} \mathbf{a}_{j}\right) \geq 0$, then vertex \mathbf{v} is optimal. Moreover,

$$
\mathbf{c}^{T} \mathbf{v}=\mathbf{c}_{B}^{T} \mathbf{v}_{B}+\mathbf{c}_{N}^{T} \mathbf{v}_{N}=\mathbf{c}_{B}^{T}\left(\mathbf{A}_{B}^{-1} \mathbf{b}-\mathbf{A}_{B}^{-1} \mathbf{A}_{N} \mathbf{v}_{N}\right)+\mathbf{c}_{N}^{T} \mathbf{v}_{N}
$$

(9) Else, let

$$
j=\min \left\{j^{\prime} \in N:\left(c_{j^{\prime}}-\mathbf{y}_{B}^{T} \mathbf{a}_{j^{\prime}}\right)<0\right\} .
$$

(0) If $\mathbf{A}_{B}^{-1} \mathbf{a}_{j} \leq 0$, then report unbounded LP and Stop!
(0) Otherwise, pick smallest $k \in B$ such that $\left(\mathbf{A}_{B}^{-1} \mathbf{a}_{j}\right)_{k}>0$ and that

$$
\frac{\left(\mathbf{A}_{B}^{-1} \mathbf{b}\right)_{k}}{\left(\mathbf{A}_{B}^{-1} \mathbf{a}_{j}\right)_{k}}=\min \left\{\frac{\left(\mathbf{A}_{B}^{-1} \mathbf{b}\right)_{i}}{\left(\mathbf{A}_{B}^{-1} \mathbf{a}_{j}\right)_{i}}: i \in B, \quad\left(\mathbf{A}_{B}^{-1} \mathbf{a}_{j}\right)_{i}>0\right\} .
$$

(1) x_{k} leaves, x_{j} enters: $B=B \cup\{j\}-\{k\}, N=N \cup\{k\}-\{j\}$.

Go back to step 3.

By Product: Strong Duality

Theorem (Strong Duality)

If the primal LP has an optimal solution \mathbf{x}^{*}, then the dual LP has an optimal solution \mathbf{y}^{*} such that

$$
\mathbf{c}^{T} \mathbf{x}^{*}=\mathbf{b}^{T} \mathbf{y}^{*}
$$

Proof.

- Suppose Simplex returns vertex \mathbf{x}^{*} (at B and N)
- Recall $\mathbf{y}_{B}^{T}=\mathbf{c}_{B}^{T} \mathbf{A}_{B}^{-1}$, then $\mathbf{c}^{T} \mathbf{x}^{*}=\mathbf{y}_{B}^{T} \mathbf{b}$

$$
\mathbf{A}^{T} \mathbf{y}_{B}=\left[\begin{array}{l}
\mathbf{A}_{B}^{T} \\
\mathbf{A}_{N}^{T}
\end{array}\right] \mathbf{y}_{B}=\left[\begin{array}{c}
\mathbf{c}_{B} \\
\mathbf{A}_{N}^{T} \mathbf{y}_{B}
\end{array}\right] \leq\left[\begin{array}{l}
\mathbf{c}_{B} \\
\mathbf{c}_{N}
\end{array}\right]=\mathbf{c} .
$$

- Set $\mathbf{y}^{*}=\mathbf{y}_{B}^{T}$. Done!

Questions

(1) When is P not empty?
(2) When does P have a vertex? (i.e. P is pointed)
(3) What is a vertex, anyhow?
(9) How to find an initial vertex?
(5) What if no vertex is optimal?
(0) How to find a "better" neighboring vertex
(1) Will the algorithm terminate?
(B) How long does it take?

1\&4 Feasibility and the Initial Vertex

- In $P=\{\mathbf{x} \mid \mathbf{A x}=\mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$, we can assume $\mathbf{b} \geq \mathbf{0}$ (why?).
- Let $\mathbf{A}^{\prime}=\left[\begin{array}{ll}\mathbf{A} & \mathbf{I}\end{array}\right]$
- Let $P^{\prime}=\left\{\mathbf{z} \mid \mathbf{A}^{\prime} \mathbf{z}=\mathbf{b}, \mathbf{z} \geq \mathbf{0}\right\}$.
- A vertex of P^{\prime} is $\mathbf{z}=\left[0, \ldots, 0, b_{1}, \ldots, b_{m}\right]^{T}$
- P is feasible iff the following LP has optimum value 0

$$
\min \left\{\sum_{i=1}^{m} z_{n+i} \mid \mathbf{z} \in P^{\prime}\right\}
$$

- From an optimal vertex \mathbf{z}^{*}, ignore the last m coordinates to obtain a vertex of P

Questions

(1) When is P not empty?
(2) When does P have a vertex? (i.e. P is pointed)
(3) What is a vertex, anyhow?
(9) How to find an initial vertex?
(5) What if no vertex is optimal?
(0) How to find a "better" neighboring vertex
(1) Will the algorithm terminate?
(B) How long does it take?

