We've done
@ Greedy Method
@ Divide and Conquer
@ Dynamic Programming
@ Network Flows & Applications

@ NP-completeness

Now

@ Linear Programming and the Simplex Method
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Linear Programming Motivation: The Diet Problem

Setting
e n foods (beef, apple, potato chips, pho, biin bo, etc.)
@ m nutritional elements (vitamins, calories, etc.)
@ each gram of jth food contains a;; units of nutritional element
@ a good meal needs b; units of nutritional element
@ each gram of jth food costs c;
Objective
@ design the most economical meal yet dietarily sufficient

@ (Halliburton must solve this problem!)
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The Diet Problem as a Linear Program

Let x; be the weight of food j in a dietarily sufficient meal.

min c1T1 + oo + -+ - + CpTy
subject to an1x1 + apzre + ... + appr, > b
asnxri + agprs + ... + awgr, > by
amiT1 + amaxras + ... + amnTn > by

CEjZO,VjIl,...,TL,
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Linear Programming Motivation: The Max-Flow Problem

Maximize the value of f:
Val(f) - Z Je
e=(s,v)eEE
Subject to
0< fe<ce, VeeFE
Z fe_ Z fe:07 \V//U#Sat
e=(u,v)€EE e=(v,w)eEE
0
® 9 ®
4 0
10 44 15 15 0 10
0 4 4
@ ° @ : ® v @
0 0
capacity — 1B 40 6 15 0 10
flow — 0 0
Value = 4
® = ®
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Formalizing the Linear Programming Problem

Linear objective function

max or min —§:1:1 + 229 + x3 — 624 + X5

Linear constraints, can take many forms

® Inequality constraints

3r1 + 4xs — 226
271 + 272 + 3

IN IV

@ Equality constraints
—T9 — x4 +x3 = —3
@ Non-negativity constraints (special case of inequality)
r1,T5, 27 > 0
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Some notational conventions

All vectors are column vectors

C1 I all ai2 . A1n
C2 ) a21 a2 ... a2n
c=|.|,x=1| .|, A= _ 1,b
| Cn | | Tn | | Am1 Am2 ... Gmn |
Hung Q. Ngo (SUNY at Buffalo) CSE 531

8 / 59




Linear Program: Standard Form

min / max ¢z + coxe + - - + CrTy

subject to a11x7 4+ apxre + ... 4+ axrn, = b1
as1r1 + axrs + ... 4+ agpr, = b
am1T1 + amoxros + ... + amnTn = bn

ZBjZO,VjIl,...,n,

or, in matrix notations,

min/max{ch | Ax =b,x > 0}
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Linear Program: Canonical Form — min Version

min c1x1 +c2x2 + -+ Ty
subject to an1x1 + apzxre + ... + appr, > by
anry + azprs + ... + awxTn, > b
>
amiTi + amaxe + ... 4+ ampTn > bm

x; >0Vj=1,...,n,

or, in matrix notations,

min{ch | Ax > b,x > O}
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Linear Program: Canonical Form — max Version

max C1T1 + C2XT9 + -+ + CpTp
subject to anx1 + appzre + ... + appr, < by
anry + axprs + ... + awrn, < b
<
am1Ti + amaxe + ... + amntn < bm

CEjZO,VjIl,...,TL,

or, in matrix notations,

max {CTX | Ax < b,x > O}
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Conversions Between Forms of Linear Programs

max ¢! x = min(—c)’x

Zj aijT; < b; is equivalent to — Zj Qi > —b;

Zj a;jxj < b; is equivalent to Zj a;jx; + s; = b;, 8, > 0. The
variable s; is called a slack variable.

@ When z; <0, replace all occurrences of x; by —x;, and replace
z; <0 by ZU; > (.

@ When z; is not restricted in sign, replace it by (u; —v;), and
Uj, ’Uj Z 0.
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Zj aijT; = b; is equivalent to Zj a;ij T < b; and Zj Qi T; > b;.
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Example of Converting Linear Programs

Write
min r1 — X2 + 4x3
subject to 3x7 — a9 = 3
— X9 + 2z4 > 4
T + a3 < -3
1,9 Z 0

in standard (min / max) form and canonical (min / max) form.
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LP Geometry: Example 1

max 2 +y

subjectto -2z + y < 2
or + 3Jy < 15

x + y < 4

x>0,y>0

Hung Q. Ngo (SUNY at Buffalo) CSE 531 15 / 59



Example 1 — Feasible Region

>
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LP Geometry: Example 2

max 2 +y

subjectto 2z + 3y > 8
8 + 3Jy > 12
dr 4+ 3y > 24
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Example 2 — Feasible Region

10
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Example 2 — Objective Function
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Half Space and Hyperplane

Each inequality a’x > b defines a half-space.

Each equality a”’x = b defines a hyperplane.
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Polyhedron, Vertices, Direction of Optimization

A polyhedron is the set of points x satisfying Ax < b (or equivalently
A'x > b’)

do < dip

Tz is improved
vertex

moving along
this directio
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Linear Programming Duality: A Motivating Example

max 3r1 + 2z9 + 45[?3
subjectto x1 4+ 1z + 2z3 < 4
2[131 + 35133 < 5
dr1 + x2 + 3xz3 < 7
x1,r2,23 = 0

Someone claims x* = [1 3 0] is optimal with cost 9.
Feasibility is easy. How could we verify optimality?
We ask the person for a proof!
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Her Proof of the Optimality of x

2 (w1 4+ m + 223 ) < 244
0-( 2 + 3x3 ) < 0-5
% (4 + oz + 3x3 ) < % -7

Ma ia  hit Ma 1a huu

Ma 1ia hoo Ma 1a haha

= 3r1 4+ 29 +  4dxs < 9

Donel
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OK, How Did .. .| do that?

Beside listening to Numa Numa, find non-negative multipliers

y1-( x4+ x + 223 ) < 4y
Y2 - ( 211 + 3x3 ) < Sys
ys-( 4dxy 4+ x9 + 3x3 ) < Tys

= (y1+2y2+4y3)x1 + (y1 +y3)x2+ (2y1 +3y2+3y3)x3 < (4y1 +5y2+Ty3)
Want LHS to be like 3xz1 4+ 229 + 4x3. Thus, as long as

y1 + 2y + 4dys = 3
Y1 + yz = 2
21 + 3y2 + 3dy3 > 4

y1,Y%2,y3 = 0

we have
321 4 229 + 423 < 4y; + Sy2 + Ty3
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How to Get the Best Multipliers

Answer: minimize the upper bound.

min 4y; + Sy2 + Ty3
y1 + 2y2 + 4ys

Y1 + U3

21 + 3y2 + 3y
Y1,Y2,Y3

IV IV IV IV
S B~ oW
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What We Have Just Shown

If x is feasible for the Primal Program

max 3r1 + 2x9 + 4dzx3
subjectto x; 4+ 1z + 2x3 < 4
211 + 3x3 < 5
dxy + x2 + 3x3 < T
T1,X2,T3 > 0

and y is feasible for the Dual Program

min 4y; + 5By2 + Tys3
y1 + 2y2 + 4dy3s = 3
Y1 + y3 = 2
21 + 3y2 + 3y = 4
Y1, y2,y3 = 0

then
321 4 229 + 423 < 4y; + Sy2 + Ty3
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Primal-Dual Pairs - Canonical Form

min  c¢’x  (primal/dual program)

subjectto Ax>Db
x>0

max  bly (dual/primal program)
subject to ATy <c
y = 0.

Note
The dual of the dual is the primal! J
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Primal-Dual Pairs - Standard Form

min /max c¢/x  (primal program)

subjectto Ax=Db
x>0

max /min ~ bly  (dual program)

subject to ATy < ¢ no non-negativity restriction!.

Hung Q. Ngo (SUNY at Buffalo) CSE 531 30 / 59



General Rules for Writing Dual Programs

Maximization problem | Minimization problem
Constraints Variables
1th constraint < 1th variable > 0
1th constraint > 1th variable <0
tth constraint = 1th variable unrestricted
Variables Constraints
jth variable > 0 jth constraint >
jth variable <0 jth constraint <
jth variable unrestricted jth constraint =

Table: Rules for converting between primals and duals.

Note
The dual of the dual is the primal! J
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Weak Duality — Canonical Form Version

Consider the following primal-dual pair in canonical form

Primal LP: min{cTx | Ax > b,x > 0},
Dual LP: max{bTy | ATy <c,y > 0}.

Theorem (Weak Duality)

Suppose x is primal feasible, and y is dual feasible for the LPs defined
above, then cT'x > bly.

Corollary

If x* is an primal-optimal and y* is an dual-optimal, then c'x* > bTy*.

v

Corollary

If x* is primal-feasible, y* is dual-feasible, and cI'x* = bTy*, then x* and
y* are optimal for their respective programs.

v
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Weak Duality — Standard Form Version

Consider the following primal-dual pair in standard form

Primal LP: min{cTx | Ax = b,x > 0},
Dual LP: max{bTy | ATy < c}.

Theorem (Weak Duality)

Suppose x is primal feasible, and y is dual feasible for the LPs defined
above, then ¢I'x > bTy.

Corollary

If x* is an primal-optimal and y* is an dual-optimal, then c’x* > bTy*.

v

Corollary

If x* is primal-feasible, y* is dual-feasible, and cI'x* = bTy*, then x* and
y* are optimal for their respective programs.

v
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Strong Duality

Theorem (Strong Duality)

If the primal LP has an optimal solution x*, then the dual LP has an
optimal solution y* such that

cI'x* =bly*.

Dual
Feasible Infeasible
Optimal | Unbounded
Feasible Optimal X Nah Nah
Primal Unbounded Nah Nah X
Infeasible Nah X X
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The Diet Problem Revisited

The dual program for the diet problem:

max biyi + boys + - - + binYm

subject to a11y1 + a2y2 + ... + Amiym = C1
a12y1r + agxy + ... + axm¥Ym = C3
aipy1 + a2pY2 + ...+ AQmnYm = Cn

ijO,VjZL...,m,

(Possible) Interpretation: y; is the price per unit of nutrient ¢ that a
whole-seller sets to “manufacture” different types of foods.
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The Max-Flow Problem Revisited

The dual program for the Max-Flow LP Formulation:

min E CuvYuv

uwvel
subject to Yyy —2ut+ 20 = 0 Yuv e FE
Zs = 1
Zt = 0
Yuw > 0 Yuv e FE

Theorem (Max-Flow Min-Cut)

Maximum flow value equal minimum cut capacity.

Proof.

Let (y*,2z") be optimal to the dual above. Set W = {v | 2 > 1}, then
total flow out of W is equal to cap(()W, W). [
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The Simplex Method: High-Level Overview

Consider a linear program min{c’x | x € P}, P is a polyhedron

© Find a vertex of P, if P is not empty (the LP is feasible)

© Find a neighboring vertex with better cost

e If found, then repeat step 2
e Otherwise, either report UNBOUNDED of OPTIMAL SOLUTION
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Q@ When is P not empty?

@ When does P have a vertex? (i.e. P is pointed)
© What is a vertex, anyhow?

© How to find an initial vertex?

© What if no vertex is optimal?

O How to find a “better” neighboring vertex

@ Will the algorithm terminate?

© How long does it take?
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3. What is a vertex, anyhow?

vertex v

Many ways to define a vertex v:
@ veEPavertex iff Ay #0 withv+y,v—y € P
@ v € P a vertex iff Au # w such that v = (u+ w)/2

@ v € P a vertex iff it's the unique intersection of n independent faces
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Q@ When is P not empty?

@ When does P have a vertex? (i.e. P is pointed)
© What isavertex—anyhow?

© How to find an initial vertex?

© What if no vertex is optimal?

O How to find a “better” neighboring vertex

@ Will the algorithm terminate?

© How long does it take?
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2. When is P pointed?

Question
Define a polyhedron which has no vertex?

Lemma
P is pointed iff it contains no line

Lemma

P ={x | Ax =b,x > 0}, if not empty, always has a vertex.

Lemma

veP={x]| Ax=Db,x > 0} is a vertex iff the columns of A
corresponding to non-zero coordinates of v are linearly independent
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Q@ When is P not empty?

© What isavertex—anyhow?

© How to find an initial vertex?

© What if no vertex is optimal?

O How to find a “better” neighboring vertex
@ Will the algorithm terminate?

© How long does it take?
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5. What if no vertex is optimal?

Lemma

Let P ={x | Ax =b,x > 0}. /fmin {cx | x € P} is bounded (i.e. it
has an optimal solution), then for all x € P, there is a vertex v € P such
that cI'v < c¢T'x.

Theorem
The linear program min{cTx | Ax = b,x > 0} either
Q s infeasible,

@ /s unbounded, or

© has an optimal solution at a vertex.
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Q@ When is P not empty?

© What isavertex—anyhow?

© How to find an initial vertex?

- WhatHre-vertexiseoptimal?

O How to find a "better” neighboring vertex
@ Will the algorithm terminate?

© How long does it take?
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6. How to find a “better” neighboring vertex

@ The answer is the core of the Simplex method

@ This is basically one iteration of the method

Consider a concrete example:

max 3r1 + 2x9 + 4dzx3
subjectto x7 4+ 1z + 2z3 < 4
211 + 3x3 < 5
dry + x2 + 3x3 < 7
T1,X2,T3 > 0.
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Sample execution of the Simplex algorithm

Converting to standard form

max 3r1 +2x9 +4x3
subject to +x9 +2x3 Hx4 = 4
211 +3x3 +x5 = 9
4ry +x9 4373 +xrg = 7
T1,T2,x3,T4,T5,Te > O.

ox=1[0 00 4 5 7] isa vertex!

o Define B ={4,5,6}, N ={1,2,3}.

@ The variables z;, ©: € N are called free variables.
@ The x; with ¢« € B are basic variables.

)

How does one improve x? Increase x3 as much as possible! (x1 or x2
works t00.)
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Sample execution of the Simplex algorithm

@ x3 can only be at most 5/3, forcing x4 = 2/3, 25 = 0,25 = 2
ox"'=[0 0 5/3 2/3 0 2]is the new vertex (why?!!l)

@ The new objective value is 20/3

@ x3 enters the basis B, x5 leaves the basis

e B={3,4,6}, N ={1,2,5}

Rewrite the linear program

max 31 +2x9 +4z3
subject to —ixz, +x9 +Xy4 = %
T
2r1 +xo +xg = 2
T1,%2,T3,T4,T5, 06 = 0.
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Sample execution of the Simplex algorithm

We also want the objective function to depend only on the free variables:
5 2 1
3r1 +2x9 +4x3 = 3x1+ 222+ 4 5 — giBl — 35135
1 Lo 4 n 20
pr— — T €T — =2 _
R R
The linear program is thus equivalent to
max %561 +2x9 —%335 + %
subject to —%xl +x9 +X4 = %
%xl +X3 —I—%£B5 = %
211 +x9 +xg = 2
T1, %2, %3, T4, 25,6 = 0.
Increase x2 to 2/3, so that x2 enters, z4 leaves.
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Sample execution of the Simplex algorithm

At this point, only 21 to increase.

IS UNBOUNDED

max T —214
subject to —%wl +X9 +x4
2r1 +x3 +izs
Tm —x4  —3T5 +Xg

X1,X2,T3,T4,T5,T6

@ Fortunately, this is not the case here

@ Increase x to 4/7, so that x; enters, z¢ leaves.

CSE 531
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o If all its coefficients are non-positive (like —1/3 above), then the LP
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Sample execution of the Simplex algorithm

max
subject to +X9
+X3

X1

Now, x5 enters again, x3 leaves.
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—1—71$4 —|-%£L'5 —§$6
—l—gm —%$5 +%$6
+2z4 +3z5 —Zxg
—§SIZ4 —%565 —i—%CIZG

L1,X2,T3,T4,T5,T6
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Sample execution of the Simplex algorithm

1
max —%xg —%:&1 —3%6 +
- 4 1 1
subject to +Xo +—1§ 3 —lgg T4 —3%6

2 2
+§x3 +3T4  +X5 —3T6

|
oW W ©

1 1
X1 +§$3 —§$4 —|—§£C6 =
x1,%2,23,2T4,T5,T6 > 0.

Yeah! No more improvement is possible. We have reached the optimal

vertex
v=[1 300 3 0.

The optimal cost is 9.
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Q@ When is P not empty?

© What isavertex—anyhow?

© How to find an initial vertex?

0 Whatif . {12

o H i o " eichbor

@ Will the algorithm terminate?
© How long does it take?
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7&8 Termination and Running Time

Termination
e There are finitely many vertices (< ("))

@ Terminating = non-cycling, i.e. never come back to a vertex

@ Many cycling prevention methods: perturbation method,
lexicographic rule, Bland'’s pivoting rule, etc.

e Bland’s pivoting rule: pick smallest possible j to leave the basis, then
smallest possible i to enter the basis

Running time

o Klee & Minty (1969) showed that Simplex could take exponential time
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Summary: Simplex with Bland's Rule

@ Start from a vertex v of P.
: . T _ T A—1
© Determine B and N; Let y3 = czAg".
Q If (cjj(, — ygaj) > 0, then vertex v is optimal. Moreover,

T T T T —1 —1 T
C'V=CgVp +CyNyVN =Cp (AB b — AB ANVN> + CNyVN

Q Else, let
J = min {j' e N : (cj/ —ygaj/) < 0}.
Q If Al_glaj < 0, then report unbounded LP and SToP!
@ Otherwise, pick smallest £ € B such that (Aglaj)k > 0 and that

(Ap'D) | (Ag'D) .
ﬁ = min M_B—la) : ZEB, (ABla])z >0;.
B <)k B <7/

@ zy, leaves, x; enters: B=BU{j} —{k}, N=NU{k} —{j}.
(GO BACK to step 3.
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By Product: Strong Duality

Theorem (Strong Duality)

If the primal LP has an optimal solution x*, then the dual LP has an
optimal solution y* such that

c'x* = bly*.

Proof.

@ Suppose Simplex returns vertex x* (at B and N)

@ Recall yg = ch;, then c’x* = ygb

AT Cp ] [CB]
B [A%] B [AJ&YB = len] = ©

o Set y* =yZL. Donel!
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© When is P not empty?

© What isavertex—anyhow?

© How to find an initial vertex?

0 What if . T

o H i o " eichbor
Q@ Wil the alsoritl : .
Q How long-doesittake?
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1&4 Feasibility and the Initial Vertex

@ In P={x| Ax =b,x > 0}, we can assume b > 0 (why?).
o Let A'=[A ]

@ Let PP={z| A'z=Db,z > 0}.

o A vertex of Plisz=10,...,0,b1,...,b,]"

@ P is feasible iff the following LP has optimum value 0

m
min {Zznﬂ |z € P'}
i=1

@ From an optimal vertex z*, ignore the last m coordinates to obtain a
vertex of P
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O When is P not empty?

© What isavertex—anyhow?
o H o aninitial ;
O What if : a2
o : ) no
@ Will the alsorit] ate?
Q How long-doesittake?
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