
Agenda

We’ve done

Greedy Method

Divide and Conquer

Dynamic Programming

Now

Flow Networks, Max-flow Min-cut and Applications

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 1 / 52

Soviet Rail Network, 1955

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 3 / 52

Maximum Flow and Minimum Cut Problems

Cornerstone problems in combinatorial optimization

Many non-trivial applications/reductions: airline scheduling, data
mining, bipartite matching, image segmentation, network survivability,
many many many more ...

Simple Example: on the Internet with error-free transmission, what is
the maximum data rate that a router s can send to a router t
(assuming no network coding is allowed), given that each link has
limited capacity

More examples and applications to come

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 4 / 52

Flow Networks

A flow network is a directed graph G = (V,E) where each edge e has
a capacity c(e) > 0
Also, there are two distinguished nodes: the source s and the sink t

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 6 / 52

Cuts

An s, t-cut is a partition (A,B) of V where s ∈ A, t ∈ B

Let [A,B] = set of edges (u, v) with u ∈ A, v ∈ B

The capacity of the cut (A,B) is defined by

cap(A,B) =
∑

e∈[A,B]

c(e)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 7 / 52

Cuts

An s, t-cut is a partition (A,B) of V where s ∈ A, t ∈ B
Let [A,B] = set of edges (u, v) with u ∈ A, v ∈ B
The capacity of the cut (A,B) is defined by

cap(A,B) =
∑

e∈[A,B]

c(e)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 8 / 52

Minimum Cut – Problem Definition

Given a flow network, find an s, t-cut with minimum capacity

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 9 / 52

Flows

An s, t-flow is a function f : E → R satisfying
– Capacity constraint: 0 ≤ f(e) ≤ c(e), ∀e ∈ E

– Flow Conservation constraint:
∑

e=(u,v)∈E

f(e) =
∑

e=(v,w)∈E

f(e),∀v 6= s, t

The value of f : val(f) =
∑

e=(s,v)∈E

f(e)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 10 / 52

Flows

An s, t-flow is a function f : E → R satisfying
– Capacity constraint: 0 ≤ f(e) ≤ c(e), ∀e ∈ E

– Flow Conservation constraint:
∑

e=(u,v)∈E

f(e) =
∑

e=(v,w)∈E

f(e),∀v 6= s, t

The value of f : val(f) =
∑

e=(s,v)∈E

f(e)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 11 / 52

Maximum Flow – Problem Definition

Given a flow network, find a flow f with maximum capacity

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 12 / 52

Flows and Cuts

Lemma (Flow Value Lemma)

For any flow f and any cut (A,B)∑
e out of A

f(e)−
∑

e into A

f(e) = val(f)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 13 / 52

Flows and Cuts

Lemma (Flow Value Lemma)

For any flow f and any cut (A,B)∑
e out of A

f(e)−
∑

e into A

f(e) = val(f)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 14 / 52

Flows and Cuts

Lemma (Flow Value Lemma)

For any flow f and any cut (A,B)∑
e out of A

f(e)−
∑

e into A

f(e) = val(f)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 15 / 52

Weak Duality

Lemma (Weak Duality)

Given any s, t-flow f and any s, t-cut (A,B), the flow value is at most the
cut capacity: val(f) ≤ cap(A,B)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 16 / 52

Certificate of Optimality

Corollary

If val(f) = cap(A,B) for any flow f and any cut (A,B), then f is a
maximum flow and (A,B) is a minimum cut

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 17 / 52

Computing Max Flow - First Attempt

A greedy algorithm:

start with f(e) = 0,∀e
find a path P with f(e) < c(e) for all e on the path
augment flow along P

repeat until stuck

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 19 / 52

Computing Max Flow - First Attempt

A greedy algorithm:

start with f(e) = 0,∀e
find a path P with f(e) < c(e) for all e on the path
augment flow along P

repeat until stuck

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 20 / 52

Computing Max Flow - First Attempt

A greedy algorithm:

start with f(e) = 0,∀e
find a path P with f(e) < c(e) for all e on the path

augment flow along P

repeat until stuck (local opt 6⇒ global opt)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 21 / 52

Residual Graph

Define Gf = (V,Ef) for each flow
f , each edge in Ef has a residual
capacity cf (e)
Ef and cf are determined as
follows

Original edge e = (u, v) ∈ E,
flow f(e), capacity c(e)
If f(e) < c(e), then e ∈ Ef and
cf (e) = c(e)− f(e)
If f(e) > 0, e = (u, v), then
e′ = (v, u) ∈ Ef and
cf (e′) = f(e)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 22 / 52

Ford-Fulkerson (Augmenting Path) Algorithm

Augment(f, c, P)
1: b← bottleneck(P), i.e. min residual capacity on P
2: for each edge e = (u, v) on P do
3: if e is a forward edge then
4: Increase f(e) in G by b
5: else
6: Decrease f(e) in G by b
7: end if
8: end for

Ford-Fulkerson(G, c)
1: Initially, set f(e) = 0 for all e ∈ E
2: while there is an s, t-path P in Gf do
3: Choose a simple s, t-path P in Gf (crucial for running time!)
4: f ← augment(f, c, P)
5: end while

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 23 / 52

Max-Flow Min-Cut Theorem

Theorem (Ford-Fulkerson, 1956)

The value of a max-flow is equal to the capacity of a min-cut

Proof.

Let f be any feasible flow, the following are equivalent

f is a maximum flow

there’s no augmenting path wrt f

there’s a cut (A,B) where val(f) = cap(A,B)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 24 / 52

Termination and Running Time

If 1 ≤ c(e) ≤ C ∈ N, and c(e) ∈ N for all e, then all flow values and
residual capacities remain integers throughout

Theorem

Number of iterations is at most val(f∗), which is at most nC

Corollary

If C = 1, i.e. c(e) = 1 for all e, then Ford-Fulkerson runs in time O(mn)

Theorem (Ingegrality Theorem)

If all capacities are integers, then there exists an integral maximum flow,
i.e. a flow whose f(e) are all integers.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 25 / 52

Generic Ford-Fulkerson: Exponential Running Time

It could take C iterations.

Recall: input size is a polynomial in m,n, log C

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 26 / 52

Choosing Good Augmenting Paths

Augmenting path selection:

Bad choices lead to exponential algorithms

Good choices lead to polynomial-time algorithms

If capacities are irrational, may not even terminate at all

Some good choices [Edmonds-Karp 1972, Dinitz 1970]

Max bottleneck capacity

Sufficiently large bottleneck capacity

Fewest number of edges

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 27 / 52

Some Strategies

Choose augmenting path with

no specific strategy ⇒ O(mC)
sufficiently large bottleneck capacity ⇒ O(m2 log C)
maximum bottleneck capacity ⇒ O(m log C)
shortest length ⇒ O(m2n)

Note: there are also strategies not based on the augmenting path method.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 29 / 52

The Edmonds-Karp Algorithm

Choose shortest augmenting path

Lemma

Let df (s, u) be the distance from s to u in Gf , then df (s, u) increases
monotonically with each augmentation

Theorem

The Edmonds-Karp algorithm makes at most O(mn) augmentations, in
particular its running time is O(m2n)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 30 / 52

Proof of the Lemma

Suppose augmenting f gives f ′ for which some df (s, v) > df ′(s, v).
Let v be such a vertex with smallest df ′(s, v), and P = s ; u→ v is
a path with length df ′(s, v)
Then,

df ′(s, u) = df ′(s, v)− 1
df ′(s, u) ≥ df (s, u)

Thus, (u, v) /∈ Ef ; but (u, v) ∈ Ef ′ , hence (v, u) ∈ Ef and
Edmonds-Karp pushed some flow from v to u in f

Since the flow is pushed along a shortest path, we have a
contradiction

df (s, v) + 1 = df (s, u) ≤ df ′(s, u) = df ′(s, v)− 1

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 31 / 52

Proof of the Theorem

For each augmentation, some bottleneck edge (u, v) in Gf will
disappear in Gf ′ , where f ′ is the next flow

Suppose (u, v) is a bottleneck edge a few times, then there will be a
time when (u, v) is a bottleneck for some f and later (v, u) is a
bottleneck for some f ′. We have

df (u) = df (v)− 1
df ′(v) = df ′(u)− 1

Thus,
df (u) = df (v)− 1 ≤ df ′(v)− 1 = df ′(u)− 2

Each time (u, v) becomes a bottleneck, df (s, u) is increased by at
least 2; thus, the number of times (u, v) is a bottleneck is at most
(n− 2)/2.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 32 / 52

General Idea for Employing Max-Flow Min-Cut

Set up a new problem as a network flow problem

Use max-flow algorithm to solve new problem

and/or Apply max-flow min-cut and integrality theorems to derive
some combinatorial properties of the new problem

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 34 / 52

Maximum Matching in Graphs

G = (V,E), a matching is a subset M ⊂ E no two of which share an
end point
Maximum matching: find a maximum cardinality matching

This is a fundamental problem in combinatorial optimization with
numerous applications

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 36 / 52

Maximum Matching in Bipartite Graphs

Given a bipartite graph G = (L ∪R,E), find a max matching

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 37 / 52

Maximum Matching in Bipartite Graphs

Given a bipartite graph G = (L ∪R,E), find a max matching

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 38 / 52

Max-Flow Formulation for Bipartite Matching

Create a new digraph G′ = (V ∪ {s, t}, E′) as follows

Orient edges from left to right (L to R) with capacities ∞ (or any
positive integer, doesn’t matter which)

Add a fake source s, fake sink t, and edges with capacities 1 as shown

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 39 / 52

Correctness of the Formulation

Theorem

The maximum matching cardinality of G is equal to the maximum flow
value of G′. Moreover, Ford-Fulkerson yields a maximum matching.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 40 / 52

Running Times of Matching Algorithms

Bipartite Matching

Generic Ford-Fulkerson: O(mn) – pretty good!

Largest Bottleneck Path : O(m2)
Edmonds-Karp: O(m

√
n)

...

Non-bipartite Matching

More difficult, but very well studied

Blossom algorithm (Edmonds, 1964): O(n4)
Best known (Micali-Vazirani, 1980): O(m

√
n)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 41 / 52

Marriage Theorem

Given a bipartite G = (L ∪R,E).
A complete matching from L into R is a matching in which every
vertex in L is matched.

A perfect matching is a matching in which every vertex is matched

Questions: When does G have a complete matching? When does it
have a perfect matching?

∃ a perfect matching iff |L| = |R| and ∃ a complete matching

Theorem (P. Hall 1935, Frobenius 1917, König 1916)

Let Γ(X) denote the set of neighbors of X ⊂ L, then G has a complete
matching iff |Γ(X)| ≥ |X|,∀X ⊆ L.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 42 / 52

König-Egerváry Theorem

Given G = (V,E), a vertex cover is a subset C ⊆ V such that each
edge in E has an end point in C

Let τ(G) denote the size of a maximum vertex cover, ν(G) the size of
a maximum matching

Theorem (König 1931, Egerváry 1932)

If G is bipartite, then τ(G) = ν(G)

Proof.

A “direct” consequence of max-flow min-cut.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 43 / 52

Edge Disjoint Paths in Directed Graphs

Given a directed graph G = (V,E), a source s and a target t, find the
maximum number λ′(s, t) of edge-disjoint s, t-paths

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 45 / 52

Edge Disjoint Paths in Directed Graphs

Given a directed graph G = (V,E), a source s and a target t, find the
maximum number λ′(s, t) of edge-disjoint s, t-paths

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 46 / 52

Max-Flow Formulation

Assign capacity 1 to each edge

Theorem

The max number of edge-disjoint s, t-paths is equal to the max flow value;
moreover, Ford-Fulkerson can find a max set of paths

Note: only need to eliminate cycles from output of max-flow algorithm

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 47 / 52

Disconnecting Sets

Given digraph G and s, t, an s, t-disconnecting set is a set of edges
whose removal separates s from t, i.e. no s, t-path remains

Let κ′(s, t) denote the minimum size of an s, t-disconnecting set

Applications: network reliability, among many others

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 48 / 52

Menger’s Theorem

Theorem (Menger 1927)

Given a digraph G and s, t, then λ′(s, t) = κ′(s, t)

Proof: λ′(s, t) ≤ κ′(s, t)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 49 / 52

Menger’s Theorem

Theorem (Menger 1927)

Given a digraph G and s, t, then λ′(s, t) = κ′(s, t)

Proof: λ′(s, t) ≥ κ′(s, t)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 50 / 52

Vertex Disjoint Paths in Directed Graphs

Given digraph G and s, t, an s, t-separating set is a set of vertices
whose removal separates s from t

Let κ(s, t) denote the minimum size of an s, t-separating set

A set of paths from s to t is internally vertex disjoint if they only
share vertices s and t; naturally let λ(s, t) denote the max number of
internally vertex disjoint s, t-paths

Theorem (Menger 1927)

Given a digraph G and s, t, then λ(s, t) = κ(s, t)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 51 / 52

Undirected Versions of Menger’s Theorem

There are also corresponding versions of Menger’s Theorem for undirected
graphs

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 52 / 52

