We've done
@ Greedy Method
@ Divide and Conquer

@ Dynamic Programming

Now

@ Flow Networks, Max-flow Min-cut and Applications

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Soviet Rail Network, 1955

Reference: & #he history of #he transportation and mavimum Fow problems,
Alexander Schrijver in Math Programming, 91 3, 2002,

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Maximum Flow and Minimum Cut Problems

@ Cornerstone problems in combinatorial optimization

@ Many non-trivial applications/reductions: airline scheduling, data
mining, bipartite matching, image segmentation, network survivability,
many many many more ...

@ Simple Example: on the Internet with error-free transmission, what is
the maximum data rate that a router s can send to a router ¢
(assuming no network coding is allowed), given that each link has
limited capacity

@ More examples and applications to come

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Flow Networks

@ A flow network is a directed graph G = (V, E') where each edge e has
a capacity c(e) > 0

@ Also, there are two distinguished nodes: the source s and the sink ¢

10

4 1h
source 5 %\] \’L 10 zink
—T
4
\£

capacity = e

30 7

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

@ An s,t-cut is a partition (A, B) of V where s € A, t € B
o Let [A, B] = set of edges (u,v) with u € A,v € B
@ The capacity of the cut (A, B) is defined by

©Hung Q. Ngo (SUNY at Buffalo)

cap(A,B) = Y c(e)

e€[A,B]
9 ®
15 15
8 ®
6 15
30 @

CSE 531 Algorithm Analysis and Design

Capacity = 10 + b + 15
=30

@ An s,t-cut is a partition (A, B) of V where s € A, t € B
o Let [A, B] = set of edges (u,v) with u € A,v € B
@ The capacity of the cut (A, B) is defined by

cap(A,B)= > c(e)

e€[A,B]

©Hung Q. Ngo (SUNY at Buffalo)

CSE 531 Algorithm Analysis and Design

10

10 @

10

Copacity = 9 + 16 + 8 + 30
= 62

Minimum Cut — Problem Definition

Given a flow network, find an s, t-cut with minimum capacity
1na

e

10

Capacity = 10 + 8 + 10
= Z8

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Flows
An s, t-flow is a function f : E — R satisfying
— Capacity constraint: 0 < f(e) <c(e), Ve € E
— Flow Conservation constraint: Z f(e) = Z fle),Yv # s,t
e=(u,v)eEE e=(v,w)eE
The value of f: val(f) = Z f(e)
e=(s,0)EE
0
® ? ®
4 0 0
10 4 4 15 L 10
4
@ °* @ : ®@ » @
0 0
capacity — 16 40 6 15 0 10
flow — 1 0
Yalue = 4
® = ®

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Flows

An s, t-flow is a function f : E — R satisfying
— Capacity constraint: 0 < f(e) <c(e), Ve € E
— Flow Conservation constraint: Z fle) = Z fle),Yv # s,t
e=(u,v)eE e=(v,w)eEE
The value of f: val(f) = Z f(e)
e=(s,v)EE
f
® ° ®
10 ;
10 4 4 15 L 10
a8
@ ° ® ° ® 10 ®
1 1n
capacity — 16 40 8 18 0 10
fow = ! Value = 24
® 3 @)

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Maximum Flow — Problem Definition

Given a flow network, find a flow f with maximum capacity

® ; ®

10

1 a
10 4 0 15 15 0 10
4 a

®

®
©)

®

10
capacity — 15 10

flow — 14 14

® " @

Yalue = 28

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Flows and Cuts

Lemma (Flow Value Lemma)
For any flow f and any cut (A, B)
Y. fle)= Y fle)=val(f)
e out of A e into A)
f
Z 9 (&)
10 0 é
10 4 4 15 15 0 10
a
= 5 .@ 8 @ 10 @
A 1 10
16 4 0 & 15 0 10
11\O i Value = 24
4

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Flows and Cuts

Lemma (Flow Value Lemma)

For any flow f and any cut (A, B)

Y fle)= D fle)=val(f)

e out of A e into A
4
i}
10
\ . 6
10 4 4 15 15 0 10

L4
7
wf
==]
A 2
(=3

o0

e
(© 10 ®
A
! 10

5 4 0 6 15 0 i

11
I 11 Value = 6+ 0+ 8-1+11
4) 30 > 7 =24

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Flows and Cuts

Lemma (Flow Value Lemma)

For any flow f and any cut (A, B)

> fle)= D fle)=val(f)

e out of A e into A

—_ =
- =
A@
—
ol O 0
—_
o
L)

[

15
11
1 Valug = 10-4 + 8- 0+ 10
4 30 o T = 24

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Weak Duality

Lemma (Weak Duality)

Given any s, t-flow f and any s,t-cut (A, B), the flow value is at most the
cut capacity: val(f) < cap(A4, B)

Cut capacity =30 = Flow value = 30

: ®

-

Capacity = 30

30 @

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Certificate of Optimality

Corollary

If val(f) = cap(A, B) for any flow f and any cut (A, B), then f is a
maximum flow and (A, B) is a minimum cut

Value of flow = 28
Cut capacity =28 = Flow value = 28

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Computing Max Flow - First Attempt

A greedy algorithm:
@ start with f(e) =0, Ve
e find a path P with f(e) < c¢(e) for all e on the path
@ augment flow along P
@ repeat until stuck

0 0

20 10
30 0

10 20

0 \é/ 0 Flow value = 0

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Computing Max Flow - First Attempt

A greedy algorithm:
e start with f(e) =0, Ve
e find a path P with f(e) < c(e) for all e on the path
@ augment flow along P
@ repeat until stuck

1
20 ¥ 0

20 10

30 ¥ 20

10 20

0 \<é/ X 20 Flow value = 20

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Computing Max Flow - First Attempt

A greedy algorithm:
e start with f(e) =0, Ve
e find a path P with f(e) < c(e) for all e on the path
@ augment flow along P
@ repeat until stuck (local opt #- global opt)

1 1

20 0] 20 10

20 10 20 10
3020 >D €< 30 10

10 20 10 20

] \(5/20 10\‘(5/20
z z

greedy = 20 opt = 30

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Residual Graph

@ Define Gy = (V, Ey) for each flow capactty
f, each edge in E; has a residual () 17 »(v)
capacity c¢(e) é

@ Iy and cy are determined as N flow
follows

o Original edge e = (u,v) € F,

flow f(e), Capacity C(e) residual capacity
o If f(e) < c(e), then e € Ef and /

r(e) = cle) - f(e) Q—u1——P
o If f(e) >0, e = (u,v), then 6

e/ = (v,u) € Ef and N

erle)) = fe)

residual capacity

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Ford-Fulkerson (Augmenting Path) Algorithm

AUGMENT(f, ¢, P)

1: b« bottleneck(P), i.e. min residual capacity on P
2: for each edge e = (u,v) on P do
3: if e is a forward edge then

4: Increase f(e) in G by b
5. else

6: Decrease f(e) in G by b
7. end if

8: end for

FORD-FULKERSON(G, ¢)

. Initially, set f(e) =0forallec E

while there is an s,?-path P in G, do
Choose a simple s,t-path P in G (crucial for running time!)
f < AUGMENT(f, ¢, P)

end while

1

2:
3:
4:
5:

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Max-Flow Min-Cut Theorem

Theorem (Ford-Fulkerson, 1956)

The value of a max-flow is equal to the capacity of a min-cut

Proof.

Let f be any feasible flow, the following are equivalent
@ fis a maximum flow
@ there's no augmenting path wrt f
@ there's a cut (A, B) where val(f) = cap(4, B)

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Termination and Running Time

If 1 <c(e) <C €N, and ¢(e) € N for all e, then all flow values and
residual capacities remain integers throughout

Theorem

Number of iterations is at most val(f*), which is at most nC

Corollary

IfC =1, ie c(e) =1 for all e, then Ford-Fulkerson runs in time O(mn)

v

Theorem (Ingegrality Theorem)

If all capacities are integers, then there exists an integral maximum flow,
i.e. a flow whose f(e) are all integers.

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Generic Ford-Fulkerson: Exponential Running Time

@ It could take C iterations.

@ Recall: input size is a polynomial in m,n,log C

1 %1 1 BX0O

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Choosing Good Augmenting Paths

Augmenting path selection:

@ Bad choices lead to exponential algorithms

@ Good choices lead to polynomial-time algorithms

@ If capacities are irrational, may not even terminate at all
Some good choices [Edmonds-Karp 1972, Dinitz 1970]

@ Max bottleneck capacity

e Sufficiently large bottleneck capacity

@ Fewest number of edges

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Some Strategies

Choose augmenting path with
@ no specific strategy = O(mC)
e sufficiently large bottleneck capacity = O(m?log O)
@ maximum bottleneck capacity = O(mlog ()
e shortest length = O(m?n)

Note: there are also strategies not based on the augmenting path method.

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

The Edmonds-Karp Algorithm

@ Choose shortest augmenting path

Lemma

Let ds(s,u) be the distance from s to u in G, then ds(s,u) increases
monotonically with each augmentation

Theorem

The Edmonds-Karp algorithm makes at most O(mn) augmentations, in
particular its running time is O(m?n)

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Proof of the Lemma

Suppose augmenting f gives f’ for which some d(s,v) > dy/(s,v).

Let v be such a vertex with smallest ds(s,v), and P =s~u — v is
a path with length d/ (s, v)
Then,

df/(s,u) = df/(S,U)—l
df/(s,u) Z df(S,U)

Thus, (u,v) ¢ Ey; but (u,v) € Ey, hence (v,u) € Ef and
Edmonds-Karp pushed some flow from v to w in f

Since the flow is pushed along a shortest path, we have a
contradiction

de(s,v) +1=ds(s,u) < dp(s,u) =dp(s,v) —1

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Proof of the Theorem

@ For each augmentation, some bottleneck edge (u,v) in G ¢ will
disappear in G/, where f’ is the next flow

@ Suppose (u,v) is a bottleneck edge a few times, then there will be a
time when (u,v) is a bottleneck for some f and later (v,u) is a
bottleneck for some f’. We have

dp(u) = dp(v) — 1
dp(v) = dp(u) — 1

@ Thus,
df(u) = df(v) =1 < dp(v) =1 = dp(u) -2

e Each time (u,v) becomes a bottleneck, df(s,u) is increased by at
least 2; thus, the number of times (u,v) is a bottleneck is at most

(n—2)/2.

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

General ldea for Employing Max-Flow Min-Cut

@ Set up a new problem as a network flow problem
@ Use max-flow algorithm to solve new problem

@ and/or Apply max-flow min-cut and integrality theorems to derive
some combinatorial properties of the new problem

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Maximum Matching in Graphs

o G = (V,E), a matching is a subset M C E no two of which share an
end point
@ Maximum matching: find a maximum cardinality matching
e This is a fundamental problem in combinatorial optimization with
numerous applications

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Maximum Matching in Bipartite Graphs

e Given a bipartite graph G = (L U R, E), find a max matching

matching
1-2' 3-1' 4-5'

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Maximum Matching in Bipartite Graphs

@ Given a bipartite graph G = (L U R, E), find a max matching

max matching

// 1-1', 2-2' 3-3' 4-4'
€, @)

,_
@
G

A~

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Max-Flow Formulation for Bipartite Matching

o Create a new digraph G' = (V U {s,t}, E’) as follows

@ Orient edges from left to right (L to R) with capacities co (or any
positive integer, doesn’'t matter which)

@ Add a fake source s, fake sink ¢, and edges with capacities 1 as shown

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Correctness of the Formulation

Theorem

The maximum matching cardinality of G is equal to the maximum flow
value of G'. Moreover, Ford-Fulkerson yields a maximum matching.

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Running Times of Matching Algorithms

Bipartite Matching
e Generic Ford-Fulkerson: O(mn) — pretty good!
o Largest Bottleneck Path : O(m?)
e Edmonds-Karp: O(m+/n)
° ...
Non-bipartite Matching
@ More difficult, but very well studied
@ Blossom algorithm (Edmonds, 1964): O(n?)
@ Best known (Micali-Vazirani, 1980): O(m+/n)

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Marriage Theorem

e Given a bipartite G = (LUR, F).

@ A complete matching from L into R is a matching in which every
vertex in L is matched.

@ A perfect matching is a matching in which every vertex is matched

@ Questions: When does G have a complete matching? When does it
have a perfect matching?

e 7 a perfect matching iff |L| = |R| and 3 a complete matching

Theorem (P. Hall 1935, Frobenius 1917, Konig 1916)

Let I'(X) denote the set of neighbors of X C L, then G has a complete
matching iff |[T'(X)| > | X|,VX C L.

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Konig-Egervary Theorem

e Given G = (V, E), a vertex cover is a subset C' C V such that each
edge in E has an end point in C

@ Let 7(G) denote the size of a maximum vertex cover, v(G) the size of
a maximum matching

Theorem (Konig 1931, Egervéary 1932)
If G is bipartite, then 7(G) = v(G)

Proof.

A “direct” consequence of max-flow min-cut. []

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Edge Disjoint Paths in Directed Graphs

e Given a directed graph G = (V, E), a source s and a target t, find the
maximum number \'(s,t) of edge-disjoint s, t-paths

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Edge Disjoint Paths in Directed Graphs

e Given a directed graph G = (V, E), a source s and a target t, find the
maximum number N (s,t) of edge-disjoint s, t-paths

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Max-Flow Formulation

@ Assign capacity 1 to each edge

<:%\M

The max number of edge-disjoint s, t-paths is equal to the max flow value;
moreover, Ford-Fulkerson can find a max set of paths

1

1 ¥

1/?\
B

Theorem

Note: only need to eliminate cycles from output of max-flow algorithm

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Disconnecting Sets

@ Given digraph GG and s,t, an s, t-disconnecting set is a set of edges
whose removal separates s from ¢, i.e. no s, t-path remains

o Let k'(s,t) denote the minimum size of an s, t-disconnecting set

@ Applications: network reliability, among many others

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Menger's Theorem

Theorem (Menger 1927)
Given a digraph G and s,t, then N (s,t) = k'(s,t) J

Proof. N (s,t) < K/(s,t)

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Menger's Theorem

Theorem (Menger 1927)
Given a digraph G and s, t, then X' (s,t) = k'(s,t) J

Proof. N'(s,t) > K/(s,t)

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Vertex Disjoint Paths in Directed Graphs

@ Given digraph G and s,t, an s, t-separating set is a set of vertices
whose removal separates s from ¢

@ Let k(s,t) denote the minimum size of an s, t-separating set

@ A set of paths from s to t is internally vertex disjoint if they only
share vertices s and ¢; naturally let A(s,t) denote the max number of
internally vertex disjoint s, t-paths

Theorem (Menger 1927)
Given a digraph G and s,t, then \(s,t) = k(s,t) J

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Undirected Versions of Menger's Theorem

There are also corresponding versions of Menger's Theorem for undirected
graphs

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

