We've done

- Greedy Method
- Divide and Conquer
- Dynamic Programming

Now

- Flow Networks, Max-flow Min-cut and Applications

Soviet Rail Network, 1955

Reference: On the history of the transportation and maximum flow problems. Alexander Schrijver in Math Programming, 91: 3, 2002.

Maximum Flow and Minimum Cut Problems

- Cornerstone problems in combinatorial optimization
- Many non-trivial applications/reductions: airline scheduling, data mining, bipartite matching, image segmentation, network survivability, many many many more ...
- Simple Example: on the Internet with error-free transmission, what is the maximum data rate that a router s can send to a router t (assuming no network coding is allowed), given that each link has limited capacity
- More examples and applications to come

Flow Networks

- A flow network is a directed graph $G=(V, E)$ where each edge e has a capacity $c(e)>0$
- Also, there are two distinguished nodes: the source s and the $\operatorname{sink} t$

Cuts

- An s, t-cut is a partition (A, B) of V where $s \in A, t \in B$
- Let $[A, B]=$ set of edges (u, v) with $u \in A, v \in B$
- The capacity of the cut (A, B) is defined by

$$
\operatorname{cap}(A, B)=\sum_{e \in[A, B]} c(e)
$$

(5)

10

10

$$
\begin{aligned}
\text { Capacity } & =10+5+15 \\
& =30
\end{aligned}
$$

(7)

10

Cuts

- An s, t-cut is a partition (A, B) of V where $s \in A, t \in B$
- Let $[A, B]=$ set of edges (u, v) with $u \in A, v \in B$
- The capacity of the cut (A, B) is defined by

$$
\operatorname{cap}(A, B)=\sum_{e \in[A, B]} c(e)
$$

(5)

Minimum Cut - Problem Definition

Given a flow network, find an s, t-cut with minimum capacity

Flows

An s, t-flow is a function $f: E \rightarrow \mathbb{R}$ satisfying

- Capacity constraint: $0 \leq f(e) \leq c(e), \forall e \in E$
- Flow Conservation constraint: $\sum_{e=(u, v) \in E} f(e)=\sum_{e=(v, w) \in E} f(e), \forall v \neq s, t$

The value of $f: \operatorname{val}(f)=\sum_{e=(s, v) \in E} f(e)$

Flows

An s, t-flow is a function $f: E \rightarrow \mathbb{R}$ satisfying

- Capacity constraint: $0 \leq f(e) \leq c(e), \forall e \in E$
- Flow Conservation constraint: $\sum_{e=(u, v) \in E} f(e)=\sum_{e=(v, w) \in E} f(e), \forall v \neq s, t$

The value of $f: \operatorname{val}(f)=\sum_{e=(s, v) \in E} f(e)$

Maximum Flow - Problem Definition

Given a flow network, find a flow f with maximum capacity

Flows and Cuts

Lemma (Flow Value Lemma)

For any flow f and any cut (A, B)

$$
\sum_{e \text { out of } A} f(e)-\sum_{e \text { into } A} f(e)=\operatorname{val}(f)
$$

Flows and Cuts

Lemma (Flow Value Lemma)
For any flow f and any cut (A, B)

$$
\sum_{e \text { out of } A} f(e)-\sum_{e \text { into } A} f(e)=\operatorname{val}(f)
$$

Flows and Cuts

Lemma (Flow Value Lemma)

For any flow f and any cut (A, B)

$$
\sum_{e \text { out of } A} f(e)-\sum_{e \text { into } A} f(e)=\operatorname{val}(f)
$$

Weak Duality

Lemma (Weak Duality)

Given any s, t-flow f and any s, t-cut (A, B), the flow value is at most the cut capacity: $\operatorname{val}(f) \leq \operatorname{cap}(A, B)$

$$
\text { Cut capacity }=\mathbf{3 0} \Rightarrow \text { Flow value } \leq \mathbf{3 0}
$$

Certificate of Optimality

Corollary

If $\operatorname{val}(f)=\operatorname{cap}(A, B)$ for any flow f and any cut (A, B), then f is a maximum flow and (A, B) is a minimum cut

```
Value of flow =28
Cut capacity = 2B }=>\mathrm{ Flow value }\leq2
```


Computing Max Flow - First Attempt

A greedy algorithm:

- start with $f(e)=0, \forall e$
- find a path P with $f(e)<c(e)$ for all e on the path
- augment flow along P
- repeat until stuck

Computing Max Flow - First Attempt

A greedy algorithm:

- start with $f(e)=0, \forall e$
- find a path P with $f(e)<c(e)$ for all e on the path
- augment flow along P
- repeat until stuck

Flow value $=\mathbf{2 0}$

Computing Max Flow - First Attempt

A greedy algorithm:

- start with $f(e)=0, \forall e$
- find a path P with $f(e)<c(e)$ for all e on the path
- augment flow along P
- repeat until stuck (local opt \nRightarrow global opt)

Residual Graph

- Define $G_{f}=\left(V, E_{f}\right)$ for each flow f, each edge in E_{f} has a residual capacity $c_{f}(e)$
- E_{f} and c_{f} are determined as
 follows
- Original edge $e=(u, v) \in E$, flow $f(e)$, capacity $c(e)$
- If $f(e)<c(e)$, then $e \in E_{f}$ and $c_{f}(e)=c(e)-f(e)$
- If $f(e)>0, e=(u, v)$, then $e^{\prime}=(v, u) \in E_{f}$ and $c_{f}\left(e^{\prime}\right)=f(e)$

Ford-Fulkerson (Augmenting Path) Algorithm

$\operatorname{Augment}(f, c, P)$
1: $b \leftarrow \operatorname{bottleneck}(P)$, i.e. min residual capacity on P
2: for each edge $e=(u, v)$ on P do
3: if e is a forward edge then
4: \quad Increase $f(e)$ in G by b
5: else
6: \quad Decrease $f(e)$ in G by b
7: end if
8: end for
Ford-Fulkerson (G, c)
1: Initially, set $f(e)=0$ for all $e \in E$
2: while there is an s, t-path P in G_{f} do
3: \quad Choose a simple s, t-path P in G_{f} (crucial for running time!)
4: $\quad f \leftarrow \operatorname{aUGMENT}(f, c, P)$
5: end while

Max-Flow Min-Cut Theorem

Theorem (Ford-Fulkerson, 1956)
The value of a max-flow is equal to the capacity of a min-cut

Proof.

Let f be any feasible flow, the following are equivalent

- f is a maximum flow
- there's no augmenting path wrt f
- there's a cut (A, B) where $\operatorname{val}(f)=\operatorname{cap}(A, B)$

Termination and Running Time

If $1 \leq c(e) \leq C \in \mathbb{N}$, and $c(e) \in \mathbb{N}$ for all e, then all flow values and residual capacities remain integers throughout

Theorem

Number of iterations is at most $\operatorname{val}\left(f^{*}\right)$, which is at most $n C$

Corollary

If $C=1$, i.e. $c(e)=1$ for all e, then Ford-Fulkerson runs in time $O(m n)$

Theorem (Ingegrality Theorem)

If all capacities are integers, then there exists an integral maximum flow, i.e. a flow whose $f(e)$ are all integers.

Generic Ford-Fulkerson: Exponential Running Time

- It could take C iterations.
- Recall: input size is a polynomial in $m, n, \log C$

Choosing Good Augmenting Paths

Augmenting path selection:

- Bad choices lead to exponential algorithms
- Good choices lead to polynomial-time algorithms
- If capacities are irrational, may not even terminate at all

Some good choices [Edmonds-Karp 1972, Dinitz 1970]

- Max bottleneck capacity
- Sufficiently large bottleneck capacity
- Fewest number of edges

Some Strategies

Choose augmenting path with

- no specific strategy $\Rightarrow O(m C)$
- sufficiently large bottleneck capacity $\Rightarrow O\left(m^{2} \log C\right)$
- maximum bottleneck capacity $\Rightarrow O(m \log C)$
- shortest length $\Rightarrow O\left(m^{2} n\right)$

Note: there are also strategies not based on the augmenting path method.

The Edmonds-Karp Algorithm

- Choose shortest augmenting path

Lemma

Let $d_{f}(s, u)$ be the distance from s to u in G_{f}, then $d_{f}(s, u)$ increases monotonically with each augmentation

Theorem

The Edmonds-Karp algorithm makes at most $O(m n)$ augmentations, in particular its running time is $O\left(m^{2} n\right)$

Proof of the Lemma

- Suppose augmenting f gives f^{\prime} for which some $d_{f}(s, v)>d_{f^{\prime}}(s, v)$.
- Let v be such a vertex with smallest $d_{f^{\prime}}(s, v)$, and $P=s \leadsto u \rightarrow v$ is a path with length $d_{f^{\prime}}(s, v)$
- Then,

$$
\begin{aligned}
d_{f^{\prime}}(s, u) & =d_{f^{\prime}}(s, v)-1 \\
d_{f^{\prime}}(s, u) & \geq d_{f}(s, u)
\end{aligned}
$$

- Thus, $(u, v) \notin E_{f}$; but $(u, v) \in E_{f^{\prime}}$, hence $(v, u) \in E_{f}$ and Edmonds-Karp pushed some flow from v to u in f
- Since the flow is pushed along a shortest path, we have a contradiction

$$
d_{f}(s, v)+1=d_{f}(s, u) \leq d_{f^{\prime}}(s, u)=d_{f^{\prime}}(s, v)-1
$$

Proof of the Theorem

- For each augmentation, some bottleneck edge (u, v) in G_{f} will disappear in $G_{f^{\prime}}$, where f^{\prime} is the next flow
- Suppose (u, v) is a bottleneck edge a few times, then there will be a time when (u, v) is a bottleneck for some f and later (v, u) is a bottleneck for some f^{\prime}. We have

$$
\begin{aligned}
d_{f}(u) & =d_{f}(v)-1 \\
d_{f^{\prime}}(v) & =d_{f^{\prime}}(u)-1
\end{aligned}
$$

- Thus,

$$
d_{f}(u)=d_{f}(v)-1 \leq d_{f^{\prime}}(v)-1=d_{f^{\prime}}(u)-2
$$

- Each time (u, v) becomes a bottleneck, $d_{f}(s, u)$ is increased by at least 2 ; thus, the number of times (u, v) is a bottleneck is at most $(n-2) / 2$.

General Idea for Employing Max-Flow Min-Cut

- Set up a new problem as a network flow problem
- Use max-flow algorithm to solve new problem
- and/or Apply max-flow min-cut and integrality theorems to derive some combinatorial properties of the new problem

Maximum Matching in Graphs

- $G=(V, E)$, a matching is a subset $M \subset E$ no two of which share an end point
- Maximum matching: find a maximum cardinality matching
- This is a fundamental problem in combinatorial optimization with numerous applications

Maximum Matching in Bipartite Graphs

- Given a bipartite graph $G=(L \cup R, E)$, find a max matching

Maximum Matching in Bipartite Graphs

- Given a bipartite graph $G=(L \cup R, E)$, find a max matching

Max-Flow Formulation for Bipartite Matching

- Create a new digraph $G^{\prime}=\left(V \cup\{s, t\}, E^{\prime}\right)$ as follows
- Orient edges from left to right (L to R) with capacities ∞ (or any positive integer, doesn't matter which)
- Add a fake source s, fake sink t, and edges with capacities 1 as shown

Correctness of the Formulation

Theorem

The maximum matching cardinality of G is equal to the maximum flow value of G^{\prime}. Moreover, Ford-Fulkerson yields a maximum matching.

Running Times of Matching Algorithms

Bipartite Matching

- Generic Ford-Fulkerson: $O(m n)$ - pretty good!
- Largest Bottleneck Path: $O\left(m^{2}\right)$
- Edmonds-Karp: $O(m \sqrt{n})$
- ...

Non-bipartite Matching

- More difficult, but very well studied
- Blossom algorithm (Edmonds, 1964): $O\left(n^{4}\right)$
- Best known (Micali-Vazirani, 1980): $O(m \sqrt{n})$

Marriage Theorem

- Given a bipartite $G=(L \cup R, E)$.
- A complete matching from L into R is a matching in which every vertex in L is matched.
- A perfect matching is a matching in which every vertex is matched
- Questions: When does G have a complete matching? When does it have a perfect matching?
- \exists a perfect matching iff $|L|=|R|$ and \exists a complete matching

Theorem (P. Hall 1935, Frobenius 1917, König 1916)

Let $\Gamma(X)$ denote the set of neighbors of $X \subset L$, then G has a complete matching iff $|\Gamma(X)| \geq|X|, \forall X \subseteq L$.

König-Egerváry Theorem

- Given $G=(V, E)$, a vertex cover is a subset $C \subseteq V$ such that each edge in E has an end point in C
- Let $\tau(G)$ denote the size of a maximum vertex cover, $\nu(G)$ the size of a maximum matching

Theorem (König 1931, Egerváry 1932)
If G is bipartite, then $\tau(G)=\nu(G)$

Proof.

A "direct" consequence of max-flow min-cut.

Edge Disjoint Paths in Directed Graphs

- Given a directed graph $G=(V, E)$, a source s and a target t, find the maximum number $\lambda^{\prime}(s, t)$ of edge-disjoint s, t-paths

Edge Disjoint Paths in Directed Graphs

- Given a directed graph $G=(V, E)$, a source s and a target t, find the maximum number $\lambda^{\prime}(s, t)$ of edge-disjoint s, t-paths

Max-Flow Formulation

- Assign capacity 1 to each edge

Theorem

The max number of edge-disjoint s, t-paths is equal to the max flow value; moreover, Ford-Fulkerson can find a max set of paths

Note: only need to eliminate cycles from output of max-flow algorithm

Disconnecting Sets

- Given digraph G and s, t, an s, t-disconnecting set is a set of edges whose removal separates s from t, i.e. no s, t-path remains
- Let $\kappa^{\prime}(s, t)$ denote the minimum size of an s, t-disconnecting set
- Applications: network reliability, among many others

Menger's Theorem

Theorem (Menger 1927)
Given a digraph G and s, t, then $\lambda^{\prime}(s, t)=\kappa^{\prime}(s, t)$
Proof: $\lambda^{\prime}(s, t) \leq \kappa^{\prime}(s, t)$

Menger's Theorem

Theorem (Menger 1927)

Given a digraph G and s, t, then $\lambda^{\prime}(s, t)=\kappa^{\prime}(s, t)$
Proof: $\lambda^{\prime}(s, t) \geq \kappa^{\prime}(s, t)$

Vertex Disjoint Paths in Directed Graphs

- Given digraph G and s, t, an s, t-separating set is a set of vertices whose removal separates s from t
- Let $\kappa(s, t)$ denote the minimum size of an s, t-separating set
- A set of paths from s to t is internally vertex disjoint if they only share vertices s and t; naturally let $\lambda(s, t)$ denote the max number of internally vertex disjoint s, t-paths

Theorem (Menger 1927)

Given a digraph G and s, t, then $\lambda(s, t)=\kappa(s, t)$

Undirected Versions of Menger's Theorem

There are also corresponding versions of Menger's Theorem for undirected graphs

