Agenda

We've done

- Greedy Method
- Divide and Conquer
- Dynamic Programming

Now

• Flow Networks, Max-flow Min-cut and Applications

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Soviet Rail Network, 1955

Reference: *On the history of the transportation and maximum flow problems.* Alexander Schrijver in Math Programming, 91: 3, 2002.

Maximum Flow and Minimum Cut Problems

- Cornerstone problems in combinatorial optimization
- Many non-trivial applications/reductions: airline scheduling, data mining, bipartite matching, image segmentation, network survivability, many many more ...
- Simple Example: on the Internet with error-free transmission, what is the maximum data rate that a router s can send to a router t (assuming no network coding is allowed), given that each link has limited capacity
- More examples and applications to come

©Hung Q. Ngo (SUNY at Buffalo)

Flow Networks

- A flow network is a directed graph G=(V,E) where each edge e has a capacity c(e)>0
- Also, there are two distinguished nodes: the source s and the sink t

CSE 531 Algorithm Analysis and Design

Cuts

- An s, t-cut is a partition (A, B) of V where $s \in A$, $t \in B$
- Let [A,B] = set of edges (u,v) with $u \in A, v \in B$
- The capacity of the cut (A, B) is defined by

Cuts

- An s, t-cut is a partition (A, B) of V where $s \in A$, $t \in B$
- Let [A,B]= set of edges (u,v) with $u\in A,v\in B$
- The capacity of the cut (A, B) is defined by

Minimum Cut – Problem Definition

Flows

Flows

Maximum Flow – Problem Definition

Flows and Cuts

Flows and Cuts

Weak Duality

Lemma (Weak Duality)

Given any s,t-flow f and any s,t-cut (A,B), the flow value is at most the cut capacity: ${\rm val}(f)\leq {\rm cap}(A,B)$

Certificate of Optimality

Corollary

If val(f) = cap(A, B) for any flow f and any cut (A, B), then f is a maximum flow and (A, B) is a minimum cut

Computing Max Flow - First Attempt

A greedy algorithm:

- start with $f(e) = 0, \forall e$
- find a path P with f(e) < c(e) for all e on the path
- \bullet augment flow along P
- repeat until stuck

Computing Max Flow - First Attempt

A greedy algorithm:

- start with $f(e) = 0, \forall e$
- find a path P with f(e) < c(e) for all e on the path
- $\operatorname{augment}$ flow along P
- repeat until stuck

Computing Max Flow - First Attempt

A greedy algorithm:

- start with $f(e) = 0, \forall e$
- find a path P with f(e) < c(e) for all e on the path
- augment flow along P
- repeat until stuck (local opt ⇒ global opt)

Residual Graph

- Define $G_f = (V, E_f)$ for each flow f, each edge in E_f has a residual capacity $c_f(e)$
- E_f and c_f are determined as follows
 - Original edge $e = (u, v) \in E$, flow f(e), capacity c(e)
 - If f(e) < c(e), then $e \in E_f$ and $c_f(e) = c(e) f(e)$
 - If f(e) > 0, e = (u, v), then $e' = (v, u) \in E_f$ and $c_f(e') = f(e)$

residual capacity

22 / 52

Ford-Fulkerson (Augmenting Path) Algorithm

CSE 531 Algorithm Analysis and Design

AUGMENT(f, c, P)1: $b \leftarrow \text{bottleneck}(P)$, i.e. min residual capacity on P2: for each edge e = (u, v) on P do

©Hung Q. Ngo (SUNY at Buffalo)

- 3: **if** e is a forward edge **then**
- 4: Increase f(e) in G by b
- 5: **else**
- 6: Decrease f(e) in G by b
- 7: end if
- 8: end for

FORD-FULKERSON(G, c)

- 1: Initially, set f(e) = 0 for all $e \in E$
- 2: while there is an s, t-path P in G_f do
- 3: Choose a simple s, t-path P in G_f (crucial for running time!)
- 4: $f \leftarrow \text{AUGMENT}(f, c, P)$
- 5: end while

Max-Flow Min-Cut Theorem

Theorem (Ford-Fulkerson, 1956)

The value of a max-flow is equal to the capacity of a min-cut

Proof.

Let f be any feasible flow, the following are equivalent

- f is a maximum flow
- $\bullet\,$ there's no augmenting path wrt $f\,$
- there's a cut (A, B) where val(f) = cap(A, B)

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Termination and Running Time

If $1 \le c(e) \le C \in \mathbb{N}$, and $c(e) \in \mathbb{N}$ for all e, then all flow values and residual capacities remain integers throughout

Theorem

Number of iterations is at most $val(f^*)$, which is at most nC

Corollary

If C = 1, i.e. c(e) = 1 for all e, then Ford-Fulkerson runs in time O(mn)

Theorem (Ingegrality Theorem)

If all capacities are integers, then there exists an integral maximum flow, i.e. a flow whose f(e) are all integers.

Generic Ford-Fulkerson: Exponential Running Time

- It could take C iterations.
- Recall: input size is a polynomial in $m, n, \log C$

Choosing Good Augmenting Paths

Augmenting path selection:

- Bad choices lead to exponential algorithms
- Good choices lead to polynomial-time algorithms
- If capacities are irrational, may not even terminate at all

Some good choices [Edmonds-Karp 1972, Dinitz 1970]

- Max bottleneck capacity
- Sufficiently large bottleneck capacity
- Fewest number of edges

Some Strategies

Choose augmenting path with

- no specific strategy $\Rightarrow O(mC)$
- sufficiently large bottleneck capacity $\Rightarrow O(m^2 \log C)$
- maximum bottleneck capacity $\Rightarrow O(m \log C)$
- shortest length $\Rightarrow O(m^2 n)$

Note: there are also strategies not based on the augmenting path method.

©Hung Q. Ngo (SUNY at Buffalo)

CSE 531 Algorithm Analysis and Design

29 / 52

The Edmonds-Karp Algorithm

• Choose shortest augmenting path

Lemma

Let $d_f(s, u)$ be the distance from s to u in G_f , then $d_f(s, u)$ increases monotonically with each augmentation

Theorem

The Edmonds-Karp algorithm makes at most O(mn) augmentations, in particular its running time is $O(m^2n)$

Proof of the Lemma

- Suppose augmenting f gives f' for which some $d_f(s, v) > d_{f'}(s, v)$.
- Let v be such a vertex with smallest $d_{f'}(s, v)$, and $P = s \rightsquigarrow u \rightarrow v$ is a path with length $d_{f'}(s, v)$
- Then.

$$d_{f'}(s,u) = d_{f'}(s,v) - 1$$

$$d_{f'}(s,u) \ge d_f(s,u)$$

- Thus, $(u,v) \notin E_f$; but $(u,v) \in E_{f'}$, hence $(v,u) \in E_f$ and Edmonds-Karp pushed some flow from v to u in f
- Since the flow is pushed along a shortest path, we have a contradiction

$$d_f(s, v) + 1 = d_f(s, u) \le d_{f'}(s, u) = d_{f'}(s, v) - 1$$

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Proof of the Theorem

- For each augmentation, some bottleneck edge (u, v) in G_f will disappear in $G_{f'}$, where f' is the next flow
- Suppose (u, v) is a bottleneck edge a few times, then there will be a time when (u, v) is a bottleneck for some f and later (v, u) is a bottleneck for some f'. We have

$$d_f(u) = d_f(v) - 1$$

 $d_{f'}(v) = d_{f'}(u) - 1$

Thus.

$$d_f(u) = d_f(v) - 1 \le d_{f'}(v) - 1 = d_{f'}(u) - 2$$

• Each time (u, v) becomes a bottleneck, $d_f(s, u)$ is increased by at least 2; thus, the number of times (u, v) is a bottleneck is at most (n-2)/2.

General Idea for Employing Max-Flow Min-Cut

- Set up a new problem as a network flow problem
- Use max-flow algorithm to solve new problem
- and/or Apply max-flow min-cut and integrality theorems to derive some combinatorial properties of the new problem

Maximum Matching in Graphs

©Hung Q. Ngo (SUNY at Buffalo)

• G = (V, E), a matching is a subset $M \subset E$ no two of which share an end point

CSE 531 Algorithm Analysis and Design

- Maximum matching: find a maximum cardinality matching
 - This is a fundamental problem in combinatorial optimization with numerous applications

Maximum Matching in Bipartite Graphs

Max-Flow Formulation for Bipartite Matching

- Create a new digraph $G' = (V \cup \{s, t\}, E')$ as follows
- Orient edges from left to right (L to R) with capacities ∞ (or any positive integer, doesn't matter which)
- Add a fake source s, fake sink t, and edges with capacities 1 as shown

©Hung Q. Ngo (SUNY at Buffalo)

CSE 531 Algorithm Analysis and Design

39 / 52

Correctness of the Formulation

Theorem

The maximum matching cardinality of G is equal to the maximum flow value of G'. Moreover, Ford-Fulkerson yields a maximum matching.

Running Times of Matching Algorithms

Bipartite Matching

- Generic Ford-Fulkerson: O(mn) pretty good!
- Largest Bottleneck Path : $O(m^2)$
- Edmonds-Karp: $O(m\sqrt{n})$
- ...

Non-bipartite Matching

- More difficult, but very well studied
- Blossom algorithm (Edmonds, 1964): $O(n^4)$
- Best known (Micali-Vazirani, 1980): $O(m\sqrt{n})$

©Hung Q. Ngo (SUNY at Buffalo)

Marriage Theorem

- Given a bipartite $G = (L \cup R, E)$.
- A complete matching from L into R is a matching in which every vertex in L is matched.

CSE 531 Algorithm Analysis and Design

- A perfect matching is a matching in which every vertex is matched
- Questions: When does G have a complete matching? When does it have a perfect matching?
- \exists a perfect matching iff |L| = |R| and \exists a complete matching

Theorem (P. Hall 1935, Frobenius 1917, König 1916) Let $\Gamma(X)$ denote the set of neighbors of $X \subset L$, then G has a complete matching iff $|\Gamma(X)| \ge |X|, \forall X \subseteq L$.

König-Egerváry Theorem

- Given G = (V, E), a vertex cover is a subset C ⊆ V such that each edge in E has an end point in C
- Let $\tau(G)$ denote the size of a maximum vertex cover, $\nu(G)$ the size of a maximum matching

Theorem (König 1931, Egerváry 1932) If G is bipartite, then $\tau(G) = \nu(G)$

Proof.

A "direct" consequence of max-flow min-cut.

©Hung Q. Ngo (SUNY at Buffalo)

CSE 531 Algorithm Analysis and Design

43 / 52

Edge Disjoint Paths in Directed Graphs

• Given a directed graph G = (V, E), a source s and a target t, find the maximum number $\lambda'(s, t)$ of edge-disjoint s, t-paths

Edge Disjoint Paths in Directed Graphs

• Given a directed graph G = (V, E), a source s and a target t, find the maximum number $\lambda'(s, t)$ of edge-disjoint s, t-paths

Max-Flow Formulation

• Assign capacity 1 to each edge

Theorem

The max number of edge-disjoint s, t-paths is equal to the max flow value; moreover, Ford-Fulkerson can find a max set of paths

Note: only need to eliminate cycles from output of max-flow algorithm

Disconnecting Sets

- Given digraph G and s, t, an s, t-disconnecting set is a set of edges whose removal separates s from t, i.e. no s, t-path remains
- Let $\kappa'(s,t)$ denote the minimum size of an s, t-disconnecting set
- Applications: network reliability, among many others

Menger's Theorem

Theorem (Menger 1927)

Given a digraph G and s, t, then $\lambda'(s, t) = \kappa'(s, t)$

- Let $\kappa(s,t)$ denote the minimum size of an s, t-separating set
- A set of paths from s to t is internally vertex disjoint if they only share vertices s and t; naturally let λ(s,t) denote the max number of internally vertex disjoint s, t-paths

Theorem (Menger 1927)

Given a digraph G and s,t, then $\lambda(s,t)=\kappa(s,t)$

Undirected Versions of Menger's Theorem

There are also corresponding versions of Menger's Theorem for undirected graphs

©Hung Q. Ngo (SUNY at Buffalo)

CSE 531 Algorithm Analysis and Design