
Agenda

We’ve done

Greedy Method

Divide and Conquer

Dynamic Programming

Network Flows & Applications

Now

NP-completeness

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 1 / 62

Up to this point

Most problems we have seen can be solved in “polynomial” time

All Pairs Shortest Paths in O(|V |3)
Single Source Shortest Paths in O(|V | lg |V |+ |E|)
Minimum Spanning Trees in O(|V | lg |V |)
Sorting in O(n lg n)
...

Actually, no problem we have seen required more than O(n5)

A Natural Question

Can all “natural” problems be solved in polynomial time?

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 3 / 62

There are Many Harder Problems

Vertex Cover: given a graph G, find a minimum size vertex cover

0-1 Knapsack: A robber found n items in a store, the ith item is
worth vi dollars and weighs wi pounds (vi, wi ∈ Z), he can only carry
W pounds. Which items should he take?

Traveling Salesman (TSP): find the shortest route for a salesman
to visit each of the n given cities once, and return to the starting city.

... and about 10,000 more natural problems

No-one has ever come up with a poly-time solution to any of these
problems!

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 4 / 62

Dealing with “Hard” Problems

Suppose your boss asks you to write a program solving a problem which
you can’t come up with an efficient solution.

1 Email ask the prof who taught CSE531

2 Give up

3 Spend the next 6 months working on the problem

4 Give the boss a brute-force algorithm which takes a century to finish
5 Mathematically show the boss that this problem does not have a poly

time solution

Highly unlikely, it is very hard to give such a proof.
For the hard problems, the best lower bound people have found is
Ω(n), which is totally useless!

6 Mathematically show that your problem is “equivalent” to some
problem which no body knows how to solve

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 5 / 62

Showing that Solving Your Problem is Mission Impossible

Main questions are

What do we mean by an algorithm?

What do we mean by “hard”?

What do we mean by “equivalently hard”?

To answer these questions,

We need a computational model, which is a formal tool to model
computation.

Let’s go back to ... Cantor, Russell, Hilbert, Gödel, Church, Turing,
Cook/Levin, Karp, etc.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 6 / 62

Georg Cantor (1845–1918): Father of Set Theory

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 8 / 62

Cantor’s Set Theory

In later decades of the 19th century, Cantor developed his set theory

Two sets A and B have the same cardinality iff ∃ a one-to-one
correspondence (bijection) between them. We write |A| = |B|

This is subtle! E.g., let E be the set of even natural numbers, then
|E| = |N|

|A| < |B| iff ∃ an injection from A into B but no bijection

For any set S, |S| < |2S |; where 2S is the power set of S
|N| < |R| = c
Both facts are shown with the celebrated diagonal argument

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 9 / 62

(Transfinite) Cardinal Numbers

Cardinal Numbers are numbers which are cardinalities of sets.

Finite Cardinal Numbers: 0, 1, 2, . . .

Transfinite Cardinal Numbers: ℵ0 = |{0, 1, 2, . . . }| = |N|, ℵ1 is the
next larger cardinal number, followed by ℵ2, ℵ3, ...

Diagonal argument gives ℵi < 2ℵi

Generalized Continuum Hypothesis: ℵi+1 = 2ℵi

Continuum Hypothesis (CH): ℵ1 = 2ℵ0

We can show c = |R| = 2ℵ0 , thus the continuum problem basically asks
where |R| is in the hierarchy of the ℵi.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 10 / 62

Ordinal Numbers

0, 1, 2, 3, 4, 5, . . .

0, 1, 2, 3, 4, 5, . . . , ω

0, . . . , ω, ω + 1, ω + 2, . . .

0, . . . , ω, ω + 1, ω + 2, . . . , ω · 2

0, . . . , ω, ω + 1, . . . , ω · 2, . . . , ω · 3, . . . , ω2

0, . . . , ω, . . . , ω · 2, . . . , ω2, . . . , ω3

0, . . . , ω, . . . , ω2, . . . , ω3, . . . , ωω

0, . . . , ω, . . . , ω2, . . . , ω3, . . . , ωω, . . . , ωωω

Now he ran out of names, so he invented a new notation

ε0 = ωωω...

where the number of times we take ω-power is ... ω!
c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 11 / 62

Back to the Cardinal Numbers

Now we have a way to index the cardinal numbers

ℵ0,ℵ1, . . . ,ℵω

why stop there?

ℵ0,ℵ1, . . . ,ℵω, . . . ,ℵω2 , . . . ,ℵωω , . . . ,ℵε0

shall we go on?

We can also do arithmetics on the ordinal and cardinal numbers!

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 12 / 62

All That Leads to ... The Great Debate

Two of the greatest mathematicians of the later half of the 19th
century and the beginning of the 20th century:

David Hilbert: “no one shall expel us from the paradise which Cantor
has created for us!”
Henri Poincaré: “later generations will regard set theory as a disease
from which one has recovered!”

Others: “that’s not mathematics, it’s theology!”

Still, many just fell in love with Cantor’s work.

Cantor ended his life in a mental hospital.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 13 / 62

The Paradoxes of Set Theory

Berry’s paradox

The first natural number which cannot be named in less than fifteen
English words

Russell’s paradox

Consider the set of all sets which are not members of themselves

The Greek already knew the difficulty of self-reference:

Liar Paradox

This statement is false!

Barber Paradox

In a village, a barber shaves everyone who does not shave himself

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 14 / 62

Talking about Self-Reference

A Self-Referential Sentence

This sentence has three a’s, two c’s, two d’s, twenty-eight e’s, four f’s, four
g’s, ten h’s, eight i’s, two l’s, eleven n’s, six o’s, seven r’s, twenty-seven s’s,
eighteen t’s, three u’s, five v’s, six w’s, three x’s, and three y’s.

A Self-Referential Puzzle

Write a program in C,Java,Perl,Scheme, Python, ... that prints an exact
replica of its source code.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 15 / 62

Solutions to the Paradoxes

Three main schools of thoughts

Logicism: mathematics is, in a significant sense, mostly reducible to
logic.

Intuitionism (Brouwer): “the only way to prove that something exists
is to exhibit it or to provide a method for calculating it!”

Formalism (Hilbert): let’s eliminate from mathematics the
uncertainties and ambiguities of natural language; Hilbert Program:
let’s formalize all existing theories to a finite set of axioms, and then
prove that the axioms are complete and consistent.
It should be possible to devise a proof-checking algorithm which,
given a set of axioms and inference rules, shall be able to decide if a
proof is correct!

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 16 / 62

David Hilbert (1862–1943)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 17 / 62

Hilbert’s Problems

Totally 23 problems. Ten were presented at the Second International
Congress of Mathematics (Paris, Aug 8, 1900)

Problem 1: is there a transfinite number between ℵ0 and the
continuum? (CH said no.)

Problem 2: Can it be proven that the axioms of logic are consistent?

Problem 8: Riemann hypothesis. (Remember John Nash in the
Beautiful Mind?)

Problem 10: Does there exist an algorithm to solve Diophantine
equations?

In 1928, he also asked: “is mathematics decidable, i.e., is there an
algorithm which decides if a mathematical statement has a proof or not?”
(Entscheidungsproblem)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 18 / 62

Kurt Gödel (1906-1978)

On Hilbert’s second problem, Gödel showed (1931) that any consistent
axiomatic system capable of doing arithmetics is necessarily incomplete!
(Diagonal argument is key.)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 19 / 62

Alonzo Church (1903–1995)

In 1936, Church gave two λ-calculus expressions whose equivalence cannot
be computed (i.e. cannot be expressed as a recursive function). (Note:
λ-calculus greatly influenced Lisp, ML, Haskell.)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 20 / 62

Alan Turing (1912–1954)

Turing machine (1936) captures “algorithm” in Entscheidungsproblem and
Hilbert’s 10th problem. Answer to Entscheidungsproblem: the halting
problem is undecidable. (Diagonal argument is key.)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 21 / 62

Church-Turing Thesis

Church-Turing Thesis

The intuitive notion of computations and algorithms is captured by the
Turing machine model

In other words, anything computable is computable by a Turing
machine.

Holds true for all known computational models: Random Access
Machines (RAM – von Neumann), Post system, Markov algorithms,
combinatory logic, λ-calculus, parallel computers, quantum
computers, DNA computers, unlimited register machines, etc.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 22 / 62

A Remark on the Continuum Hypothesis

Paul Cohen (April 2, 1934 - March 23, 2007) showed that the Continuum
Hypothesis and the Axiom of Choice are independent of Zermelo-Fraenkel
(ZF) set theory

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 23 / 62

Easy Problems and Hard Problems

In the 60s, computational resources (time, space) are scarce.

Rabin (1960), Hartmanis and Stearns (1965), Blum (1967)
introduced and studied problem complexity measured by the number
of steps required to solve it with an algorithm

Cobham (1964), Edmonds (1965), Rabin (1966) proposed the class P
as the class of “easy problems”

Informally

P is the class of all problems which can be solved with a polynomial-time
algorithm. Problems in P are easy.

Informally

Problems not in P are hard.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 25 / 62

Why Polynomials?

Polynomials typify “slowly growing” functions, closed under addition,
multiplications, and compositions

Practically, if a problem is in P, it is extremely likely that it can be
solved in time O(n4) or less

Some well-known examples of problems in P

Primality Testing

Linear Programming (⇒ Maximum Flows)

Shortest Paths, Minimum Spanning Trees, Maximum
Matching

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 26 / 62

Efficient Verification

Motivating Examples

The 67th Mersenne’s number: in 1903, Frank Nelson Cole (1861 -
1926) gave a “lecture” to the American Mathematical Society
entitled “On the Factorization of Large Numbers.” Without saying a
word, Cole proceeded to write on a blackboard the elementary
calculations leading to

267 − 1 = 147, 573, 952, 588, 676, 412, 927
= 193, 707, 721× 761, 838, 257, 287

Read a typical math paper: we can often verify that the proof is
correct. Finding the proof is a much different ball game.

Theme: there are problems which have short and efficiently verifiable
proofs

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 28 / 62

The Class NP

Informally

NP consists of all problems which have short and efficiently verifiable
solutions.

Efficiently verifiable = verification is in P
Examples:

Vertex Cover: we don’t know how to efficiently decide if a graph G
has a vertex cover of size at most a given k; but, the verification that a
set of vertices is a VC of size at most k is very easy
Coloring, TSP, Hamiltonian Circuit, etc.

Corollary

P ⊆ NP

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 29 / 62

NP was Introduced by Cook (1971) and Levin (1973)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 30 / 62

NP in “Real” Life

NP captures many tasks of human endeavor for which successful
completion can be easily recognized (we can tell a good solution when
we see one)

Mathematician: given a math statement, come up with a proof

Scientist: given a collection of data on some phenomenon, come up
with a theory explaining it

Engineer: given a set of constraints (physical laws, cost, etc.), come
up with a design (of an engine, bridge, laptop, ...) meeting these
constraints

Detective: given the crime scene, find the criminal

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 31 / 62

Informal Definitions of “Harder” and “Equally Hard”

Harder

Problem B is harder than problem A, written as A ≤ B, if an efficient
algorithm for B can be used as a sub-routine to design an efficient
algorithm for A. We also say A can be efficiently reduced to B.

E.g., Bipartite Max Matching ≤ Maximum Flow

If B is easy then A is easy

If A is hard then B is hard

Equally hard

A is as hard as B if A ≤ B and B ≤ A

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 32 / 62

Informal definition of NP-completeness

NP-complete

A problem C is NP-complete if it is in NP and it is harder than all
problems in NP; In other words, A ≤ C for all A ∈ NP; In particular, all
NP-complete problems are equivalently hard!

Theorem (Cook-Levin)

Satisfiability (or sat) is NP-complete.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 33 / 62

Richard Karp

In 1972, Karp showed that 21 other well-known problems (with no known
efficient solutions) are NP-complete also.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 34 / 62

The P vs NP Problem

Today, there are ≈ 10,000 NP-complete problems

None of them is known to be in P!

We do not know how to show that they are not in P either!

Any NP-complete problem is in P iff P = NP

The Conjecture of Computer Science

P 6= NP

Millennium Prize Problems; Clay Research Institute offered one million
dollars to whoever solves one of a few outstanding problems, including

P = NP?
The Riemann hypothesis (Hilbert’s 8th problem)

The Poincaré conjecture (Perelman did it last year!)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 35 / 62

Why do We Believe P 6= NP?

For decades, no less-than-exponential algorithm is known for any of
the thousands of NP-complete problems; even though there are great
financial incentives for coming up with a solution to any of these
problems.

Philosophically, creativity cannot be automated

coming up with a proof should be harder than checking the correctness
of the proof
designing a bridge should be much harder than checking its safety
features
etc.

Philosophically, P = NP implies the proof of P = NP is easy to
find! is hard

Plus a myriad of technical reasons ...

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 36 / 62

What Do We Do Now That P 6= NP

Approximation algorithms

Randomized algorithms

New computational models and physical realizations, e.g., DNA
and/or quantum computers (probably still equivalent to Turing
Machine)

...

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 37 / 62

Ideas to be Formalized

P is the class of problems whose solutions can be found in polynomial
time

NP is the class of problems which have short and efficiently verifiable
solutions

NP-complete is the class of problems in NP which are harder than
all problems in NP;
In other words, a problem is NP-complete iff any problem in NP is
reducible to it

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 39 / 62

Examples of What We Call “Problems”

Maximum Matching: given a graph G, find a matching of
maximum size

Graph Coloring: given a graph G, find a coloring of vertices
using the minimum number of colors such that adjacent vertices are
colored differently

Knapsack: given a collection of n items, each with a value and a
weight, and a weight upper bound W , find a maximum-valued subset
of items with total weight at most W

Satisfiability: given a boolean formula ϕ, find a truth assignment
satisfying ϕ; e.g.,

ϕ(x1, . . . , x6) = (x̄1∨x4∨x6)∧(x2∨x̄4∨x5)∧(x̄1∨x̄2∨x3)∧(x̄3∨x5∨x̄6)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 41 / 62

Variations of a Problem

Consider the Coloring problem. (A proper coloring is a coloring of
vertices such that adjacent vertices have different colors.)

Optimization version: given a graph G, find a proper coloring of G
using the minimum number of colors

Search version: given a graph G and an upper bound b ≤ |V |, find a
proper coloring of G using at most b colors, or report that no proper
coloring exists

Optimization vs. Search

The optimization version and the search version of Coloring are equally
hard (or equally easy).

There’s also another variation

Decision Version: given a graph G and an upper bound b ≤ |V |,
decide whether or not G has a proper b coloring

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 42 / 62

Variations of a Problem

Consider Satisfiability

Search Version: given a boolean formula ϕ, find a truth assignment
satisfying ϕ

Decision Version: given a boolean formula ϕ, decide whether or not ϕ
can be satisfied at all

Satisfiable formula:

ϕ = (x1 ∨ x2 ∨ x̄3) ∧ (x̄1 ∨ x3)

Unsatisfiable formula:

ϕ = (x1 ∨ x2) ∧ (x̄1 ∨ x2) ∧ (x1 ∨ x̄2) ∧ (x̄1 ∨ x̄2)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 43 / 62

Decision vs. Search

Decision version is clearly easier than search version. Specifically,
solving search version ⇒ solving decision version

Turns out that in most cases in NP the decision version is equivalent
to the search version

Thus, we will focus on decision problems

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 44 / 62

Decision Problems

A decision problem X is a set of instances. For examples:

X = Graph Coloring, an instance consists of a graph G and an
upper bound b ≤ |V |
X = Satisfiability, an instance consists of just a boolean formula ϕ

X can be partitioned into yes-instances and no-instances

X = Xyes ∪Xno

Xyes is the subset of instances whose answers are yes
Xno is the subset of instances whose answers are no.

Examples:

X = Graph Coloring, yes-instances are graphs G which have a
proper coloring with ≤ b colors
X = Satisfiability, no-instances are boolean formulas which
cannot be satisfied

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 45 / 62

Encodings and Input Sizes

To serve as input to an algorithm, instances need to be encoded

The encoding decides the input size

Graph Coloring

G could be encoded with an adjacency matrix
b is encoded in binary format
Input size is thus roughly n2 + lg k = Θ(n2)

Knapsack

Values and weights encoded with a table of two rows: one row for vi in
binary, another row for wi in binary
W is encoded in binary
Input size is thus roughly lg W +

∑n
i=1(lg vi + lg wi)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 47 / 62

Reasonable Encodings

Encoding has a huge effect on running time (poynomial time or not,
e.g.)

Knapsack has a dynamic programming algorithm run in time O(nW)
This running time is polynomial if W is encoded in unary
This running time is exponential if W is encoded in binary

We will assume that all our problems use “reasonable encodings”

Graphs are encoded with adjacency matrices
Sets are encoded with a sequence of 0’s and 1’s
Numbers (weights, costs, etc.) are encoded in binary

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 48 / 62

P

Definition

X ∈ P if there is a polynomial time algorithm A(·) such that, for any
instance x ∈ X,

x ∈ Xyes ⇐⇒ A(x) = yes

Example (Bipartite Matching)

Given a bipartite graph G and a bound b, decide if there is a matching in
G of size at least b.

Example (2-Satisfiability)

Given a boolean formula ϕ in 2-CNF, decide if ϕ can be satisfied. E.g.,

ϕ = (x1 ∨ x̄2) ∧ (x̄3 ∨ x̄5) ∧ (x2 ∨ x4) ∧ (x̄2 ∨ x4) ∧ (x̄3 ∨ x5)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 50 / 62

NP

Definition

X ∈ NP if there exists a polynomial time verification algorithm V (·, ·),
such that for any instance x ∈ X,

x ∈ Xyes ⇐⇒ ∃ certificate y, |y| = poly(|x|), V (x, y) = yes

Example (Graph Coloring)

Given a graph G = (V,E) and a bound b ≤ |V |, decide if there is a proper
coloring of G using at most b colors.

Example (3-Satisfiability)

Given a boolean formula ϕ in 3-CNF, decide if ϕ can be satisfied. E.g.,

ϕ = (x1 ∨ x̄2 ∨ x̄5) ∧ (x̄3 ∨ x̄5 ∨ x6) ∧ (x2 ∨ x4 ∨ x̄6) ∧ (x̄3 ∨ x5 ∨ x6)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 51 / 62

Polynomial Time Reduction

Definition (Karp Reduction)

A problem X is polynomial time reducible to a problem Y if there is a
polynomial time algorithm F computing a mapping f : X → Y such that

∀x ∈ X, x ∈ Xyes ⇐⇒ f(x) ∈ Yyes

We write X ≤p Y , and think X is not harder than Y .

Πno Π′
no

Π′
yesΠyes

f

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 52 / 62

Vertex Cover ≤p Independent Set

A vertex cover of a graph G is a subset S of vertices of G such that each
edge of G is incident to at least one vertex in S.

Definition (Vertex Cover – VC)

Instance: A graph G = (V,E), and a bound b ∈ N, 1 ≤ b ≤ |V |.
Question: Is there a vertex cover of size at most b?

An independent set of a graph G is a subset of vertices no two of which
are adjacent.

Definition (Independent Set – IS)

Instance: A graph G = (V,E), and a bound b ∈ N, 1 ≤ b ≤ |V |.
Question: Is there an independent set of G of size at least b?

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 53 / 62

Independent Set ≤p Clique

A clique of a graph G is a subset of vertices every two of which are
adjacent.

Definition (Clique)

Instance: A graph G = (V,E), and a bound b ∈ N, 1 ≤ b ≤ |V |.
Question: Is there a clique of G of size at least b?

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 54 / 62

NP-Complete Problems

Definition

X is NP-hard iff every problem in NP is reducible to X.
X is NP-complete iff X ∈ NP and X is NP-hard.

Lemma (Transitivity)

If X ≤p Y and Y ≤p Z, then X ≤p Z.

Lemma (Y Easy ⇒ X Easy)

If X ≤p Y and Y ∈ P, then X ∈ P.

Lemma (X Hard ⇒ Y Hard)

If X ≤p Y and X is NP-hard, then Y is NP-hard.
In particular, If X ≤p Y , X is NP-complete, and Y ∈ NP, then Y is
NP-complete.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 55 / 62

Cook-Levin Theorem

For any Boolean variable x, x and x̄ are called literals

A clause is a disjunction of literals, e.g.

C = (x ∨ y ∨ z̄ ∨ w ∨ t̄)

A boolean formula is in conjunctive normal form (CNF) if it is a
conjunction of clauses, e.g.

ϕ(x1, . . . , x6) = (x̄1 ∨ x4) ∧ (x2 ∨ x̄4 ∨ x5) ∧ (x̄1 ∨ x̄2 ∨ x3) ∧ x̄3

Satisfiability (or SAT): given a CNF formula ϕ, decide if it is
satisfiable, i.e. if ∃ an assignment of true/false to all variables
such that ϕ = true

Theorem (Cook-Levin)

Satisfiability is NP-complete.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 56 / 62

The Problems

Definition (3-Satisfiability – 3-SAT)

Instance: A CNF formula ϕ with clauses C1, . . . , Cm over variables
x1, . . . , xn, where each clause Ci consists of exactly 3 literals.
Question: Is there a truth assignment satisfying ϕ

Definition (Set Cover – SC)

Instance: A family S of m subsets of a universe set U of size n, and a
bound b ∈ N, 1 ≤ b ≤ m.
Question: Is there a collection of at most b members of S whose union is
the universe?
(Such a collection is called a set cover of U .)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 58 / 62

The Problems

Definition (3-colorability)

Instance: A graph G = (V,E).
Question: Is there a proper coloring of G using at most 3 colors?

Definition (k-colorability)

Instance: A graph G = (V,E), a positive integer k ≤ |V |.
Question: Is there a proper coloring of G using at most k colors?

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 59 / 62

The Problems

An Hamiltonian cycle of a graph G is a cycle containing all vertices of G.

Definition (Hamiltonian cycle – HC)

Instance: A graph G = (V,E).
Question: Does G contain a Hamiltonian cycle?

A TSP tour is just another name for a Hamiltonian cycle.

Definition (Traveling Salesman Problem – TSP)

Instance: A complete graph G = (V,E), a cost function c : E → Z+, and
a bound b ∈ Z+.
question: Is there a TSP tour with total cost at most b?

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 60 / 62

The Problems

Definition (Subset Sum – SS)

Instance: A finite set S of natural numbers, and a target number t ∈ N.
Question: Is there a subset T ⊆ S, whose elements sum up to t?

Definition (Dominating Set – DS)

Instance: A graph G = (V,E), a bound b ∈ N, 1 ≤ b ≤ |V |.
Question: Is there a subset S ⊆ V of size at least b such that every vertex
not in S is incident to some vertex in S.
(The vertices in S dominates all vertices in V .)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 61 / 62

The Reductions

3-SAT

VC

Clique

3-colorability

k-colorabilityKnapsack

SAT

SS HC

DS IS

SC TSP

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 62 / 62

