Agenda

We've done

- Growth of functions
- Asymptotic Notations ($O, o, \Omega, \omega, \Theta$)

Now

- Recurrence relations, solving them, Master theorem

Examples of recurrence relations

FibA

$$
T(n)=T(n-1)+T(n-2)+\Theta(1)
$$

Binary search

$$
T(n) \leq T(\lceil n / 2\rceil)+\Theta(1)
$$

Merge sort

$$
\begin{equation*}
T(n)=T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+\Theta(n) \tag{1}
\end{equation*}
$$

and many others

$$
\begin{aligned}
& T(n)=4 T(n / 2)+n^{2} \lg n \\
& T(n)=3 T(n / 4)+\lg n \\
& T(n)=T(n / a)+T(a)
\end{aligned}
$$

Recall the way to interpret (1): " $T(n)$ is $T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)$ plus some function $f(n)$ which is $\Theta(n)$ "

Methods of solving recurrent relations

- Guess and induct
- Master Theorem
- Generating functions and many others

Guess and induct

- Guess a solution
- Guess by substitution
- Guess by recurrence tree
- Use induction to show that the guess is correct

Guess by substitution - Example 1

Example (The FibA algorithm)

$$
T(n)= \begin{cases}a & \text { if } n \leq 1 \\ T(n-1)+T(n-2)+b & \text { if } n \geq 2\end{cases}
$$

Guess by iterating the recurrence a few times:

- $T(0)=a, T(1)=a$
- $T(2)=2 a+1 b$
- $T(3)=3 a+2 b$
- $T(4)=5 a+4 b$
- $T(5)=8 a+7 b$
- ...

So, what's $T(n)$?

Guess by substitution - Example 1

The guess

$$
\begin{gather*}
T(n)=(a+b) F_{n+1}-b \tag{2}\\
F_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}=\Theta\left(\phi^{n}\right) \tag{3}
\end{gather*}
$$

where F_{n} is the nth Fibonacci number, ϕ is the golden ratio
Conclude with

$$
\begin{equation*}
T(n)=\Theta\left(\phi^{n}\right) \tag{4}
\end{equation*}
$$

We can show (2), (3) \& (4) by induction.

Guess by substitution - Example 2

Example (Merge Sort)

$$
\begin{aligned}
& T(1)=\Theta(1) \\
& T(n)=T(\lfloor n / 2\rfloor)+T([n / 2\rceil)+\Theta(n)
\end{aligned}
$$

Clean up the recurrence before guessing
It is often safe to ignore the issue of integrality:

$$
T(n) \approx T(n / 2)+T(n / 2)+c n=2 T(n / 2)+c n .
$$

Guess by substitution - Example 2

$$
\begin{aligned}
T(n) & =2 T(n / 2)+c n \\
& =2\left(2 T(n / 4)+c \frac{n}{2}\right)+c n \\
& =4 T(n / 4)+2 c n \\
& =4\left(2 T(n / 8)+c \frac{n}{4}\right)+2 c n \\
& =8 T(n / 8)+3 c n \\
& =\cdots \\
& =2^{k} T\left(n / 2^{k}\right)+k c n \\
& =\cdots \\
& =2^{\lg n} T\left(n / 2^{\lg n}\right)+c n \lg n \\
& =\Theta(n \lg n)
\end{aligned}
$$

Guess by substitution - Example 2

- Rigorously, we have

$$
\begin{aligned}
& T(1)=c_{0} \\
& T(n) \geq T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+c_{1} n \\
& T(n) \leq T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+c_{2} n
\end{aligned}
$$

- Guess: $T(n)=\Theta(n \lg n)$.
- By induction, show that there are constants $a, b>0$ such that

$$
a n \lg n \leq T(n) \leq b n \lg n .
$$

Now try

$$
T(n)=T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+1
$$

"Cleaning up" before solving: Ignore annoying constants and integrality issue

- To (sort of) see why integrality isn't important, consider

$$
T(n)=2 T(\lfloor n / 2\rfloor+17)+n .
$$

- Approximate this by ignoring both the integrality issue and the annoying constant 17

$$
T(n)=2 T(n / 2)+n
$$

- The guess is then $T(n)=O(n \lg n)$. (You should prove it.)

Common mistake

$$
T(n) \leq 2 c\lfloor n / 2\rfloor+n \leq c n+n=O(n)
$$

"Cleaning up" before solving: Change of variable

Solve

$$
T(n)=2 T(\sqrt{n})+1
$$

Let $m=\lg n$, then

$$
T\left(2^{m}\right)=2 T\left(2^{m / 2}\right)+1
$$

Let $S(m)=T\left(2^{m}\right)$, then

$$
S(m)=2 S(m / 2)+1
$$

Hence,

$$
S(m)=O(m)
$$

Thus,

$$
T(n)=S(\lg n)=O(\lg n)
$$

Guess by recurrence tree - Example 1

Example

$$
T(n)=3 T(\lfloor n / 4\rfloor)+\Theta\left(n^{2}\right) .
$$

Recursion tree suggests $T(n)=O\left(n^{2}\right)$. Prove rigorously by induction.

Example (Now try this)

$$
T(n)=T(n / 3)+T(2 n / 3)+O(n)
$$

Master Theorem

Let $a \geq 1, b>1$ be constants. Suppose

$$
T(n)=a T(n / b)+f(n),
$$

where n / b could either be $\lceil n / b\rceil$ or $\lfloor n / b\rfloor$. Then

1. If $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ for some $\epsilon>0$, then

$$
T(n)=\Theta\left(n^{\log _{b} a}\right)
$$

2. If $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then

$$
T(n)=\Theta\left(n^{\log _{b} a} \lg n\right)
$$

3. If $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for some $\epsilon>0$, and if $a f(n / b) \leq c f(n)$ for some constant $c<1$ for all sufficiently large n, then

$$
T(n)=\Theta(f(n))
$$

Examples and Notes

Examples

- $T(n)=8 T(n / 2)+n^{5}$
- $T(n)=8 T(n / 2)+n^{4}$
- $T(n)=8 T(n / 2)+n^{3}$
- $T(n)=3 T(n / 2)+n^{2}$
- $T(n)=3 T(n / 2)+n$

Notes

- There is a gap between case $1 \&$ case 2
- There is a gap between case 2 \& case 3
- There is a gap within case 3

Other methods of solving recurrences

- Generating functions
- Hypergeometric series
- Finite calculus, finite differences
- ...

Further readings

- " $A=B$," by M. Petkovsek, H. Wilf, D. Zeilberger
- "Concrete mathematics," R. Graham, D. Knuth, O. Patashnik
- "Enumerative combinatorics," R. Stanley (two volumes)
- "Theory of partitions," G. Andrews

