Tail and Concentration Inequalities

From here on, we use $\mathbf{1}_A$ to denote the indicator variable for event A, i.e. $\mathbf{1}_A = 1$ if A holds and $\mathbf{1}_A = 0$ otherwise. Our presentation follows closely the first chapter of [1].

1 Markov Inequality

Theorem 1.1. If X is a r.v. taking only non-negative values, $\mu = E[X]$, then $\forall a > 0$

$$\operatorname{Prob}[X \ge a] \le \frac{\mu}{a}.\tag{1}$$

Lecturer: Hung Q. Ngo

Last update: February 19, 2011

Proof. From the simple fact that $a\mathbf{1}_{\{X\geq a\}}\leq X$, taking expectation on both sides we get $a\mathrm{E}\left[\mathbf{1}_{\{X\geq a\}}\right]\leq \mu$, which implies (1).

Problem 1. Use Markov inequality to prove the following. Let $c \ge 1$ be an arbitrary constant. If n people have a total of d dollars, then there are at least (1-1/c)n of them each of whom has less than cd/n dollars. (You can easily prove the above statement from first principle. However, please set up a probability space, a random variable, and use Markov inequality to prove it. It is instructive!)

2 Chebyshev Inequality

Theorem 2.1 (Two-sided Chebyshev's Inequality). *If* X *is a r.v. with mean* μ *and variance* σ^2 , *then* $\forall a > 0$,

$$\operatorname{Prob}\left[|X - \mu| \ge a\right] \le \frac{\sigma^2}{a^2}$$

Proof. Let $Y=(X-\mu)^2$, then $\mathrm{E}[Y]=\sigma^2$ and Y is a non-negative r.v.. From Markov inequality (1) we have

$$\operatorname{Prob} \left[|X - \mu| \ge a \right] = \operatorname{Prob} \left[Y \ge a^2 \right] \le \frac{\sigma^2}{a^2}.$$

The one-sided versions of Chebyshev inequality are sometimes called Cantelli inequality.

Theorem 2.2 (One-sided Chebyshev's Inequality). Let X be a r.v. with $E[X] = \mu$ and $Var[X] = \sigma^2$, then for all a > 0,

$$Prob[X \ge \mu + a] \le \frac{\sigma^2}{\sigma^2 + a^2} \tag{2}$$

$$\operatorname{Prob}[X \le \mu - a] \le \frac{\sigma^2}{\sigma^2 + a^2}.$$
 (3)

Proof. Let $Y = X - \mu$, then E[Y] = 0 and $Var[Y] = Var[X] = \sigma^2$. (Why?) Thus, for any t such that t + a > 0 we have

$$\begin{split} \operatorname{Prob}[Y \geq a] &= \operatorname{Prob}[Y + t \geq a + t] \\ &= \operatorname{Prob}\left[\frac{Y + t}{a + t} \geq 1\right] \\ &\leq \operatorname{Prob}\left[\left(\frac{Y + t}{a + t}\right)^2 \geq 1\right] \\ &\leq \operatorname{E}\left[\left(\frac{Y + t}{a + t}\right)^2\right] \\ &= \frac{\sigma^2 + t^2}{(a + t)^2} \end{split}$$

The second inequality follows from Markov inequality. The above analysis holds for any t such that t + a > 0. We pick t to minimize the right hand side, which is $t = \sigma^2/a > 0$. That proves (2).

Problem 2. Prove (3).

3 Bernstein, Chernoff, Hoeffding

3.1 The basic bound using Bernstein's trick

Let us consider the simplest case, and then relax assumptions one by one. For $i \in [n]$, let X_i be i.i.d. random variables which are all Bernoulli with parameter p. Let $X = \sum_{i=1}^{n} X_i$. Then, E[X] = np. We will prove that, as n gets large X is "far" from E[X] with exponentially low probability.

Let m be such that np < m < n, we want to bound $\text{Prob}[X \ge m]$. For notational convenience, let q = 1 - p. Bernstein taught us the following trick. For any t > 0 the following holds.

$$\begin{split} \operatorname{Prob}[X \geq m] &= \operatorname{Prob}\left[tX \geq tm\right] \\ &= \operatorname{Prob}\left[e^{tX} \geq e^{tm}\right] \\ &\leq \frac{\operatorname{E}\left[e^{tX}\right]}{e^{tm}} \\ &= \frac{\operatorname{E}\left[\prod_{i=1}^n e^{tX_i}\right]}{e^{tm}} \\ &= \frac{\prod_{i=1}^n \operatorname{E}\left[e^{tX_i}\right]}{e^{tm}} \text{ (because the X_i are independent)} \\ &= \frac{\prod_{i=1}^n (pe^t + q)}{e^{tm}} \\ &= \frac{(pe^t + q)^n}{e^{tm}}. \end{split}$$

The inequality on the third line follows from Markov inequality (1). Naturally, we set t to minimize the right hand side, which is

$$t_0 = \ln \frac{mq}{(n-m)p} > 0.$$

Plugging t_0 in, we obtain the following after simple algebraic manipulations:

$$\operatorname{Prob}[X \ge m] \le \left(\frac{pn}{m}\right)^m \left(\frac{qn}{n-m}\right)^{n-m}.\tag{4}$$

This is still quite a mess. But there's a way to make it easier to remember. The *relative entropy* (or Kullberg-Leibler distance) between two Bernoulli distributions with parameters p and p' is defined to be

$$RE(p||p') := p \ln \frac{p}{p'} + (1-p) \ln \frac{1-p}{1-p'}.$$

There are several different interpretations of the relative entropy function. You can find them from the Wikipedia entry on relative entropy. It can be shown that $RE(p||p') \ge 0$ for all $p, p' \in (0, 1)$. Anyhow, we can rewrite (4) simply as

$$\operatorname{Prob}[X \ge m] \le e^{-n \cdot \operatorname{RE}(m/n \parallel p)}. \tag{5}$$

Next, suppose the X_i are still Bernoulli variables but with different parameters p_i . Let $q_i = 1 - p_i$, $p = (\sum_i p_i)/n$ and q = 1 - p. Note that E[X] = np as before. A similar analysis leads to

$$\operatorname{Prob}[X \ge m] \le \frac{\prod_{i=1}^{n} (p_i e^t + q_i)}{e^{tm}} \le \frac{(p e^t + q)^n}{e^{tm}}.$$

The second inequality is due to the *geometric-arithmetic means* inequality, which states that, for any non-negative real numbers a_1, \dots, a_n we have

$$a_1 \cdots a_n \le \left(\frac{a_1 + \cdots + a_n}{n}\right)^n$$
.

Thus, (5) holds when the X_i are Bernoulli and they don't have to be identically distributed.

Finally, consider a fairly general case when the X_i do not even have to be discrete variables. Suppose the X_i are independent random variables where $\mathrm{E}[X_i] = p_i$ and $X_i \in [0,1]$ for all i. Again, let $p = \sum_i p_i/n$ and q = 1 - p. Bernstein's trick leads us to

$$\operatorname{Prob}[X \ge m] \le \frac{\prod_{i=1}^n \operatorname{E}\left[e^{tX_i}\right]}{e^{tm}}.$$

The problem is, we no longer can compute $\mathrm{E}\left[e^{tX_i}\right]$ because we don't know the X_i 's distributions. Hoeffding taught us another trick. For t>0, the function $f(x)=e^{tx}$ is convex. Hence, the curve of f(x) inside [0,1] is below the linear segment connecting the points (0,f(0)) and (1,f(1)). The segment's equation is

$$y = (f(1) - f(0))x + f(0) = (e^{t} - 1)x + 1 = e^{t}x + (1 - x).$$

Hence,

$$\mathbf{E}\left[e^{tX_i}\right] \le \mathbf{E}\left[e^tX_i + (1 - X_i)\right] = p_i e^t + q_i.$$

We thus obtain (4) as before. Overall, we just proved the following theorem.

Theorem 3.1 (Bernstein-Chernoff-Hoeffding). Let $X_i \in [0,1]$ be independent random variables where $E[X_i] = p_i, i \in [n]$. Let $X = \sum_{i=1}^n X_i$, $p = \sum_{i=1}^n p_i/n$ and q = 1 - p. Then, for any m such that np < m < n we have

$$\operatorname{Prob}[X \ge m] \le e^{-n\operatorname{RE}(m/n\|p)}.\tag{6}$$

Problem 3. Let $X_i \in [0,1]$ be independent random variables where $E[X_i] = p_i, i \in [n]$. Let $X = \sum_{i=1}^n X_i$, $p = \sum_{i=1}^n p_i/n$ and q = 1 - p. Prove that, for any m such that 0 < m < np we have

$$\operatorname{Prob}[X \le m] \le e^{-n\operatorname{RE}(m/n\|p)}.\tag{7}$$

3.2 Instantiations

There are a variety of different bounds we can get out of (6) and (7).

Theorem 3.2 (Hoeffding Bounds). Let $X_i \in [0,1]$ be independent random variables where $E[X_i] = p_i, i \in [n]$. Let $X = \sum_{i=1}^n X_i$. Then, for any t > 0 we have

$$\operatorname{Prob}[X \ge \operatorname{E}[X] + t] \le e^{-2t^2/n}.$$
(8)

and

$$\text{Prob}[X \le E[X] - t] \le e^{-2t^2/n}.$$
 (9)

Proof. We prove (8), leaving (9) as an exercise. Let $p = \sum_{i=1}^{n} p_i/n$ and q = 1 - p. WLOG, we assume 0 . Define <math>m = (p + x)n, where 0 < x < q = 1 - p, so that np < m < n. Also, define

$$f(x) = \text{RE}\left(\frac{m}{n}\|p\right) = \text{RE}\left(p + x\|p\right) = (p + x)\ln\frac{p + x}{p} + (q - x)\ln\frac{q - x}{q}.$$
 (10)

Routine manipulations give

$$f'(x) = \ln \frac{p+x}{p} - \ln \frac{q-x}{q}$$
$$f''(x) = \frac{1}{(p+x)(q-x)}$$

By Taylor's expansion, for any $x \in [0,1]$ there is some $\xi \in [0,x]$ such that

$$f(x) = f(0) + xf'(0) + \frac{1}{2}x^2f''(\xi) = \frac{1}{2}x^2\frac{1}{(p+\xi)(q-\xi)} \ge 2x^2.$$

The last inequality follows from the fact that $(p+\xi)(q-\xi) \le ((p+q)/2)^2 = 1/4$. Finally, set x=t/n. Then, $m=np+t=\mathrm{E}[X]+t$. From (6) we get

$$\text{Prob}[X \ge E[X] + t] \le e^{-nf(x)} \le e^{-2x^2n} = e^{-2t^2/n}.$$

Problem 4. Prove (9).

Theorem 3.3 (Chernoff Bounds). Let $X_i \in [0,1]$ be independent random variables where $E[X_i] = p_i, i \in [n]$. Let $X = \sum_{i=1}^n X_i$. Then,

(i) For any $0 < \delta \le 1$,

$$\text{Prob}[X \ge (1+\delta)E[X]] \le e^{-E[X]\delta^2/3}.$$
 (11)

(ii) For any $0 < \delta < 1$,

$$\operatorname{Prob}[X \le (1 - \delta)E[X]] \le e^{-E[X]\delta^2/2}.$$
(12)

(iii) If t > 2eE[X], then

$$\operatorname{Prob}[X \ge t] \le 2^{-t}.\tag{13}$$

Proof. To bound the upper tail, we apply (6) with $m = (p + \delta p)n$. Without loss of generality, we can assume m < n, or equivalently $\delta < q/p$. In particular, we will analyze the function

$$g(x) = \text{RE}(p + xp||p) = (1+x)p\ln(1+x) + (q-px)\ln\frac{q-px}{q},$$

for $0 < x \le \min\{q/p, 1\}$. First, observe that

$$\ln \frac{q}{q - px} = \ln \left(1 + \frac{px}{q - px} \right) \le \frac{px}{q - px}.$$

Hence, $(q-px)\ln\frac{q-px}{q}\geq -px$, from which we can infer that

$$g(x) \ge (1+x)p\ln(1+x) - px = p[(1+x)\ln(1+x) - x].$$

Now, define

$$h(x) = (1+x)\ln(1+x) - x - x^2/3.$$

Then,

$$h'(x) = \ln(1+x) - 2x/3$$

 $h''(x) = \frac{1}{1+x} - 2/3.$

Thus, 1/2 is a local extremum of h'(x). Note that h'(0) = 0, $h'(1/2) \approx 0.07 > 0$, and $h'(1) \approx 0.026 > 0$. Hence, $h'(x) \ge 0$ for all $x \in (0, 1]$. The function h(x) is thus non-decreasing. Hence, $h(x) \ge h(0) = 0$ for all $x \in [0, 1]$. Consequently,

$$g(x) \ge p[(1+x)\ln(1+x) - x] \ge px^2/3$$

for all $x \in [0, 1]$. Thus, from (6) we have

$$\operatorname{Prob}[X \geq (1+\delta)\operatorname{E}[X]] = \operatorname{Prob}[X \geq (1+\delta)pn] \leq e^{-n \cdot g(\delta)} \leq e^{-\delta^2 \operatorname{E}[X]/3}.$$

Problem 5. Prove (12).

Problem 6. Let $X_i \in [0,1]$ be independent random variables where $E[X_i] = p_i, i \in [n]$. Let $X = \sum_{i=1}^n X_i$, and $\mu = E[X]$. Prove the following

(i) For any δ , t > 0 we have

$$\operatorname{Prob}[X \ge (1+\delta)\operatorname{E}[X]] \le \left(\frac{e^{e^t-1}}{e^{t(1+\delta)}}\right)^{\mu}$$

(**Hint**: repeat the basic structure of the proof using Bernstein's trick. Then, because $1+x \le e^x$ we can apply $1+p_ie^t+1-p_i \le e^{p_ie^t-p_i}$.)

(ii) Show that, for any $\delta > 0$ we have

$$\operatorname{Prob}[X \geq (1+\delta)\mu] \leq \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}$$

(iii) Prove that, for any t > 2eE[X],

$$Prob[X \ge t] \le 2^{-t}$$
.

Problem 7. Let $X_i \in [a_i, b_i]$ be independent random variables where a_i, b_i are real numbers. Let $X = \sum_{i=1}^{n} X_i$. Repeat the basic proof structure to show a slightly more general Hoeffding bounds:

$$\operatorname{Prob}[X - \operatorname{E}[X] \ge t] \le \exp\left(\frac{-2t^2}{\sum_{i=1}^{n} (a_i - b_i)^2}\right)$$

$$\operatorname{Prob}[X - \operatorname{E}[X] \le -t] \le \exp\left(\frac{-2t^2}{\sum_{i=1}^{n} (a_i - b_i)^2}\right)$$

Problem 8. Prove that, for any $0 \le \alpha \le n$,

$$\sum_{0 \le k \le \alpha n} \binom{n}{k} \le 2^{H(\alpha)n},$$

where $H(\alpha) = -\alpha \log_2 \alpha - (1-\alpha) \log_2 (1-\alpha)$ is the binary entropy function.

References

[1] D. P. DUBHASHI AND A. PANCONESI, Concentration of measure for the analysis of randomized algorithms, Cambridge University Press, Cambridge, 2009.