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Tail and Concentration Inequalities

From here on, we use 1 4 to denote the indicator variable for event A,ie. 14 = 1if Aholdsand14 =0
otherwise. Our presentation follows closely the first chapter of [1].

1 Markov Inequality

Theorem 1.1. If X is a rv. taking only non-negative values, ;. = E[X], then Va > 0

Prob[X >a] < £. (1)
a
Proof. From the simple fact that al;x>q) < X, taking expectation on both sides we get aE [1 { XZQ}} <u,

which implies (1). L]

Problem 1. Use Markov inequality to prove the following. Let ¢ > 1 be an arbitrary constant. If n people
have a total of d dollars, then there are at least (1 — 1/c)n of them each of whom has less than cd/n dollars.

(You can easily prove the above statement from first principle. However, please set up a probability
space, a random variable, and use Markov inequality to prove it. It is instructive!)

2 Chebyshev Inequality

Theorem 2.1 (Two-sided Chebyshev’s Inequality). If X is a r.v. with mean p and variance o2, then Va > 0,

[\

Prob[|X — p| > a] < %

Proof. LetY = (X — u)?, then E[Y] = o2 and Y is a non-negative r.v.. From Markov inequality (1) we

have

o2

Prob[\X —pl > a] = Prob[Y > a2] < oy

The one-sided versions of Chebyshev inequality are sometimes called Cantelli inequality.

Theorem 2.2 (One-sided Chebyshev’s Inequality). Let X be a r.v. with E[X] = y and Var [X] = 02, then
forall a > 0,

Prob[X > < 5

rob[X > p+a] < o 2)
o2

Prob| X < p — < 3

rob[X < p—a] < PR 3)



Proof. LetY = X — p, then E[Y] = 0 and Var[Y] = Var [X] = 2. (Why?) Thus, for any ¢ such that
t 4+ a > 0 we have

ProblY >a] = ProblY +t>a+{]

Y
= Prob[ + 21]
a+t

2
<Y+t> -1
a+t -
Y +¢\2
a+t

o2 + 2

(a+t)?

The second inequality follows from Markov inequality. The above analysis holds for any ¢ such that t +a >
0. We pick ¢ to minimize the right hand side, which is t = 02 /a > 0. That proves (2). O
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Problem 2. Prove (3).

3 Bernstein, Chernoff, Hoeffding

3.1 The basic bound using Bernstein’s trick

Let us consider the simplest case, and then relax assumptions one by one. For i € [n], let X; be i.i.d. random
variables which are all Bernoulli with parameter p. Let X = > ;| X;. Then, E[X]| = np. We will prove
that, as n gets large X is “far” from E[X] with exponentially low probability.

Let m be such that np < m < n, we want to bound Prob[X > m]. For notational convenience, let
q = 1 — p. Bernstein taught us the following trick. For any ¢ > 0 the following holds.

Prob[X > m] = Prob[tX > tm)]
= Prob [etX > etm]
E [etx ]
6tm

E [T, ]
etm
I[i.,E [etXi]

= —— (because the X; are independent)
e

I, (pe’ +q)
etm

(pet + q)"
etm '

The inequality on the third line follows from Markov inequality (1). Naturally, we set ¢ to minimize the
right hand side, which is
mq

7(71 ey > 0.

to =1n
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Plugging t( in, we obtain the following after simple algebraic manipulations:

Prob[X > m] < <m>m( an >"m 4

m n—m

This is still quite a mess. But there’s a way to make it easier to remember. The relative entropy (or Kullberg-
Leibler distance) between two Bernoulli distributions with parameters p and p’ is defined to be

N p 1-
RE(p||p") .—plng +(1—p)ln T
There are several different interpretations of the relative entropy function. You can find them from the
Wikipedia entry on relative entropy. It can be shown that RE(p||p’) > 0 for all p,p’ € (0,1). Anyhow, we
can rewrite (4) simply as

Prob[X > m] < ¢ RE(/nlp), 5)

Next, suppose the X; are still Bernoulli variables but with different parameters p;. Let ¢; = 1 — p;,
p=(>_;pi)/nand ¢ = 1 — p. Note that ELX| = np as before. A similar analysis leads to

H?:1(piet + q;)

pe' +q)"
etm :

(
S etm

Prob[X > m] <

The second inequality is due to the geometric-arithmetic means inequality, which states that, for any non-
negative real numbers ay, - - - , a, we have

a + a n
al...an§<w> .
n

Thus, (5) holds when the X; are Bernoulli and they don’t have to be identically distributed.

Finally, consider a fairly general case when the X; do not even have to be discrete variables. Suppose
the X; are independent random variables where E[X;] = p; and X; € [0, 1] for all i. Again,letp = . p;/n
and ¢ = 1 — p. Bernstein’s trick leads us to

n E tX;
(&

The problem is, we no longer can compute E [etXi] because we don’t know the X;’s distributions. Hoeffding
taught us another trick. For ¢ > 0, the function f(z) = €'® is convex. Hence, the curve of f(z) inside [0, 1]
is below the linear segment connecting the points (0, £(0)) and (1, f(1)). The segment’s equation is
y=(f(1) = f(O)z + f(0) = (' =D+ 1=cz+ (1 — ).
Hence,
E [etXi] < E [etXi + (1 — Xz)] = piet +q;.
We thus obtain (4) as before. Overall, we just proved the following theorem.

Theorem 3.1 (Bernstein-Chernoff-Hoeffding). Ler X; € [0, 1] be independent random variables where
E[X;] = pi,i € [n]. Lee X =" X5, p = >0 pi/nand ¢ = 1 — p. Then, for any m such that
np < m < n we have

Prob[X > m] < e "RE(/nlp), (6)

Problem 3. Let X; € [0, 1] be independent random variables where E[X;] = p;,i € [n]. Let X = >"" | X,
p=> i pi/nand ¢ =1 — p. Prove that, for any m such that 0 < m < np we have

Prob[X < m] < e "RE(/nlp), 7



3.2 Instantiations

There are a variety of different bounds we can get out of (6) and (7).

Theorem 3.2 (Hoeffding Bounds). Let X; € [0, 1] be independent random variables where E[X;]| = p;,i €
[n]. Let X =" | X,. Then, for any t > 0 we have

Prob[X > E[X] +t] < e 2°/", (8)

and ,
Prob[X < E[X] —t] < e 2/, 9)

Proof. We prove (8), leaving (9) as an exercise. Letp = >_"" | p;/n and ¢ = 1 — p. WLOG, we assume
0 < p < 1. Define m = (p + x)n, where 0 < x < ¢ = 1 — p, so that np < m < n. Also, define

+x —x
b —i—(q—m)lnq

f() =RE (= ]p) = RE(p+allp) = (p+2)In (10)

Routine manipulations give

) — np—i—x_nq—x
@) = ot
" . 1

S e O

By Taylor’s expansion, for any = € [0, 1] there is some £ € [0, z] such that

2 1 > 272,

(P+&@—¢) ~

The last inequality follows from the fact that (p + £)(q — &) < ((p + ¢)/2)? = 1/4. Finally, set z = t/n.
Then, m = np + ¢t = E[X] + t. From (6) we get

F(x) = FO) + 2f'(0) + 3a2f"(€) = a

Prob[X > E[X] +t] < e f@) < g=2a%n _ ~2%/n

Problem 4. Prove (9).

Theorem 3.3 (Chernoff Bounds). Let X; € [0, 1] be independent random variables where E[X;] = p;,i €
[n]. Let X =" | X;. Then,

(i) Forany 0 < 6 <1,

Prob[X > (1 + §)E[X]] < ¢ BIXIO*/3, (11)
(ii) Forany 0 < 6 < 1, ,
Prob[X < (1 — 0)E[X]] < e FXI°/2, (12)
(iii) Ift > 2eE[X], then
Prob[X >t] <27% (13)



Proof. To bound the upper tail, we apply (6) with m = (p+Jp)n. Without loss of generality, we can assume
m < n, or equivalently 6 < ¢/p. In particular, we will analyze the function

g(x) = RE(p + zplp) = (1 + @)pIn(1 + ) + (¢ — pz) In 2 ‘qp”““,

for 0 < x < min{q/p, 1}. First, observe that

In q :ln(1+ pe )g pe .
q—pT q—pT q—px

Hence, (¢ — px)In % > —px, from which we can infer that
g(x) = (1+2)pn(l+2) —pr=p[(1+2)In(l +z) — a].
Now, define
h(z) = (14 2)In(1 + ) — 2 — 2°/3.
Then,

h'(z) = In(l+z)—2z/3
1
" = —2/3.
@ = -2
Thus, 1/2 is a local extremum of A/(x). Note that »'(0) = 0, A'(1/2) ~ 0.07 > 0, and h'(1) ~ 0.026 > 0.
Hence, h/(x) > 0 for all z € (0, 1]. The function h(x) is thus non-decreasing. Hence, h(z) > h(0) = 0 for
all z € [0, 1]. Consequently,

g(x) > p[(1 +2)In(1 +x) — 2] > pa®/3
for all z € [0, 1]. Thus, from (6) we have

Prob[X > (14 0)E[X]] = Prob[X > (14 0)pn] < e ™9 < e O EX1/3,

Problem 5. Prove (12).

Problem 6. Let X; € [0, 1] be independent random variables where E[X;] = p;,i € [n]. Let X ="' | X,
and p = E[X]. Prove the following

(i) For any §,t > 0 we have

e =1 \"
Prob[X > (1+ ¢)E[X]] < <et(1+5)>

(Hint: repeat the basic structure of the proof using Bernstein’s trick. Then, because 1 + z < e* we
can apply 1 + piel + 1 — p; < ePie’—Pi)

(i1) Show that, for any § > 0 we have

65 a
Prob[X > (1 +0)u] < (Ws)



(iii) Prove that, for any ¢ > 2eE[X],
Prob[X >¢] < 27"

Problem 7. Let X; € [a;, b;] be independent random variables where a;, b; are real numbers. Let X =

>, Xi. Repeat the basic proof structure to show a slightly more general Hoeffding bounds:

042
Prob X — E[X] > f] < exp (M)

942
Prob[X — E[X] < —t] < exp (zgjtb)z)

Problem 8. Prove that, forany 0 < a < n,
= ()
0<k<an

where H (o) = —alogy a — (1 — a) logy (1 — «) is the binary entropy function.
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