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Tail and Concentration Inequalities

From here on, we use 1A to denote the indicator variable for eventA, i.e. 1A = 1 ifA holds and 1A = 0
otherwise. Our presentation follows closely the first chapter of [1].

1 Markov Inequality

Theorem 1.1. If X is a r.v. taking only non-negative values, µ = E[X], then ∀a > 0

Prob[X ≥ a] ≤ µ

a
. (1)

Proof. From the simple fact that a1{X≥a} ≤ X , taking expectation on both sides we get aE
[
1{X≥a}

]
≤ µ,

which implies (1).

Problem 1. Use Markov inequality to prove the following. Let c ≥ 1 be an arbitrary constant. If n people
have a total of d dollars, then there are at least (1− 1/c)n of them each of whom has less than cd/n dollars.

(You can easily prove the above statement from first principle. However, please set up a probability
space, a random variable, and use Markov inequality to prove it. It is instructive!)

2 Chebyshev Inequality

Theorem 2.1 (Two-sided Chebyshev’s Inequality). IfX is a r.v. with mean µ and variance σ2, then ∀a > 0,

Prob
[
|X − µ| ≥ a

]
≤ σ2

a2

Proof. Let Y = (X − µ)2, then E[Y ] = σ2 and Y is a non-negative r.v.. From Markov inequality (1) we
have

Prob
[
|X − µ| ≥ a

]
= Prob

[
Y ≥ a2

]
≤ σ2

a2
.

The one-sided versions of Chebyshev inequality are sometimes called Cantelli inequality.

Theorem 2.2 (One-sided Chebyshev’s Inequality). Let X be a r.v. with E[X] = µ and Var [X] = σ2, then
for all a > 0,

Prob[X ≥ µ+ a] ≤ σ2

σ2 + a2
(2)

Prob[X ≤ µ− a] ≤ σ2

σ2 + a2
. (3)
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Proof. Let Y = X − µ, then E[Y ] = 0 and Var [Y ] = Var [X] = σ2. (Why?) Thus, for any t such that
t+ a > 0 we have

Prob[Y ≥ a] = Prob[Y + t ≥ a+ t]

= Prob
[
Y + t

a+ t
≥ 1
]

≤ Prob

[(
Y + t

a+ t

)2

≥ 1

]

≤ E

[(
Y + t

a+ t

)2
]

=
σ2 + t2

(a+ t)2

The second inequality follows from Markov inequality. The above analysis holds for any t such that t+a >
0. We pick t to minimize the right hand side, which is t = σ2/a > 0. That proves (2).

Problem 2. Prove (3).

3 Bernstein, Chernoff, Hoeffding

3.1 The basic bound using Bernstein’s trick

Let us consider the simplest case, and then relax assumptions one by one. For i ∈ [n], letXi be i.i.d. random
variables which are all Bernoulli with parameter p. Let X =

∑n
i=1Xi. Then, E[X] = np. We will prove

that, as n gets large X is “far” from E[X] with exponentially low probability.
Let m be such that np < m < n, we want to bound Prob[X ≥ m]. For notational convenience, let

q = 1− p. Bernstein taught us the following trick. For any t > 0 the following holds.

Prob[X ≥ m] = Prob [tX ≥ tm]
= Prob

[
etX ≥ etm

]
≤

E
[
etX
]

etm

=
E
[∏n

i=1 e
tXi
]

etm

=
∏n
i=1 E

[
etXi

]
etm

(because the Xi are independent)

=
∏n
i=1(pe

t + q)
etm

=
(pet + q)n

etm
.

The inequality on the third line follows from Markov inequality (1). Naturally, we set t to minimize the
right hand side, which is

t0 = ln
mq

(n−m)p
> 0.
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Plugging t0 in, we obtain the following after simple algebraic manipulations:

Prob[X ≥ m] ≤
(pn
m

)m( qn

n−m

)n−m
. (4)

This is still quite a mess. But there’s a way to make it easier to remember. The relative entropy (or Kullberg-
Leibler distance) between two Bernoulli distributions with parameters p and p′ is defined to be

RE(p‖p′) := p ln
p

p′
+ (1− p) ln

1− p
1− p′

.

There are several different interpretations of the relative entropy function. You can find them from the
Wikipedia entry on relative entropy. It can be shown that RE(p‖p′) ≥ 0 for all p, p′ ∈ (0, 1). Anyhow, we
can rewrite (4) simply as

Prob[X ≥ m] ≤ e−n·RE(m/n‖p). (5)

Next, suppose the Xi are still Bernoulli variables but with different parameters pi. Let qi = 1 − pi,
p = (

∑
i pi)/n and q = 1− p. Note that E[X] = np as before. A similar analysis leads to

Prob[X ≥ m] ≤
∏n
i=1(pie

t + qi)
etm

≤ (pet + q)n

etm
.

The second inequality is due to the geometric-arithmetic means inequality, which states that, for any non-
negative real numbers a1, · · · , an we have

a1 · · · an ≤
(
a1 + · · ·+ an

n

)n
.

Thus, (5) holds when the Xi are Bernoulli and they don’t have to be identically distributed.
Finally, consider a fairly general case when the Xi do not even have to be discrete variables. Suppose

theXi are independent random variables where E[Xi] = pi andXi ∈ [0, 1] for all i. Again, let p =
∑

i pi/n
and q = 1− p. Bernstein’s trick leads us to

Prob[X ≥ m] ≤
∏n
i=1 E

[
etXi

]
etm

.

The problem is, we no longer can compute E
[
etXi

]
because we don’t know theXi’s distributions. Hoeffding

taught us another trick. For t > 0, the function f(x) = etx is convex. Hence, the curve of f(x) inside [0, 1]
is below the linear segment connecting the points (0, f(0)) and (1, f(1)). The segment’s equation is

y = (f(1)− f(0))x+ f(0) = (et − 1)x+ 1 = etx+ (1− x).

Hence,
E
[
etXi

]
≤ E

[
etXi + (1−Xi)

]
= pie

t + qi.

We thus obtain (4) as before. Overall, we just proved the following theorem.

Theorem 3.1 (Bernstein-Chernoff-Hoeffding). Let Xi ∈ [0, 1] be independent random variables where
E[Xi] = pi, i ∈ [n]. Let X =

∑n
i=1Xi, p =

∑n
i=1 pi/n and q = 1 − p. Then, for any m such that

np < m < n we have
Prob[X ≥ m] ≤ e−nRE(m/n‖p). (6)

Problem 3. LetXi ∈ [0, 1] be independent random variables where E[Xi] = pi, i ∈ [n]. LetX =
∑n

i=1Xi,
p =

∑n
i=1 pi/n and q = 1− p. Prove that, for any m such that 0 < m < np we have

Prob[X ≤ m] ≤ e−nRE(m/n‖p). (7)
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3.2 Instantiations

There are a variety of different bounds we can get out of (6) and (7).

Theorem 3.2 (Hoeffding Bounds). Let Xi ∈ [0, 1] be independent random variables where E[Xi] = pi, i ∈
[n]. Let X =

∑n
i=1Xi. Then, for any t > 0 we have

Prob[X ≥ E[X] + t] ≤ e−2t2/n. (8)

and
Prob[X ≤ E[X]− t] ≤ e−2t2/n. (9)

Proof. We prove (8), leaving (9) as an exercise. Let p =
∑n

i=1 pi/n and q = 1 − p. WLOG, we assume
0 < p < 1. Define m = (p+ x)n, where 0 < x < q = 1− p, so that np < m < n. Also, define

f(x) = RE
(m
n
‖p
)

= RE (p+ x‖p) = (p+ x) ln
p+ x

p
+ (q − x) ln

q − x
q

. (10)

Routine manipulations give

f ′(x) = ln
p+ x

p
− ln

q − x
q

f ′′(x) =
1

(p+ x)(q − x)

By Taylor’s expansion, for any x ∈ [0, 1] there is some ξ ∈ [0, x] such that

f(x) = f(0) + xf ′(0) +
1
2
x2f ′′(ξ) =

1
2
x2 1

(p+ ξ)(q − ξ)
≥ 2x2.

The last inequality follows from the fact that (p + ξ)(q − ξ) ≤ ((p + q)/2)2 = 1/4. Finally, set x = t/n.
Then, m = np+ t = E[X] + t. From (6) we get

Prob[X ≥ E[X] + t] ≤ e−nf(x) ≤ e−2x2n = e−2t2/n.

Problem 4. Prove (9).

Theorem 3.3 (Chernoff Bounds). Let Xi ∈ [0, 1] be independent random variables where E[Xi] = pi, i ∈
[n]. Let X =

∑n
i=1Xi. Then,

(i) For any 0 < δ ≤ 1,
Prob[X ≥ (1 + δ)E[X]] ≤ e−E[X]δ2/3. (11)

(ii) For any 0 < δ < 1,
Prob[X ≤ (1− δ)E[X]] ≤ e−E[X]δ2/2. (12)

(iii) If t > 2eE[X], then
Prob[X ≥ t] ≤ 2−t. (13)
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Proof. To bound the upper tail, we apply (6) withm = (p+δp)n. Without loss of generality, we can assume
m < n, or equivalently δ < q/p. In particular, we will analyze the function

g(x) = RE(p+ xp‖p) = (1 + x)p ln(1 + x) + (q − px) ln
q − px
q

,

for 0 < x ≤ min{q/p, 1}. First, observe that

ln
q

q − px
= ln

(
1 +

px

q − px

)
≤ px

q − px
.

Hence, (q − px) ln q−px
q ≥ −px, from which we can infer that

g(x) ≥ (1 + x)p ln(1 + x)− px = p [(1 + x) ln(1 + x)− x] .

Now, define
h(x) = (1 + x) ln(1 + x)− x− x2/3.

Then,

h′(x) = ln(1 + x)− 2x/3

h′′(x) =
1

1 + x
− 2/3.

Thus, 1/2 is a local extremum of h′(x). Note that h′(0) = 0, h′(1/2) ≈ 0.07 > 0, and h′(1) ≈ 0.026 > 0.
Hence, h′(x) ≥ 0 for all x ∈ (0, 1]. The function h(x) is thus non-decreasing. Hence, h(x) ≥ h(0) = 0 for
all x ∈ [0, 1]. Consequently,

g(x) ≥ p [(1 + x) ln(1 + x)− x] ≥ px2/3

for all x ∈ [0, 1]. Thus, from (6) we have

Prob[X ≥ (1 + δ)E[X]] = Prob[X ≥ (1 + δ)pn] ≤ e−n·g(δ) ≤ e−δ2E[X]/3.

Problem 5. Prove (12).

Problem 6. LetXi ∈ [0, 1] be independent random variables where E[Xi] = pi, i ∈ [n]. LetX =
∑n

i=1Xi,
and µ = E[X]. Prove the following

(i) For any δ, t > 0 we have

Prob[X ≥ (1 + δ)E[X]] ≤

(
ee

t−1

et(1+δ)

)µ
(Hint: repeat the basic structure of the proof using Bernstein’s trick. Then, because 1 + x ≤ ex we
can apply 1 + pie

t + 1− pi ≤ epie
t−pi .)

(ii) Show that, for any δ > 0 we have

Prob[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
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(iii) Prove that, for any t > 2eE[X],
Prob[X ≥ t] ≤ 2−t.

Problem 7. Let Xi ∈ [ai, bi] be independent random variables where ai, bi are real numbers. Let X =∑n
i=1Xi. Repeat the basic proof structure to show a slightly more general Hoeffding bounds:

Prob[X − E[X] ≥ t] ≤ exp
(

−2t2∑n
i=1(ai − bi)2

)

Prob[X − E[X] ≤ −t] ≤ exp
(

−2t2∑n
i=1(ai − bi)2

)
Problem 8. Prove that, for any 0 ≤ α ≤ n,∑

0≤k≤αn

(
n

k

)
≤ 2H(α)n,

where H(α) = −α log2 α− (1− α) log2(1− α) is the binary entropy function.
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