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The optimal number of tests

This lecture focuses on the most important objective for group testing strategies: minimizing the number
of tests. Given 1 ≤ d ≤ N − 1, let t(d,N) denote the minimum t for which a d-disjunct matrix with t rows
and N columns exists. We study the behavior of the function t(d,N). We shall also briefly introduce basic
concepts and results from coding theory which will be used to construct good disjunct matrices.

1 Lower bounds

Exercise 1.1. Show that t(1, N) ≥ min{3, N}, for all N ≥ 1.

1.1 Large d

The following 1975 result was attributed to Bassalygo by Dyachkov and Rykov [3].

Proposition 1.2 (Bassalygo – 1975). For the d-disjunct matrices, we have the following bound

t(d,N) ≥ min
{(

d+ 2
2

)
, N

}
. (1)

Proof. Exercise 1.1 proves the base case. For the induction step, consider d ≥ 2 and a d-disjunct matrix M
with t = t(d,N) rows and N columns. Let N(w) denote the number of columns of M with weight w. A
row i ∈ [t] is said to be private for a column j if j is the only column in the matrix having a 1 on row i. If
column Mj has weight at most d, then it must have at least one private element. The total number of private
elements of all columns is at most t. Hence,

d∑
w=1

N(w) ≤ t.

Let wmax denote the maximum column weight of M. If wmax ≤ d thenN =
∑

wN(w) ≤ t. Now, suppose
wmax ≥ d + 1 and consider a column Mj with weight equal to wmax. If we remove column Mj and all
rows i for whichmij = 1, we are left with a (d−1)-disjunct matrix with t−wmax rows andN−1 columns.
Thus, t− wmax ≥ t(d− 1, N − 1) which along with the induction hypothesis implies

t− (d+ 1) ≥ min
{(

d+ 1
2

)
, N − 1

}
.

The bound is thus proved.

Note that t(d,N) ≤ N is a trivial upper bound: the N ×N identity matrix is d-disjunct. If
(
d+2

2

)
≥ N

then t(d,N) ≥ N , by the Bassalygo bound. Hence, when d ≥
√

2N we cannot do better than testing items
individually: t(d,N) = N .
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1.2 Small d

Consider a t × N binary matrix M. Its columns can naturally be viewed as a family of subsets of [t]. The
collection of columns of a 1-disjunct matrix satisfies the property that no set in the family is contained in
another set in the family. Such a family is called an anti-chain is partially order set theory [1]. A classic
(topology) lemma by Sperner in 1928 [4, 14] states that the maximum size of such an anti-chain is

(
t
bt/2c

)
.

Since the proof of Sperner’s lemma is short and illustrates a nice (probabilistic) technique, we reproduce it
here.

Lemma 1.3 (Sperner’s Lemma). LetF be a collection of subsets of [t] such that no member ofF is contained
in another member of F . Then, |F| ≤

(
t
bt/2c

)
. Equality can be reached by picking F to be the collection of

all bt/2c-subsets of [t].

Proof. Pick a random permutation π of [t], uniformly. For each member F ∈ F , let AF be the event that F
is a prefix of π. For example, if π = 3, 4, 1, 5, 2 then {1, 3, 4} is a prefix a π. If |F | = k then The probability
that AF holds is

Prob[AF ] =
k!(t− k)!

t!
=

1(
t
k

) ≥ 1(
t
bt/2c

) .
Because no member of F is contained in another, the events AF are all mutually exclusive. Thus,

1 ≥
∑
F∈F

Prob[AF ] ≥ |F| · 1(
t
bt/2c

) .

A subset F ⊆ [t] is called a private subset of column Mj if F ⊆Mj and F 6⊆Mj′ for any j′ 6= j. In
order to prepare for a bound for the small d case (say d <

√
2N ), we need the following lemma (Lemma

9.1 from Erdős-Frankl-Füredi [5]).

Lemma 1.4. Let M be a t ×N d-disjunct matrix. Fix a positive integer w ≤ t. Let C denote the set of all
columns of M. Let C be any column in C which has no private w-subset. Consider any k ≥ 0 other columns
C1, · · · , Ck ∈ C. We have ∣∣∣∣∣∣C \

k⋃
j=1

Cj

∣∣∣∣∣∣ ≥ (d− k)w + 1. (2)

In particular, if M has at least d+ 1 columns C1, . . . , Cd+1 none of which have any private w-subset, then∣∣∣∣∣∣
d+1⋃
j=1

Cj

∣∣∣∣∣∣ ≥ 1
2

(d+ 1)(dw + 2). (3)

Proof. If
∣∣∣C \⋃k

j=1Cj

∣∣∣ ≤ (d − k)w then C can be covered by the k sets Cj , j ∈ [k], plus (d − k) other
sets because C has no private w-subset. This contradicts the fact that C cannot be covered by the union of
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any d sets. To see (3), we apply (2) as follows.∣∣∣∣∣∣
d+1⋃
j=1

Cj

∣∣∣∣∣∣ = |C1|+ |C2 \ C1|+ · · ·+ |Cd+1 \ C1 ∪ · · · ∪ Cd|

≥ (dw + 1) + ((d− 1)w + 1) + · · ·+ (w + 1) + 1

=
d

2
(d+ 1)w + (d+ 1)

=
1
2

(d+ 1)(dw + 2).

Theorem 1.5. For N ≥ d ≥ 2 and any d-disjunct matrix M with t rows and N columns, we have

N ≤ d+
(

t⌈
t−d

(d+1
2 )

⌉)
.

Proof. Let Cw be the sub-collection of columns of M each of which has a private w-subset, and C<w be the
sub-collection of columns of M each of which has weight < w. Then, the same technique used in the proof
of Sperner’s lemma above can be used to show that, for any w ≤ t/2, |Cw| + |C<w| ≤

(
t
w

)
. Now, if there

were at least d+ 1 columns not in Cw ∪ C<w, then by Lemma 1.4 the union of columns not in Cw ∪ C<w is
at least 1

2(d+ 1)(dw + 2). Suppose we choose w such that

1
2

(d+ 1)(dw + 2) ≥ t+ 1, (4)

then we reach a contradiction and thus we can conclude that n ≤ d +
(
t
w

)
. The minimum w for which (4)

holds is w =
⌈
t+1−(d+1)

(d+1
2 )

⌉
, which is at most t/2 when d ≥ 2.

Exercise 1.6. Show the missing piece in the above proof that, for any w ≤ t/2, |Cw|+ |C<w| ≤
(
t
w

)
.

Corollary 1.7. When
(
d+2

2

)
< N , we have

t(d,N) ≥ (d+ 1)2

24 log d
logN = Ω

(
d2

log d
logN

)
.

2 Codes

2.1 Preliminaries

Let Σ be a finite set, |Σ| ≥ 2. We will refer to elements of Σ as symbols or letters, and Σ as an alphabet. A
code C over alphabet Σ is a subset of Σn, where the positive integer n is called the length (or block length)
and |C| is the size of the code. Each member of C is called a codeword. Thus, a codeword is a vector of
dimension n, each of whose coordinates is also called a position.
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The Hamming distance between two codewords c and c′, denoted by ∆(c, c′) is the number of positions
where c and c′ are different. The minimum distance of a code C, denoted by ∆(C), is the minimum
Hamming distance between two different codewords of C. The dimension of a code C on alphabet Σ is
defined to be dim(C) := log|Σ| |C|. A code with length n and dimension k on an alphabet of size q is called
an (n, k)q-code. An (n, k)q-code with minimum distance ∆ is called an (n, k,∆)q-code. Sometimes, to
emphasize a specific alphabet in use, we use the notations (n, k)Σ and (n, k,∆)Σ.

Proposition 2.1 (Singleton Bound [13]). For any (n, k,∆)q-code, k ≤ n−∆ + 1.

A code achieving equality in the Singleton bound is called a Maximum distance separable code, or MDS
code. A very widely used MDS code is the celebrated Reed-Solomon code, named after its two inventors
Irving Reed and Gustave Solomon [12]1.

Exercise 2.2. Prove the Singleton bound. (Hint: consider any code C of minimum distance ∆ and length
n. Let C ′ be the projection of C on to the first n− (∆− 1) coordinates. Note that |C ′| = |C|. Bound |C ′|.)

It is often the case that the alphabet Σ is a finite field Fq2, because then we are able to take advantage of
the underlying (linear) algebraic structures for designing the codes, analyzing its parameters, and discovering
good encoding and decoding algorithms. In this case, when C is a linear subspace of Fnq we call C a linear
code. To emphasize the fact that C is linear, we replace (n, k)q and (n, k,∆)q by [n, k]q and [n, k,∆]q.
Note that the dimension k of the code is now precisely the dimension of the subspace C.

2.2 Reed-Solomon Codes

Definition 2.3 (Reed-Solomon code). Let k ≤ n ≤ q be positive integers where q is a prime power.
The Reed-Solomon code is an [n, k, n − k + 1]q-code (i.e. a linear MDS code) defined as follows. Let
{α1, · · · , αn} be any n distinct members of Fq. These are called evaluation points of the code. For each
vector m = (m0, . . . ,mk−1) ∈ Fkq , define a polynomial

fm(x) =
k−1∑
i=0

mix
i

which is of degree at most k−1. Then, for each m ∈ Fkq there is a corresponding codewordRS(m) defined
by

RS(m) = 〈fm(α1), · · · , fm(αn)〉.

Exercise 2.4 (Optional). Prove the following

1. If m 6= m′ then RS(m) 6= RS(m′). Thus, the RS code defined above has precisely qk codewords.

2. For any m,m′ ∈ Fkq , and any scalar a ∈ Fq,

RS(m + m′) = RS(m) +RS(m′)
RS(am) = a ·RS(m).

Thus, the RS code is a linear code.
1This paper and the likes of Shannon and Hamming’s papers are perfect examples illustrating that we don’t have to write huge

papers to be influential.
2See, http://www.cs.cmu.edu/˜venkatg/teaching/codingtheory/notes/algebra-brief-notes.pdf

for a brief introduction to finite fields
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3. Use that fact that any polynomial of degree at most k−1 over Fq has at most k−1 roots to show that,
for any m 6= m′ the Hamming distance between RS(m) and RS(m′) is at least n− k + 1.

4. Lastly, consider the distance between the all-zero codeword and the codeword corresponding to the
polynomial

∏k−1
i=1 (x−αi), prove that the above RS code is an [n, k, n−k+ 1]q-code. (We could also

use the Singleton bound to show this fact.)

Last but not least, to see that the [n, k]q-RS code is strongly explicit, note that

RS(m) = (m0, . . . ,mk−1)


1 1 · · · 1
α1 α2 · · · αn
α2

1 α2
2 · · · α2

n
...

...
...

...
αk−1

1 αk−1
2 · · · αk−1

n


The matrix is called the k × n Vandermonde matrix, which occurs in many other applications such as in
computing the FFT.

2.3 Code concatenation

Let q, n,m,N be integers such that N ≤ qn and 2m ≥ q. Let Cout be a code of length n and size N over
an alphabet Σ of size q. Without loss of generality (up to isomorphism) we might as well set Σ = [q]. Let
Cin be a binary code (i.e. alphabet {0, 1}) of length m and size q. A concatenation C = Cout ◦Cin of Cout

and Cin is a code C of length mn and size N constructed by replacing each symbol a of a codeword in C
by the ath codeword in Cin. Here, we order the codewords in Cin in an arbitrary manner.

For example, consider the case when n = q = 3, m = 2

Cout =


1

1
2

 ,
2

1
3

 ,
3

2
2

 ,
3

2
3

 , Cin =
{[

0
1

]
,

[
1
0

]
,

[
0
0

]}
.

Then,

Cout ◦ Cin =





0
1
0
1
1
0

 ,


1
0
0
1
0
0

 ,


0
0
1
0
1
0

 ,


0
0
1
0
0
0




.

Abusing notation, we often also state that a code is a matrix which is constructed by putting all codewords
of the code as columns of the matrix in any order. For example, the matrix M = Cout ◦ Cin above is

M =



0 1 0 0
1 0 0 0
0 0 1 1
1 1 0 0
1 0 1 0
0 0 0 0
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In the concatenation Cout ◦ Cin, Cout is called the outer code and Cin the inner code. By instantiating
the outer and inner codes with carefully chosen codes, we obtain good group testing matrices. Some of
the constructions are illustrated in this lecture. We will have more examples of code concatenation in later
lectures.

One of the most basic inner code is the trivial identity code, IDq, which is the binary code of length q and
size q whose ith codeword is the ith standard basis vector. The corresponding matrix is the identity matrix
of order q.

2.4 Gilbert-Varshamov Bound

Let Aq(n,∆) denote the maximum size of a q-ary code of length n and minimum distance ∆. Determining
Aq(n,∆) is a major (open) problem in coding theory. Define

Volq(n, l) =
l∑

j=0

(
n

j

)
(q − 1)j

to be the “volume” of the Hamming ball of radius l around any codeword, i.e. the number of vectors of
distance at most l from a given vector in Fnq . Gilbert [6] and Varshamov [15] proposed a simple greedy
algorithm which constructs a linear code with size at least qn/Volq(n,∆− 1). Actually, Gilbert’s algorithm
does not produce a linear code; Varshamov’s does. However, their algorithms are very similar and achieves
similar bounds.

Theorem 2.5 (Gilbert-Varshamov Bound). The maximum size of a code of length n, alphabet size q, and
distance ∆ satisfies

Aq(n,∆) ≥ qn

Volq(n,∆− 1)
=

qn∑∆−1
j=0

(
n
j

)
(q − 1)j

.

There also exists linear codes achieving the bound.

Exercise 2.6 (Gilbert algorithm). Consider the following algorithm for code construction. Let Σ be an
alphabet of size q. Initially let C = ∅. While there still exists a vector cΣn which is of distance at least ∆
from all the codewords in C, add c into C. Prove that when the algorithm stops, we obtain a code C whose
size is at least qn/Volq(n,∆− 1).

To show that there exist linear codes attaining the Gilbert-Varshamov (GV) bound, we use the proba-
bilistic method. In fact, we will prove the asymptotic form of the GV bound for linear codes.

Definition 2.7 (q-ary entropy). Let q ≥ 2 be an integer. The q-ary entropy function Hq : [0, 1] → R is
defined by

Hq(δ) := δ logq
q − 1
δ

+ (1− δ) logq
1

1− δ
. (5)

When q = 2, we drop the subscript q and write the famous (Shannon) binary entropy function as

H(δ) = δ log
1
δ

+ (1− δ) log
1

1− δ
.

Sometimes, it might be easier grasp if we re-write (5) by

Hq(δ) = δ logq(q − 1)− δ logq δ − (1− δ) logq(1− δ).
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We defineHq(0) = 0. The functionHq(x) is continuous in the interval [0, 1], is increasing from 0 to 1−1/q,
and decreasing from 1 − 1/q to 1. The following lemma can be shown with careful analysis using Stirling
approximation.

Lemma 2.8. For any positive integers n, q ≥ 2 and real number 0 ≤ δ ≤ 1− 1/q,

qn(Hq(δ)−o(1)) ≤ Volq(n, δn) ≤ qnHq(δ).

A central problem in coding theory is to characterize the tradeoff between the distance and the rate of a
code. The relative distance δ(C) of a code C of length n is ∆(C)/n. If C has dimension k then its rate is
defined to be R(C) = k/n.

Theorem 2.9 (Asymptotic form of GV bound). Let q ≥ 2 be an integer. For any 0 ≤ δ ≤ 1 − 1/q, there
exists an infinite family of q-ary codes with rate R ≥ 1 − Hq(δ) − o(1). In fact, such code exists for all
sufficiently large length n.

We will in fact prove the linear code version of the above bound.

Exercise 2.10. Show that for a linear code the minimum distance is equal to the minimum weight of a
non-zero codeword. (The weight of a codeword is the number of non-zero entries.)

Exercise 2.11. For positive integers k < n, let G be a random k × n matrix chosen by picking each of its
entries from Fq uniformly and independently. Fix a vector y ∈ Fkq . Prove that the vector yG is a uniformly
random vector in Fnq .

Theorem 2.12 (Linear code version of the asymptotic form of the GV bound). Let q ≥ 2 be any prime
power. Let 0 ≤ δ < 1− 1/q, and 0 < ε < Hq(δ) be arbitrary reals, and n be any sufficiently large integer.
For any integer k ≤ (1−Hq(δ))n there exists an [n, k, δn]q-code.

Proof. We want a k-dimensional linear subspaceC of Fnq where the minimum weight of non-zero codewords
is at least ∆ = δn. The subspace can be generated by a k × n matrix G of rank k, called the generator
matrix for the code. The rows of G form a basis for the subspace. We pick a random generator matrix G
and show that it satisfies two properties with positive probability:

(a) G has full row rank, and

(b) for every non-zero vector y ∈ Fkq , yG has weight at least ∆.

Let wt(x) denote the weight of vector x. Actually, property (b) implies property (a) because if the rows of
G are linearly dependent then there is some non-zero vector y for which yG = 0.

To pick the random matrix G, we simply pick each of its entry from Fq uniformly and independently.
For any fixed non-zero vector y ∈ Fkq , yG is a uniformly random vector in Fnq . Hence, by Lemma 2.8

Prob [wt(yG) ≤ δn] =
Volq(n, δn)

qn
≤ q(Hq(δ)−1)n.

Now, taking a union bound over all non-zero vectors y ∈ Fkq , the probability that wt(yG) ≤ δn for some y
is at most

(qk − 1)q(Hq(δ)−1)n < q(1−Hq(δ))nq(Hq(δ)−1)n = 1.
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3 Upper bounds and constructions

3.1 A greedy algorithm

Let S be the collection of all binary row vectors of length N , each with weight w (i.e. each vector has w
non-zero entries), where w ≤ N − d. We construct a d-disjunct matrix M by picking members of S to be
rows of M. For M to be d-disjunct, for each j ∈ [N ] and each d-subset A ∈

([N ]
d

)
, j /∈ A, we want to pick

a row s ∈ S such that sj = 1 and s|A = 0, in which case we say that s “covers” (j, A). The main objective
is to pick a small subset of S which covers all (d + 1)

(
N
d+1

)
possible pairs (j, A). This is a special case

of the SET COVER problem where each “set” is a member of S and the universe consists of pairs (j, A) as
described.

A natural algorithm for the SET COVER problem is to pick a set which covers as many uncovered ele-
ments as possible, then remove all covered elements and repeat until all elements are covered. This is the
greedy algorithm for SET COVER. A classic result by Lovasz [9] (and independently by Chvatal [2]) implies
that the greedy algorithm finds a set cover for all the (j, A) of size at most

t ≤
(
N
w

)(
N−d−1
w−1

) (1 + ln
(
w

(
N − w
d

)))
=

N − d
w

· N

N − d
· N − 1
N − d− 1

· · · N − w + 1
N − d− w + 1

(
1 + ln

(
w

(
N − w
d

)))
<

N − d
w

(
N − w + 1

N − d− w + 1

)w (
1 + lnw + d ln

(
e(N − w)

d

))
=

N − d
w

(
1 +

d

N − d− w + 1

)w (
1 + d+ lnw + d ln

(
(N − w)

d

))
<

N − d
w

e
dw

N−d−w+1

(
1 + d+ lnw + d ln

(
(N − w)

d

))
.

This fact can also be seen from the dual-fitting analysis of the greedy algorithm for SET COVER [16].
This set cover is exactly the set of rows of the d-disjunct matrix we are looking for. The final expres-
sion might seem a little unwieldy. Note, however, that for most meaningful ranges of w and d, the factor(

1 + d+ lnw + d ln
(

(N−w)
d

))
can safely be thought of as O(d ln(N/d)). Last but not least, if dw =

O(N) then e
dw

N−d−w+1 = O(1) and the number of rows l is not exponential. Also, when dw = Θ(N) the
overall cost is t = O(d2 log(N/d)), matching the best known bound for disjunct matrices. This optimality
only applies when we are free to choose w in terms of N and d; in particular, when we have this freedom
we will pick w = Θ(N/d).

Exercise 3.1. Suppose instead of applying the greedy algorithm, we simply pick independently each round
a random member s of S to use as a row of M. In expectation, how many rounds must be performed so that
M is d-disjunct. You should set w = N/d, and assume

(
d+2

2

)
< N as usual.

Hwang and Sós [7] gave a different greedy algorithm achieving asymptotically the same number of tests.
There algorithms have running time Ω(Nd), and thus are not practical unless d is a small constant.

3.2 Concatenating a random code with the identity code

Let q,N, d, n be integers such that q > d, and qn ≥ N . Let Cin be the identity code IDq. Let Cout be a
random code of length n, size N , alphabet [q] constructed as follows. We randomly select each codeword

8



c of Cout by picking uniformly a random symbol from [q] for each position of c independently. Let M =
Cout ◦ Cin. We bound the probability that M is not d-disjunct.

Let j0, · · · , jd be a fixed set of d+ 1 columns of M. Then,

Prob[codeword Mj0 is covered by Mj1 , . . . ,Mjd ] ≤ (d/q)n.

Thus, by the union bound

Prob[M is not d-disjunct] ≤ (d+ 1)
(

N

d+ 1

)
(d/q)n.

We just proved the following.

Proposition 3.2. Let q,N, d, n be integers such that q > d and qn ≥ N . If

(d+ 1)
(

N

d+ 1

)
(d/q)n < 1

then there exists a d-disjunct matrix with qn rows and N columns.

Corollary 3.3. When
(
d+2

2

)
≤ N , we have

t(d,N) = O
(
d2 log(N/d)

)
.

Proof. Set q = 2d, and n = 10(d+ 1) log2(N/(d+ 1)) in the previous proposition. Since
(
d+2

2

)
≤ N , we

have (d+ 1)e ≤ N and thus (N/(d+ 1))2 ≥ Ne/(d+ 1). Also, (d+ 1) ≤ (N/(d+ 1))2. Thus,

(d+1)
(

N

d+ 1

)
≤ (d+1)(Ne/(d+1))d+1 ≤ (N/(d+1))2+2(d+1) = 22(d+2) log2(N/(d+1)) < 2n = (q/d)n.

Open Problem 3.4. The upperbound O(d2 log(N/d)) is only slightly larger than the best known lower
bound Ω(d2 logN/ log d) of Corollary 1.7. Closing this gap is the major open question in group testing
theory.

3.3 Concatenating the Reed-Solomon code with the identity code

Code concatenation seems like a neat little trick to construct disjunct matrices. However, how do we choose
the inner and outer codes? What are the necessary and/or sufficient conditions required on the properties
of the codes so that the concatenation is d-disjunct? We will derive a simple sufficient condition due to
Kautz and Singleton [8] (this is the same Richard Collom Singleton of the Singleton bound fame mentioned
above). Kautz and Singleton studied and constructed the so called superimposed codes which turn out to
be equivalent to disjunct matrices. Their influential 1964 paper was also the first to give a strongly explicit
construction of disjunct matrices with t = O(d2 log2N), which we present in this section.

We first need a simple lemma which relates the weights of the codewords and their pairwise intersections
to disjunctiveness. Two columns of a binary matrix “intersects” at a row if both columns contain a 1 on that
row.

Lemma 3.5. Let M be a binary matrix such that each column has weight at least w and every two different
columns intersect at at most λ rows. Then, M is a d-disjunct matrix for any d ≤ (w − 1)/λ.
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Proof. Consider arbitrary columns Mj0 , · · · ,Mjd of M. When w ≥ 1 + dλ, there must be at least one row
on which Mj0 has a 1 and the other d columns have 0.

An analogous proof leads to the following lemma regarding concatenated codes.

Lemma 3.6. Suppose Cout is an (n, k,∆)q code, and the matrix corresponding to Cin is d-disjunct, then
M = Cout ◦ Cin is d-disjunct if n > d(n−∆).

Proof. Consider arbitrary columns Mj0 , · · · ,Mjd of M. Every two codewords of the outer code share
symbols in at most (n − ∆) positions. Hence, there is a position p ∈ [n] such that Mj0 has a symbol
different from all the symbols of the Mji , i ∈ [d]. Due to the fact that the inner-code matrix is d-disjunct,
there is a row in M belonging to this position which Mj0 has a 1 and the other Mji all have 0.

Open Problem 3.7. The above sufficient conditions might be a little too strong for many applications. Find
a more relaxed condition.

Corollary 3.8. Let k ≤ n ≤ q be positive integers with q a prime power. Let Cout be the [n, k]q-RS
code, and Cin be the IDq code. Then, M = Cout ◦ Cin is a strongly explicit d-disjunct matrix for any
d ≤ (n− 1)/(k − 1).

Proof. Note that IDq is d-disjunct when q ≥ d, and that n ≥ 1 + d(n − (n − k + 1)) is equivalent to
d ≤ (n− 1)/(k − 1).

Corollary 3.9. Given 1 ≤ d < N , there is a strongly explicit d-disjunct matrix with N columns and
t = O(d2 log2N) rows.

Proof. We want to pick parameters k ≤ n ≤ q such that d ≤ (n− 1)/(k − 1) and N ≤ qk, and then apply
the previous corollary. To make the calculation simpler, we replace the constraint d ≤ (n − 1)/(k − 1) by
d ≤ n/k. This replacement is OK because n/k ≤ (n− 1)/(k − 1).

Let us ignore the integrality issue for the moment. Suppose we pick n = q, and logN = k log q.
Then, we need d logN/ log q ≤ q. Hence, we should pick q to be the smallest number such that q log q ≥
d logN . Let’s pick n = q ≈ 2d logN

log(d logN) , and then set k ≈ logN/ log q. The overall number of tests is

qn ≈ Θ
(

d2 log2N
log2(d logN)

)
.

With the integrality issue taken into account, it is not hard to see that t = Θ
(

d2 log2N
log2(d logN)

)
suffices.

Nguyen and Zeisel [10] used Lemma 3.6 and a result by Zinoviev [17] to prove an interesting upper
bound on t(d,N). The main idea is to recursively apply Lemma 3.6 many times with suitably chosen
parameters.

3.4 Porat-Rothschild’s derandomization

Porat and Rothschild [11] derandomized the code construction in Theorem 2.12, and concatenated the re-
sulting code with the identity code to obtain a polynomial time construction of d-disjunct matrices with
min(d2 logN,N) rows. We will not describe the derandomization here. We will, however, briefly specify
how such a construction can lead to min(d2 logN,N) rows.

First, if d2 lnN ≥ N , then we can use the identity matrix. Hence, we can assume d2 lnN < N . Set
δ = 1 − 1/(d + 1). Let q ∈ [2d, 4d) be a prime power, k = logqN and n = k

(1−Hq(δ)) = Θ(kd ln d) =
Θ(d logN). Now, use Theorem 2.12 to construct an [n, k, δn]q-code and concatenate it (as an outer code)

10



with the identity inner code. Because d(n − δn) < n, by Lemma 3.6, the concatenated code is d-disjunct.
The overall number of rows is nq = O(d2 logN).

Exercise 3.10. Show that with q ∈ [2d, 4d), and δ = 1− 1/(d+ 1), we have 1−Hq(δ) = Θ( 1
d ln d).

Open Problem 3.11. We do not know of a strongly explicit construction of d-disjunct matrices with t =
O(d2 logN) tests.
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