
A Short Course on Algorithmic Group Testing Hung Q. Ngo
HCMUT, 2011 Last update: May 27, 2011

Efficiently decodable non-adaptive group testing schemes

This lecture is on two methods for constructing group testing matrices which can be decoded efficiently
(in time poly(d, logN)). The first method, based on code concatenation, was first observed in [17] and
exploited to its full potential in [19]. The second method, also from [19], is based on a simple recursive
construction. One of the key ingredients of the first method is a combinatorial object called list-disjunct
matrix. There is also a notion of list-separable matrix which is closely related to list-disjunct matrix. List-
disjunct/separable matrices are interesting on their own, with applications beyond the group testing problem.
We shall discuss the applications in a later lecture. The other key ingredient of the first method is the notion
of list-recoverable codes, which will be briefly introduced here too.

1 Efficient decoding and list-disjunct/separable matrices

1.1 Top level view

To construct an efficiently decodable group testing matrix, the main idea is to stack on top of one another
a “filtering” matrix F and an “identification” matrix D. The filtering matrix is used to identify quickly a
“small” set of L candidate items which include all the positives. Then, the identification matrix is used to
pinpoint precisely the positives. For example, let D be any d-disjunct matrix and F be any matrix satisfying
the filtering property above. Further assume that from the tests corresponding to the rows of F we can
produce a set S of L = poly(d, logN) candidate items in time poly(d, logN). Then, by running the naive
decoding algorithm on S using D, we can identify all the positives in time poly(d, logN). This idea is
somewhat analogous to the constructions of (efficiently decodable or not) compressive sensing schemes
[5, 8, 13].

1.2 List-separable and list-disjunct matrices

The obvious problem is to formalize the notion of “filtering matrix.” In coding theory, producing a small list
of candidate codewords is the list decoding problem []. We borrow the intuition from list decoding and from
separable matrices to define the following “filtering” matrix.

Definition 1.1 ((d, l)-list-separable). Given positive integers t, d, l, N where d + l ≤ N , a t × N binary
matrix M is said to be (d, l)-list-separable if it satisfies the following condition. For any y ∈ {0, 1}t there
exists a column set Ry such that, if T is any set of at most d columns of M whose union is y, then T ⊆ Ry

and |Ry| ≤ |T |+ l − 1.

Note that a (d, 1)-list-separable matrix is precisely a d-separable matrix. Suppose we have a group
testing matrix with a corresponding decoding algorithm which produces for every outcome vector y ∈
{0, 1}t a candidate set Ry including all the positives plus < l negative items, then the matrix is (d, l)-list-
separable. (If y does not correspond to any outcome vector then we can set Ry = ∅.)

The next natural line of development is to define and study list-disjunct matrices.

1

Definition 1.2 ((d, l)-list-disjunct). A matrix M is called (d, l)-list-disjunct if the naive decoding algorithm
always returns an item set which includes all the positives plus < l negative items.

Exercise 1.3 (Another definition of (d, l)-list-disjunct matrices). Let d+ l ≤ N be positive integers. Show
that a matrix is (d, l)-list-disjunct if and only if, for any two disjoint sets S and T of columns of M with
|S| = l and |T | = d, there exists a row of M in which some column in S has a 1 but all columns in T have
0s.

Proposition 1.4. Every (d, l)-list-disjunct matrix is a (d, l)-list-separable matrix. Conversely, every (d, l)-
list-separable matrix is a (d− 1, l)-list-disjunct matrix.

Exercise 1.5. Prove Proposition 1.4.

1.3 Relations to earlier works and applications

The name “list disjunct” was coined in [17], though it was previously studied under the different names:
(d, n, `)-super-imposed codes in [7, 9], list-decoding super-imposed codes of strength d and list-size ` in
[22].1 We stick with the “list disjunct matrices” in this lecture.

Shortly prior to [17], Cheraghchi [6] studied the notion of error-correcting measurement matrices for
d-sparse vectors, which are slightly more general than the notion of list-separable matrices. Since list-
separable matrices are equivalent to list-disjunct matrices with a slight loss in parameters, the results in [6],
though shown for list-separable matrices, apply for list-disjunct matrices as well. Conversely, our bounds
also apply to error-correcting measurement matrices. We will prove lower bounds which slightly improve
lower bounds in [6].

List-disjunct matrices were used in [17] to construct efficiently decodable disjunct matrices. They also
presented a “stand alone” application of list disjunct matrices in constructing sparsity separators, which were
used by Ganguly [12] to design data stream algorithms for the sparsity problem. Rudra and Uurtamo [23]
used these objects to design data stream algorithms for tolerant testing Reed-Solomon codes. As observed
in De Bonis et. al. [7], these objects can also be used to construct optimal two stage group testing algorithms
(where one is allowed to perform tests in two stages, and the second stage of tests can depend on the the first
stage’s results).

List disjunct matrices are also similar to other combinatorial objects such as selectors [16] and multi-
user tracing families [2]. Selectors have found numerous applications such as broadcasting in unknown
directed networks and designing tests for coin-weighting problems [16] as well as designing optimal two
stage group testing schemes [7]. Multi-user tracing families were used to construct monotone encodings
in [2]. Monotone encodings can be used for designing secure vote storage systems [18]. Selectors’ require-
ments are slightly stronger than list-disjunct matrices. Both selectors and list-disjunct matrices can be used
to recover a super-set of the defective set, while multi-user tracing families are used to recover a sub-set
of the defective set. It is not clear if any two of these objects are “equivalent.” However, as we shall see,
list-disjunct matrices can be used to construct some of these objects.

1.4 Simple bounds

From the above proposition, the optimal number of rows of a list-disjunct and list-separable matrices are
asymptotically the same. Thus, we shall only study the optimal number of rows of a list-disjunct matrices.

1The authors of [17] were not aware of these previous works.

2

Let t(d, l,N) denote the minimum number of rows of a (d, l)-list-disjunct matrix with N columns. This
section derives a couple of simple bounds for this function.

Proposition 1.6 (Proposition 2 in [9]). Given positive integers N ≥ d+ l, we have

t(d, l,N) ≥ log
(
N

d

)
− log

(
d+ l − 1

d

)
.

Exercise 1.7. Prove Proposition 1.6.

The following lower bound for (d, l)-list-disjunct matrices is better than the similar bound proved in [7]
in two ways: (1) the actual bounds are slightly better, and (2) the bound in [7] requires a precondition
that N > d2/(4l) while ours does not. We make use of the argument from Erdős-Frankl-Füredi [10, 11],
while [7] uses the argument from Ruszinkó [24] as presented in Alon-Asodi [1].

Lemma 1.8. For any positive integers N, d, l with N ≥ d+ l, we have

t(d, l,N) > d log
(

N

d+ l − 1

)
. (1)

When d ≥ 2l, the following bound holds

t(d, l,N) >
bd/lc(d+ 2− l)

2 log (ebd/lc(d+ 2− l)/2)
log
(
N − d− 2l + 2

l

)
. (2)

Proof. Proposition 1.6 easily yields (1)

t(d, l,N) ≥ log

((
N
d

)(
d+l−1
d

)) = log
N · · · (N − d+ 1)

(d+ l − 1) · · · l
≥ log

(
N

d+ l − 1

)d
= d log

N

d+ l − 1
.

Consider the case when d ≥ 2l. Let M be a t×N (d, l)-list-disjunct matrix. Fix a positive integer w ≤ t to
be determined later. Let C denote the collection of all columns of M, and think of C as a set family on [t].
Then, C satisfies the property that the union of any l members of C is not covered by the union of any other
d members of C. For any C ∈ C, a subset X ⊆ C is called a private subset of C if X is not a subset of any
other C ′ in C. Partition C into three sub-collections

C = Cp
≥w ∪ C

np
≥w ∪ C<w

defined as follows.

Cp
≥w := {C ∈ C : |C| ≥ w and C has a private w-subset}
Cnp
≥w := {C ∈ C : |C| ≥ w and C has no private w-subset}
C<w := {C ∈ C : |C| < w} .

We make three claims.
Claim 1. If w ≤ t/2 then |Cp

≥w|+
⌊
|C<w|
l

⌋
≤
(
t
w

)
.

3

Claim 2. Let C1, · · · , Cl be any l different members of Cnp
≥w. For any integer j ≤ d/l − 1 and any sub-

collection D ⊆ C \ {C1, · · · , Cl} such that |D| = jl, we have∣∣∣∣∣
l⋃

i=1

Ci \
⋃
D∈D

D

∣∣∣∣∣ ≥ (d− (j + 1)l + 1)w + 1.

Claim 3. If w ≥ 2(t−bd/lc)
bd/lc(d+2−l) , then |Cnp

≥w| ≤ d+ l − 1.

Let us complete the proof of the lemma before proving the claims. Set w =
⌈

2(t−bd/lc)
bd/lc(d+2−l)

⌉
. Then,

w ≤ t/2 when d ≥ 2l. Note that w < w̄ = 2t
bd/lc(d+2−l) and the function (te/w)w is increasing in w when

w ∈ [0, t]. From Claims 1 and 3,

n = |C| =
(
|Cp
≥w|+ |C<w|

)
+ |Cnp

≥w|

≤
(
l

(
|Cp
≥w|+

⌊
|C<w|
l

⌋)
+ (l − 1)

)
+ d+ l − 1

≤ l

(
t

w

)
+ d+ 2l − 2

≤ l(te/w)w + d+ 2l − 2
≤ l(te/w̄)w̄ + d+ 2l − 2.

Inequality (2) follows.
We now prove Claim 1. Let P1 be a collection of private w-subsets of sets in Cp

≥w such that P1 contains
exactly one private w-subset per set in Cp

≥w. Let L be an arbitrary sub-collection of exactly l different
members of C<w, namely L ⊆ C<w and |L| = l. Then, there must exist C ∈ L such that such that C is not
a subset of any set in P1∪C<w \L. Otherwise, the union of sets in L will be covered by the union of at most
l ≤ d sets in C. We refer to such C as a representative of L. For each L, pick an arbitrary representative
of L to be the representative of L. Partition C<w into

⌊
|C<w|
l

⌋
sub-collections of cardinalities l each, plus

possibly one extra sub-collection whose size is less than l. Let P2 be the set of the representatives of the
first

⌊
|C<w|
l

⌋
sub-collections. Then, P1 ∪ P2 is a Sperner family, each of whose members is of cardinality

at most w. For w ≤ t/2, it is well-known (see, e.g., [4]) that |P1 ∪ P2| ≤
(
t
w

)
. Noting that |P2| =

⌊
|C<w|
l

⌋
and |P1| = |Cp

≥w|, Claim 1 follows.
Next, we prove Claim 2. Assume for the contrary that∣∣∣∣∣

l⋃
i=1

Ci \
⋃
D∈D

D

∣∣∣∣∣ ≤ (d− (j + 1)l + 1)w

for some D and j satisfying the conditions in the claim. For every i ∈ [l], define

C ′i := Ci \
⋃
D∈D

D ∪ C1 · · · ∪ Ci−1.

xi :=
⌊
|C ′i|
w

⌋
yi := |C ′i| mod w.

4

Then,

(d− (j + 1)l + 1)w ≥

∣∣∣∣∣
l⋃

i=1

Ci \
⋃
D∈D

D

∣∣∣∣∣ =
l∑

i=1

|C ′i| =
l∑

i=1

(xiw + yi) = w

(
l∑

i=1

xi

)
+

l∑
i=1

yi.

Partition C ′i into xi parts of size w each and one part of size yi ≤ w − 1. First, assume
∑l

i=1 yi > 0, then∑l
i=1 xi ≤ d−(j+1)l. BecauseCi has no privatew-subset (and thus no private yi-subset), the setC ′i can be

covered by at most xi+1 other sets in C. The union
⋃
i∈[l]C

′
i can be covered by at most

∑l
i=1 xi+l ≤ d−jl

sets in C. Those d − jl sets covering the C ′i along with jl sets in D cover the l sets Ci, i ∈ [l], which is a
contradiction. Second, when

∑l
i=1 yi = 0 we only need

∑l
i=1 xi ≤ d− (j + 1)l+ 1 ≤ d− jl sets to cover

the C ′i. The same contradiction is reached.
Finally we prove Claim 3. Suppose |Cnp

≥w| ≥ d + l. Consider d + l sets C1, . . . , Cd+l in Cnp
≥w. For

j = 0, 1, · · · , bd/lc − 1, define Dj = {C1, · · · , Cjl}. (D0 = ∅.) Then, noting Claim 2, we have

t ≥
d+l⋃
i=1

Ci

≥
bd/lc−1∑
j=0

∣∣∣∣∣∣
(j+1)l⋃
i=jl+1

Ci \ Dj

∣∣∣∣∣∣+

∣∣∣∣∣
d+l⋃

i=d+1

Ci \
d⋃
i=1

Ci

∣∣∣∣∣
≥

bd/lc−1∑
j=0

[(
d− (j + 1)l + 1

)
w + 1

]
+ 1

= wbd/lc [d+ 1− l(bd/lc+ 1)/2] + bd/lc+ 1

≥ 1
2
wbd/lc(d+ 2− l) + bd/lc+ 1,

which contradicts the assumption that w ≥ 2(t−bd/lc)
bd/lc(d+2−l) .

Theorem 1.9. Given positive integers N ≥ d+ l. Then,

t(d, l,N) ≤ 2d
(
d

l
+ 1
)(

log
N

d+ l
+ 1
)
.

Proof. Fix positive integers n, q to be determined. Let M be the concatenation of the random code Cout and
the identity code Cin = IDq. The random code is of length n, each of whose positions is chosen randomly
from an alphabet of size q. Consider a subset T of d codewords and a disjoint subset S of l codewords. For
each position i ∈ [n], let Ti and Si denote the set of symbols codewords in T and S have at that position,
respectively. The probability that Si ⊆ Ti is at most (d/q)l. Hence, the probability that Si ⊆ Ti for all
i ∈ [n] is at most (d/q)ln. Pick n = 2

(
d
l + 1

) (
log N

d+l + 1
)

, q = 3d ≥ ed, and taking the union bound
over all choices of S and T , we obtain

Prob[M is not (d, l)-list-disjunct] ≤
(

N

d+ l

)(
d+ l

l

)
(d/q)ln

≤ exp
(

(d+ l) ln
Ne

d+ l
+ l ln

(d+ l)e
l

− ln
)

< 1.

5

Figure 1: The usual decoding problem

Corollary 1.10. When l = Ω(d), we do have a nice reduction in the number of tests compared to the
d-disjunct case: t(d,Ω(d), N) = O(d log(N/d)).

Corollary 1.11 (Optimal two-stage group testing). Consider the adaptive group testing problem where the
tests are performed in two stages: the second set of tests can be designed after seeing the first test set results.
Then, the optimal number of tests is Θ(d log(N/d)).

Proof. For any adaptive group testing scheme, Ω(d log(N/d)) tests are necessary, because information
theoretically there are

∑d
i=0

(
n
i

)
= 2Ω(d log(N/d)) possible sets of positives.

A two stage group testing scheme with O(d log(N/d)) tests can be designed as follows. We first use a
(d, d)-list-disjunct matrix to identify a set of at most 2d items including all the positives. Then, an identity
matrix of order 2d is used for the second stage to identify precisely the positives.

2 List recoverable codes and its role in designing efficient decoders

2.1 List recovery

The usual decoding problem is the following: given a received word y which is not necessarily a codeword,
recover a near-by codeword c. For example, if y = comtlemant we might want to recover c = complement.
See Figure 1 for an illustration.

In many cases, if we relax the unique decoding requirement, allowing the decoding algorithm to produce
a small list of possible codewords, we will be able to design codes with a better rate/distance tradeoff. This
is the list decoding problem, illustrated in Figure 2. For example, if y = complbment then we might want
to recover the list { complement, compliment }.

In the list recovery problem, each position i ∈ [n] has a (small) set Si of characters. We want to return a

6

Figure 2: The list decoding problem

list of codewords agreeing with a large fraction of the sets. For example,

{c, f}
{a, o}
{t, r}
{b, h}
{e, s}
{a, r}

⇒

f
a
t
h
e
r

 ,

m
o
t
h
e
r

Let `, L ≥ 1 be integers and let 0 ≤ α ≤ 1. A q-ary code C of block length n is called (α, `, L)-list

recoverable if for every sequence of subsets S1, . . . , Sn such that |Si| ≤ ` for every i ∈ [n], there exists at
most L codewords c = (c1, . . . , cn) such that for at least αn positions i, ci ∈ Si. A (1, `, L)-list recoverable
code will be henceforth referred to as (`, L)-zero error list recoverable. We will need the following powerful
result due to Parvaresh and Vardy2:

Theorem 2.1 ([20]). For all integers s ≥ 1, for all prime powers r and all powers q of r, every pair of
integers 1 < k ≤ n ≤ q, there is an explicit Fr-linear map E : Fkq → Fnqs such that:

1. The image of E, C ⊆ Fnqs , is a code of minimum distance at least n− k + 1.

2. Provided
α > (s+ 1)(k/n)s/(s+1)`1/(s+1), (3)

C is an (α, `,O((rs)sn`/k))-list recoverable code. Further, a list recovery algorithm exists that runs
in poly((rs)s, q, `) time.

In the above, the s’th “order” Parvaresh-Vardy code will be referred to as the PVs code. PV1 is the
well-known Reed-Solomon codes and will be referred to as the RS code.

Remark 2.2. For RS codes, the multiplicative factor of (s+ 1) can be removed from (3).

2This statement of the theorem appears in [14].

7

Because we will mostly use the above theorem for the r = 2 case, let us re-state this special case, and
also re-state the special case of corresponding to the RS code.

Theorem 2.3 ([20]). For all positive integers s ≥ 1, q = 2m for some positive integer m, every pair of
integers 1 < k ≤ n ≤ q, there is an explicit F2-linear map E : Fk2m → Fn2ms such that:

1. The image of E, C ⊆ Fn2ms , is a code of minimum distance at least n− k + 1.

2. Provided
α > (s+ 1)(k/n)s/(s+1)`1/(s+1), (4)

C is an (α, `,O(ssn`/k))-list recoverable code. Further, a list recovery algorithm exists that runs in
poly(ss, q, `) time.

3. When s = 1, the code is the RS code which is (α, `,O(nl/k))-list-recoverable as long as

α >
√
k`/n.

2.2 Efficiently decodable list separable and disjunct matrices

Let Cout be the [n, k]q-RS code for q some power of 2. Let Cin be any (d, d + 1)-list-disjunct matrix with
q columns and tin rows. We know from Section 1.4, for example, that there exists a (d, d + 1)-list-disjunct
matrix with q columns and tin = O(d log(q/d)) rows.

Let M = Cout ◦ Cin. We claim that M is a list-separable matrix which can be efficiently decoded. The
decoding algorithm works as follows. From the tin test results for each position i ∈ [n], we run the naive
decoding algorithm for Cin to recover a set Si of at most l = 2d columns of Cin. These columns naturally
correspond to a set Si (overloading notation) of symbols of the outer code. As long as 1 > kl/n, Theorem
2.3 ensures that there is a poly(q, l)-time algorithm which recovers a list L = O(nl/k) codewords each of
which agrees with all the Si. These codewords certainly contain all of the positives.

To minimize the number of tests, which is O(n · tin) = O(nd log(q/d)), we can choose the parameters
as follows.

n = q

q =
4d logN

log(2d logN)

k =
logN
log q

.

We need to verify that kl < n which is the same as 2d logN < q log q. Note that

q log q =
4d logN

log(4d logN)
log
(

4d logN
log(4d logN)

)
= (2d logN) · 2

(
1− log log(4d logN)

log(4d logN)

)
> 2d logN

with sufficiently large N . The total number of tests is

t = O

(
4d2 logN

log(4d logN)
log
(

4 logN
log(4d logN)

))
= O(d2 logN).

The total decoding time is O(nqtin + poly(q, l)) = poly(t). Stacking this efficiently decodable (d, L)-list-
separable matrix with any d-disjunct matrix, we obtain an efficiently decodable d-disjunct matrix with the
best known number of tests.

8

Theorem 2.4. By concatenating the RS code with a good list-disjunct inner code (i.e. matrix) and stack the
result on top of a good d-disjunct matrix, we obtain a d-disjunct matrix with t = O(d2 logN) rows which is
decodable in poly(t)-time.

There are two natural questions:

1. If we also want an explicit or strongly explicit construction, can we still attain t = O(d2 logN)
tests? If the list-disjunct inner matrix is (strongly) explicit, then certainly the overall construction
is (strongly) explicit. Unfortunately, so far we do not know of any explicit (let alone strongly ex-
plicit) construction of (d,O(d))-list-disjunct matrices. For example, a construction along the Porat-
Rothschild route [21] would be really nice to have. One can use the set restriction framework [3] to
attain an explicit construction with running time O(Nd), which is not very good. In later sections, we
shall discuss several strongly explicit constructions of list-disjunct matrices which come close to the
optimal number of tests.

2. Some applications might require only efficiently decodable list-disjunct or list-separable matrices.
The above construction is actually not very good compared to the optimal number of tests of a list-
disjunct matrix. Can we do better? One answer is to use the above strategy with PVs codes for s > 1.
We shall take this route below.

Open Problem 2.5. Find a (strongly or not) explicit construction of (d,O(d))-list-disjunct matrices attain-
ing the probabilistic t = O(d · log(N/d)) bound. Or more generally construct (d, l)-list-disjunct matrices
for any l.

We first prove a generic lemma where the outer code is the PVs code and the inner code is an arbitrary
(d, l)-list-disjunct matrix. Later we shall apply the lemma by “plugging-in” different values of s and dif-
ferent constructions of (d, l)-list-disjunct matrices. What is interesting about this lemma is that it shows a
black-box conversion procedure which converts a (family of) list-disjunct matrix into another one which is
efficiently decodable.

Lemma 2.6 (Black-box conversion using list-recoverable codes). Let `, d ≥ 1 be integers. Assume that for
every Q ≥ d there exists a (d, `)-list-disjunct matrix with t̄(d, `,Q) rows and Q columns. For all integers
s ≥ 1 and N ≥ d, define

A(d, l, s) = (d+ l)1/s(s+ 1)2.

Let k be minimum integer such that k log(kA(d, l, s)) ≥ logN , and q be the minimum power of 2 such that
q > kA(d, l, s). Then, there exists a (d, L)-list separable t×N matrix M with the following properties:

(i) t = O
(
s2 · (d+ `)1/s ·

(
logN
log q

)
· t̄(d, `, qs)

)
(ii) L = sO(s) · (d+ `)1+1/s.

(iii) It is decodable in time tO(s).

Furthermore, if the t̄(d, l, Q)×Q matrix is (strongly) explicit then M is (strongly) explicit.

Proof. Let M be the concatenation of Cout = PVs with Cin which is a (d, l)-list-disjunct matrix with
t̄(d, `,Q) rows and Q = qs columns. We will have to choose parameters 1 < k ≤ n ≤ q so that the
followings hold:

N ≤ qk

1 > (s+ 1)s+1(k/n)s(d+ l) (to satisfy (3))

9

The inequalities are satisfied when we pick n = q and q, k satisfy the conditions stated in the statement of
the lemma. The number of rows of M is

t = nt̄(d, l, Q)
≤ 2kA(d, l, s)t̄(d, l, Q)

≤ 2
logN

log(kA(d, l, s))
A(d, l, s)t̄(d, l, Q)

≤ 2
logN

log(q/2)
A(d, l, s)t̄(d, l, Q)

= 2
logN

log(q/2)
A(d, l, s)t̄(d, l, Q)

≤ 4
logN
log q

A(d, l, s)t̄(d, l, Q).

The last inequality holds because q ≥ (s+ 1)2 ≥ 4.
To show that the matrix is list-separable, we describe the (very natural) decoding algorithm. We run

the naive decoding algorithm for each position i ∈ [n] of the outer code, which gives a list of columns of
the inner code. Naturally the column list corresponds to a set Si of size at most d + l. Then, we run the
list-recovery algorithm for the outer code to obtain the list of at most L = O(ssn(d+ l)/k) codewords.

Corollary 2.7 (Random inner code). For every ε > 0, there exists an efficiently decodable (d, (1/ε)O(1/ε)d1+ε)-
list-disjunct matrix with N columns and t = O

(
1
ε2
d1+ε logN

)
rows.

Proof. We use the random inner code from Theorem 1.9 in Lemma 2.6, and set s = 1/ε.

3 Recursive constructions of efficiently decodable list-disjunct matrices

We have seen in Lemma 2.6 a procedure converting a list-disjunct matrix into an efficiently decodable one.
This section describe another method of converting a family of list-disjunct matrices into ones which are
efficiently decodable. There will be a slight loss in the number of tests.

3.1 Main idea

The main idea behind the second conversion procedure is as follows. Say we are trying to construct a (d, `)-
list-disjunct matrix M∗ with N columns that is efficiently decodable from a family of matrices, where for
any k ≥ d, there is a (d, `)-list-disjunct t(k) × k matrix Mk (that is not necessarily efficiently decodable).
For example, if we are not concerned about the construction time then the randomized construction from
Theorem 1.9 gives such a family of list-disjunct matrices. If we were also content with a linear time decoding
algorithm, then we could just use M∗ = MN and apply the naive decoder. However, we want efficient
decoding. Towards this end, say we somehow knew that all the positive items are contained in a subset
S ⊆ [N]. Then the naive decoder would run in time O(t(N) · |S|), which would be sublinear if |S| and t(n)
are sufficiently small. Of course, the trick is in getting our hands on S. The main idea is to construct this
small set S recursively.

Fix N ≥ d ≥ 1. Assume there exists a (d, `)-list disjunct t1 ×
√
N matrix M(1) that is efficiently

decodable and let M(2) be a (d, `)-list disjunct t2 ×N matrix (that is not necessarily efficiently decodable).
Let ML be the t1 × N matrix where the ith column (for i ∈ [N]) is identical to the jth column of M(1)

10

such that the first 1
2 logN bits of i is j (where we think of i and j as their respective binary representations).

Similarly, let MR be the t1 ×N matrix where the last 1
2 logN bits of i is j.

Let S ⊆ [N], |S| ≤ d, be an arbitrary set of positives. Let the vector rL (rR, resp.) be the vector that
results from applying ML (MR, resp.) on S. Apply the decoding algorithm for M(1) to rL (rR, resp.) and
obtain the set SL (SR, resp.) of 1

2 logN -bit vectors such that, for every i ∈ S, the first (last, resp.) 1
2 logN

bits of i belongs to SL (SR, resp.). In other words, S = SL × SR contains all the indices i ∈ S. Further,
note that both |SL| and |SR| have less than d+ ` elements.

Now, our final matrix M∗ is simple: just vertically stack ML, MR and M(2) together. Note that M∗

is (d, `)-list disjunct because M(2) is (d, `)-list disjunct. Finally, decoding M∗ can be done efficiently: first
decode the part of the result matrix corresponding to ML and MR to obtain SL and SR respectively – this is
efficient as M(1) is efficiently decodable. Finally computing the output item set (containing S) can be done
with an additionalO(t2 ·(d+`)2)-time as we only need to run the naive decoder for M(2) over S = SL×SR.
To achieve a tradeoff between the number of tests and the decoding time, we choose the parameters of the
recursion more carefully.

3.2 Technical details

Unlike the code concatenation construction, the second procedure gives a more general tradeoff between
the blow-up in the number of tests and the resulting decoding time. On the other hand, this conversion uses
multiple matrices from a given family of error-tolerant matrices unlike the previous procedure, which only
used one error-tolerant list disjunct matrix.

Lemma 3.1 (Black-box conversion using recursion). Let N ≥ d ≥ 1 be integers. Assume for every k ≥
d+ l, there is a (d, `)-list disjunct t(k)× k matrix Mk for integers 1 ≤ ` ≤ N − d. Let 1 ≤ a ≤ logN and
1 ≤ b ≤ logN

a be integers. Then there exists a ta,b ×N matrix Ma,b that is (d, `)-list disjunct and that can
be decoded in time Da,b where

ta,b =
dlogb(logN

a)e−1∑
j=0

bj · t
(
bj
√
N
)

(5)

and

Da,b = O

(
ta,b ·

(
logN · 2a

a
+ (d+ `)b

))
. (6)

Finally, if the family of matrices {Mk}k≥d is (strongly) explicit then so is Ma,b.

Proof. We will construct the final matrix Ma,b recursively. In particular, let such a matrix in the recursion
with m columns be denoted by Ma,b(m). Note that the final matrix is Ma,b = Ma,b(N). (For notational
convenience, we will define Da,b(m) and ta,b(m) to be the decoding time for and the number of rows in
Ma,b(m) respectively). Next, we define the recursion.

If m ≤ 2a, then set Ma,b(m) = Mm. Note that in this case, ta,b(m) = t(m). Further, we will use
the naive decoder in the base case, which implies that Da,b(m) = O(ta,b(m) ·m) ≤ O(2a · ta,b(m)). It is
easy to check that both (5) and (6) are satisfied. Finally because Mm is a (d, `)-list disjunct matrix, so is
Ma,b(m).

Now consider the case when m > 2a. For i ∈ [b], define M(i) to be the ta,b(b
√
m)×m matrix whose jth

column (for j ∈ [m]) is identical to the kth column in Ma,b(b
√
m) where k is the ith chunk of 1

b logm bits
in j (we think of j and k as their respective binary representations). Define Ma,b(m) to be the stacking of

11

M(1),M(2), . . . ,M(b) and Mm. Since Mm is a (d, `)-list disjunct matrix, so is Ma,b(m). Next, we verify
that (5) holds. To this end note that

ta,b(m) = b · ta,b(b
√
m) + t(m). (7)

In particular, (by induction) all the M(i) contribute

b ·

‰
logb

„
log b√m

a

«ı
−1∑

j=0

bj · t
(

bj
√

b
√
m

)
=
dlogb(logm

a)e−1∑
j=1

bj · t
(
bj
√
m
)

rows. Since Mm adds another t(m) rows, Ma,b(m) indeed satisfies (5).
Finally, we consider the decoding of Ma,b(m). The decoding algorithm is natural: we run the decoding

algorithm for Ma,b(b
√
m) (that is guaranteed by induction) on the part of the outcome vector corresponding

to each of the M(i) (i ∈ [b]) to compute sets Si with the following guarantee: each of the at most d defective
indices k ∈ [m] projected to the ith chunk of 1

b logm is contained in Si. Finally, we run the naive decoding

algorithm for Mm on S def
= S1 × S2 × · × Sb (note that by definition of Si all of the defective items will be

in S). To complete the proof, we need to verify that this algorithm takes time as claimed in (6). Note that

Da,b(m) = b ·Da,b(b
√
m) +O (|S| · t(m)) .

By induction, we have

Da,b(b
√
m) = O

(
ta,b(b
√
m) ·

(
logm · 2a

a
+ (d+ `)b

))
,

and since Ma,b(b
√
m) is a (d, `)-list disjunct matrix, we have

|S| ≤ (d+ `)b.

The three relations above along with (7) show that Da,b(m) satisfies (6), as desired.
Finally, the claim on explicitness follows from the construction.

The bound in (5) is somewhat unwieldy. We note in Corollary 3.2 that when t(i) = dx logy i for some
reals x, y ≥ 1, we can achieve efficient decoding with only a log-log factor increase in number of tests. We
will primarily use this result in our applications.

Note that in this case the bound in (5) can be bounded as

dlogb(logN
a)e−1∑

j=0

bj · dx ·
(

logN
bj

)y
≤
⌈

logb

(
logN
a

)⌉
· dx logyN.

Lemma 3.1 with b = 2 and a = log d, along with the observation above, implies the following:

Corollary 3.2. Let N ≥ d ≥ 1 be integers and x, y ≥ 1 be reals. Assume for every k ≥ d, there is a
(d, `)-list disjunct O(dx logy k) × k matrix for integers 1 ≤ ` ≤ N − d. Then there exists a t × N matrix
that is (d, `)-list disjunct that can be decoded in poly(t, `) time, where

t ≤ O (dx · logyN · log logdN) .

Finally, if the original matrices are (strongly) explicit then so is the new one.

12

In other words, the above result implies that we can achieve efficient decoding with only a log-log factor
increase in number of tests. We will primarily use the above result in our applications.

To show the versatility of Lemma 3.1 we present another instantiation. For any 0 ≤ ε ≤ 1, if we pick
a = b log(d+ `) and b = (logN/a)ε, we get the following result:

Corollary 3.3. Let N ≥ d ≥ 1 be integers and x, y ≥ 1, 0 < ε ≤ 1 be reals. Assume for every k ≥ d,
there is a (d, `)-list-disjunct O(dx logy k)× k matrix for integers 1 ≤ ` ≤ N − d. Then there exists a t×N
matrix that is (d, `)-list-disjunct that can be decoded in

poly(t, `) · 2
1+ε
√

logεN ·log(d+`)

time, where

t ≤ O
(

1
ε
· dx logyN

)
.

Finally, if the original matrices are (strongly) explicit then so is the new one.

Note that the above result implies that with only a constant factor blow-up in the number of tests, one
can perform sub-linear in N time decoding when (d+ `) is polynomially small in N .

4 Strongly explicit constructions of list-disjunct matrices

4.1 Construction using expanders

A W -left regular bipartite graph [N] × [W] → [T] is an (N,W, T,D, (1 − ε)W) expander if every subset
S ⊂ [N] of size at most D has a neighborhood (denoted by Γ(S)) of size at least (1 − ε)|S|W . Given
such a bipartite expander G, consider the T ×N incidence matrix MG of G. We have the following simple
observation.

Proposition 4.1. Let G be a (n,w, t, 2d,w/2 + 1)-expander. Then MG is a (d, d)-list disjunct matrix.

Proof. Recall that by definition a matrix M is (d, d)-list disjunct if the following is true: for every two
disjoint S1 and S2 subsets of columns of size exactly d, both ∪i∈S1Mi 6⊆ cupj∈S2Mj and ∪j∈S2Mj 6⊆
∪i∈S1Mi hold. Note that this property for MG translates to the following for G: ΓG(S1) 6⊆ ΓG(S2) and
vice-versa. We now argue that the latter is true if G has an expansion of w/2 + 1. Indeed this follows from
the facts that |ΓG(S1 ∪ S2)| ≥ wd+ 2d and |ΓG(S1)|, |ΓG(S2)| ≤ wd.

To construct an explicit expander for our purposes, we will use the following two constructions.

Theorem 4.2 ([15]). Let ε > 0. There exists an explicit (N1,W1, T1, D1,W1(1 − ε)) expander with
T1 ≤ (4D1)logW1 and W1 ≤ 2 logN1 logD1/ε.

Theorem 4.3 ([25]). Let ε > 0 be a constant. Then there exists an explicit (N2,W2, T2, D2,W2(1 − ε))-
expander with T2 = O(D2W2) and W2 = 2O(log logN2+(log logD2)3).

We will combine the above two expanders using the following well known technique.

Proposition 4.4. LetG1 be an (N,W1, T1, D,W1(1−ε))-expander andG2 be an (T1,W2, T2, DW1,W2(1−
ε))-expander. Then there exists an (N,W1W2, T2, D,W1W2(1 − 2ε))-expander G. Further, if G1 and G2

are explicit then so is G.

13

Proof. The graph G is constructed by “concatenating” G1 and G2. In particular, construct the following
intermediate tripartite graph G′ (on the vertex sets [N], [T1] and [T2] respectively), where one identifies [T1]
once as the right vertex set for G1 and once as the left vertex set of G2. The final graph G is bipartite graph
on ([N], [T2]) where there is an edge if and only if there is a corresponding path of length 2 in G′. It is easy
to check that G is an (N,W1W2, T2, D,W1W2(1− 2ε))-expander.

Next, we prove the following result by combining all the ingredients above.

Theorem 4.5. There exists an explicit (N,W, T,D,W/2 + 1)-expander with T = O(D logN · f(D,N)),
where

f(D,N) = 2O((log logD)3+(log log logN)3).

Note that f(D,N) = (D logN)o(1).

Proof. By Theorem 4.2, there exists an explicit (N,W1, T1, D, 3W1/4 + 1)-expander, where

W1 ≤ 16 logN logD,

and
T1 ≤ (4D)4+log logN+log logD.

By Theorem 4.3, there exists an explicit (T1,W2, T2, D2, 3W2/4 + 1)-expander, where

D2 = DW1 ≤ 16D logN logD,

W2 is 2O(log log T1+(log logD2)3), which in turn is at most 2O((log logD)3+(log log logN)3), and T2 is

W2D2 ≤ 16D logN logD · 2O((log logD)3+(log log logN)3)

≤ D logN · f(D,N),

as desired.

Theorem 4.5 and Proposition 4.1 leads to the following construction.

Theorem 4.6 ([17]). Let 1 ≤ d ≤ N be integers and δ > 0 be any given constant. Then there exists a
strongly-explicit t×N matrix that is (d, δd)-list disjunct with t = O((d logN)1+o(1)) rows.

Combining Lemma 2.6 and Theorem 4.6, we get the following result.

Corollary 4.7. Let ε > 0 be a real number and let 1 ≤ d ≤ N be integers. Then there exists a strongly-
explicit t×N matrix that is (d, (1/ε)O(1/ε) · d1+ε)-list-disjunct with t = (1/ε)O(1/ε) · d1+ε · (logN)1+o(1)

rows that can be decoded in time tO(1/ε).

Next, we instantiate Corollary 3.2 to obtain efficiently decodable list disjunct matrices that will be used
to construct strongly explicit disjunct matrices and imply other applications. In particular, Corollary 3.2
along with Theorem 4.6 implies the following:

Corollary 4.8. Let 1 ≤ d ≤ N be integers. For any constant δ > 0 there exists a strongly-explicit t × N
matrix that is (d, δd)-list-disjunct with t = O((d logN)1+o(1)) rows and can be decoded in poly(t) time.

By stacking an explicit (d,O(d))-list-disjunct matrix on top of a d-disjunct matrix (say, the one from
[21]), we obtain the following result.

Theorem 4.9 (Explicit construction of efficiently decodable disjunct matrices). Let 1 ≤ d ≤ N be integers.
Then there exists a t × N d-disjunct matrix with t = O(d2 logN) that can be decoded in poly(t)-time.
Further, the matrix can be computed in time Õ(Nt).

14

4.2 Construction using extractors

This construction is from [6]. The number of tests is better than that in Theorem 4.6, however we cannot
precisely control the list size as in Theorem 4.6. Some applications requires the precision in list size bound.
To describe the construction, we need a few notions.

Randomness extractors are functions which “convert” biased and correlated random bits into almost
uniform random bits. Extractors have numerous applications in (theoretical) Computer Science3. In this
section, we will use extractors to construct good list-disjunct matrices.

Let D be a distribution on a finite sample space Ω. The min entropy of D is defined to be

H∞(D) := min
ω∈Ω

{
1

log2 ProbD(ω)

}
.

Here, ProbD(ω) is the probability mass the distribution assigns to ω. IfH∞(D) ≥ k, then ProbD(ω) ≤ 1/2k

for every ω ∈ Ω.
The total variational distance between two distributions P and Q on Ω is

‖P −Q‖TV = max
A⊆Ω
|P(A)−Q(A)| = 1

2

∑
ω∈Ω

|P(ω)−Q(ω)|.

The second inequality can easily be proved from first principles. Two distributions are ε-close if their
variational distance is at most ε. Let Un denote the uniform distribution on Fn2 .

A functionC : Fa2×Fb2 → Fm2 is called a strong k →ε k
′ condenser if it satisfies the following: for every

distribution A on Fa2 with H∞(A) ≥ k, random variable A ← A, seed variable B ← Ub, the distribution
of (B,C(A,B)) is ε-close to some distribution (Ub,Z) with min entropy at least b + k′. Here, ε is called
the error, k − k′ is called the entropy loss, and m − k′ is called the overhead of the condenser. A lossless
condenser is a condenser with no entropy loss. A strong (k, ε)-extractor is a a condenser with no overhead.

From a function C : Fa2 × Fb2 → Fm2 we can defined the corresponding induced code I(C) as follows.
This code has alphabet Σ = Fm2 , length n = 2b, and size N = 2a. For A ∈ Fa2, the Ath codeword of the
code is defined to be the vector whose Bth component is C(A,B), where the components of the codewords
are indexed by B ∈ Fb2.

For any finite alphabet Σ and a positive integer n. a sequence S = (S1, · · · , Sn) where ∅ 6= Si ⊆ Σ is
called a mixture on Σn. Define

ρ(S) =
|S1|+ · · ·+ |Sn|

n|Σ|
.

For any word w ∈ Σn, the agreement of w with S is defined to be

Agr(w, S) :=
|{i ∈ [n] | wi ∈ Si}|

n
.

It is not hard to see that ρ(S) is the expected agreement of a randomly chosen word in Σn with S. Consider
a code C ⊆ Σn and α ∈ [0, 1]. The list of codewords whose agreement with S is > α is denoted by
LISTC(S, α). When α = 1, the list consists of codewords with 100% agreement.

The following important theorem was first observed in [] (see also [15]).

Theorem 4.10. Let C : Fa2 × Fb2 → Fm2 be a k →ε k
′ condenser. For any mixture S on (Fm2)2b , if

ρ(S)2m−k
′
+ ε < 1 then

LISTI(C)(S, ρ(S)2m−k
′
+ ε) < 2k.

3http://people.seas.harvard.edu/ salil/pseudorandomness/extractors.pdf

15

Proof. Assume to the contrary that LISTI(C)(S, ρ(S)2m−k
′
+ ε) ≥ 2k. Let A = (A1, . . . , A2b) be a random

codeword uniformly chosen from LISTI(C)(S, ρ(S)2m−k
′

+ ε). Then, as a distribution on Fa2 the random
variable A has min entropy at least k. Let B ← Ub be a uniformly random variable chosen from Fb2. Then,
by definition (B,C(A,B)) = (B,AB) is supposed to be ε-close to some distribution on Fb+m2 with min
entropy at least b + k′. Let D be any distribution on Fb+m2 with min entropy at least b + k′. We will show
that D and the distribution of (B,AB) are not ε-close by specifying an event f on Fb+m2 for which the two
distributions differ by more than ε.

The event f is defined by a function f : Fb+m2 → {0, 1}, where for i ∈ Fb2 and X ∈ Fm2 , we define
f(i,X) = 1 iff X ∈ Si.

Next, let us estimate the probabilities that the distribution of (B,AB) and the distribution D assign to
the event f .

First, consider the random point (B,AB):

Prob
A,B

[f(B,AB) = 1] = Prob
A,B

[AB ∈ SB] = Agr(A,S) > ρ(S)2m−k
′
+ ε.

Next, consider the distribution D. Let (i,X) ∈ Fb2 × Fm2 be drawn according to D. Then,

Prob
D

[f(i,X) = 1] =
∑

(i,X)∈Fb2×Fm2

1X∈Si Prob
D

[(i,X)]

≤ 2−b−k
′ ∑
i∈Fb2

|Si|

= ρ(S)2m−k
′
.

From the theorem, Cheraghchi [6] observed the following, which was the main result in that paper. The
language that Cheraghchi used was not code concatenation, and he did not used the term list-separable, but
we can easily see the analogy.

Corollary 4.11 ([6]). LetC : Fa2×Fb2 → Fm2 be a k →ε k
′ condenser. Then, the concatenation I(C)◦ID2m

is a (d, 2k)-list-separable matrix for any d satisfying the following constraints: d ≤ 2m, d < (1 − ε)2k′ .
Furthermore, the total decoding time is O(2a+b+m).

Proof. We simply specify a decoding algorithm. We decode a set Si for each position i ∈ Fb2. Note
that |Si| ≤ d for each i because there are at most d positives. Thus, ρ(S) =

∑
i |Si|/2b+m ≤ d/2m.

From Theorem 4.10 we know LISTI(C)(S, d/2m + ε) < 2k. Furthermore, all positive items correspond to
codewords with 100% agreement with S. Hence, we can simply output all such codewords. The running
time is O(2a+b+m), and the number of codewords outputted is at most 2k.

Next, we apply a construction from [15].

Theorem 4.12 ([15]). For integers a ≥ k, and ε > 0, there exists an explicit strong (k, ε)-extractor
Ext : Fa2 × Fb2 → Fm2 with m = k − 2 log(1/ε)−O(1) and b = log a+O(log k · log(k/ε)).

The result along with Corollary 4.11 leads to the following.

Theorem 4.13 ([6]). Let 1 ≤ d ≤ N be integers. Then there exists a strongly-explicit t×N matrix that is
(d,O(d))-list disjunct with t = O(d1+o(1) logN) rows.

16

Combining Lemma 2.6 and Theorem 4.13, we get the following result.

Corollary 4.14. Let ε > 0 be a real number and let 1 ≤ d ≤ N be integers. Then there exists a strongly-
explicit t×N matrix that is (d, (1/ε)O(1/ε) · d1+ε)-list-disjunct with t = (1/ε)O(1/ε) · d1+ε · logN rows that
can be decoded in time tO(1/ε).

Corollary 3.2 along with Theorem 4.13 implies the following:

Corollary 4.15. Let 1 ≤ d ≤ N be integers. For any constant α ∈ (0, 1) there exists a strongly-explicit
t × N matrix that is (d,O(d))-list disjunct with t = O(d1+o(1) logN log logN) rows and can be decoded
in poly(t) time.

References
[1] N. ALON AND V. ASODI, Learning a hidden subgraph, SIAM J. Discrete Math., 18 (2005), pp. 697–712 (electronic).

[2] N. ALON AND R. HOD, Optimal monotone encodings, in ICALP ’08: Proceedings of the 35th international colloquium on
Automata, Languages and Programming, Part I, Berlin, Heidelberg, 2008, Springer-Verlag, pp. 258–270.

[3] N. ALON, D. MOSHKOVITZ, AND S. SAFRA, Algorithmic construction of sets for k-restrictions, ACM Trans. Algorithms, 2
(2006), pp. 153–177.

[4] B. BOLLOBÁS, Combinatorics, Cambridge University Press, Cambridge, 1986. Set systems, hypergraphs, families of vectors
and combinatorial probability.

[5] E. J. CANDÈS AND T. TAO, Near-optimal signal recovery from random projections: Universal encoding strategies?, IEEE
Transactions on Information Theory, 52 (2006), pp. 5406–5425.

[6] M. CHERAGHCHI, Noise-resilient group testing: Limitations and constructions, in FCT, 2009, pp. 62–73.

[7] A. DE BONIS, L. GA̧SIENIEC, AND U. VACCARO, Optimal two-stage algorithms for group testing problems, SIAM J.
Comput., 34 (2005), pp. 1253–1270 (electronic).

[8] D. L. DONOHO, Compressed sensing, IEEE Transactions on Information Theory, 52 (2006), pp. 1289–1306.

[9] A. G. D′YACHKOV AND V. V. RYKOV, A survey of superimposed code theory, Problems Control Inform. Theory/Problemy
Upravlen. Teor. Inform., 12 (1983), pp. 229–242.

[10] P. ERDŐS, P. FRANKL, AND Z. FÜREDI, Families of finite sets in which no set is covered by the union of r others, Israel J.
Math., 51 (1985), pp. 79–89.

[11] Z. FÜREDI, On r-cover-free families, J. Combin. Theory Ser. A, 73 (1996), pp. 172–173.

[12] S. GANGULY, Data stream algorithms via expander graphs, in 19th International Symposium on Algorithms and Computa-
tion (ISAAC), 2008, pp. 52–63.

[13] A. C. GILBERT, Y. LI, E. PORAT, AND M. J. STRAUSS, Approximate sparse recovery: optimizing time and measurements,
in STOC, 2010, pp. 475–484.

[14] V. GURUSWAMI AND A. RUDRA, Soft decoding, dual BCH codes, and better list-decodable ε-biased codes, in Proceedings
of the 23rd Annual IEEE Conference on Computational Complexity (CCC), 2008, pp. 163–174.

[15] V. GURUSWAMI, C. UMANS, AND S. P. VADHAN, Unbalanced expanders and randomness extractors from parvaresh-vardy
codes, in Proceedings of the 22nd Annual IEEE Conference on Computational Complexity, 2007, pp. 96–108.

[16] P. INDYK, Explicit constructions of selectors and related combinatorial structures, with applications, in SODA, 2002,
pp. 697–704.

17

[17] P. INDYK, H. Q. NGO, AND A. RUDRA, Efficiently decodable non-adaptive group testing, in Proceedings of the Twenty First
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’2010), New York, 2010, ACM, pp. 1126–1142.

[18] T. MORAN, M. NAOR, AND G. SEGEV, Deterministic history-independent strategies for storing information on write-once
memories, Theory of Computing, 5 (2009), pp. 43–67.

[19] H. Q. NGO, E. PORAT, AND A. RUDRA, Efficiently decodable error-correcting list disjunct matrices and applications, in
ICALP, 2011.

[20] F. PARVARESH AND A. VARDY, Correcting errors beyond the guruswami-sudan radius in polynomial time, in Proceedings
of the 46th Annual IEEE Symposium on Foundations of Compu ter Science (FOCS), 2005, pp. 285–294.

[21] E. PORAT AND A. ROTHSCHILD, Explicit non-adaptive combinatorial group testing schemes, in ICALP (1), 2008, pp. 748–
759.

[22] A. M. RASHAD, Random coding bounds on the rate for list-decoding superimposed codes, Problems Control Inform. The-
ory/Problemy Upravlen. Teor. Inform., 19 (1990), pp. 141–149.

[23] A. RUDRA AND S. UURTAMO, Data stream algorithms for codeword testing, in Proceedings of the 37th International Collo-
quium on Automata, Languages and Programming (ICALP), 2010. To appear.

[24] M. RUSZINKÓ, On the upper bound of the size of the r-cover-free families, J. Combin. Theory Ser. A, 66 (1994), pp. 302–310.

[25] A. TA-SHMA, C. UMANS, AND D. ZUCKERMAN, Lossless condensers, unbalanced expanders, and extractors, Combinator-
ica, 27 (2007), pp. 213–240.

18

