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Abstract— Constructing wavelength division multiplexing
(WDM) switches with cheap components and low complexity is
an important problem in optical networking.

Typically, there are two request models widely considered. In
one model, a connection request asks to go from a wavelength
on an input fiber of the WDM switch to a particular wavelength
on an output fiber. In the other, a connection only needs to get
to a particular output fiber, irrespective of what wavelength it
will be on.

In this paper, we give novel constructions of strictly non-
blocking and rearrangeably nonblocking WDM switches for
both request models using limited range wavelength converters
and arrayed waveguide grating routers. We fully analyze their
blocking characteristics. Our designs are all relatively simple
and easy to be laid out, and are useful for both optical circuit-
switching and optical packet/burst switching.

As far as we know, these are the first of such constructions.

I. INTRODUCTION

Despite the recent downturn in the telecommunication in-
dustry in general and the optical networking sector in particu-
lar, Internet traffic is still doubling every year. In order to meet
the ever increasing bandwidth demand from a large number
of users in scientific computing and academic communities, as
well as in military and other government agencies, there is a
renewed interest in photonic switching as evident from several
ongoing and planned national-scale projects in the US, Europe,
and Asia (see for example, DARPA’s recent BAA on Data in
the Optical Domain Networks1).

As the number of wavelengths in a wavelength division
multiplexed (WDM) network increases to hundreds or more
per fiber, and each wavelength operates at 10Gbps (OC-192)
or higher [1]–[3], electronically switching the traffic carried
on tens of fibers at each node, or equivalently, thousands of
wavelengths at an aggregated throughout of several Terabits
per second, becomes challenging due not only to the high
costs of optical-electronic-optical or OEO conversion, but also
more importantly, to the high power consumption (and heat
dissipation) and large footprint (or space consumption). As

1http://www.darpa.mil/mto/solicitations/index.html#baa0319

the optical device and component technology, and in partic-
ular, opto-electronic integration technology matures, photonic
switching systems not only can potentially achieve hundreds
of Terabits per second or higher ( [4]) throughput, but also can
be more cost-effective than their electronic counterparts even
for applications requiring a lower throughout. Indeed, certain
types of photonic switching fabrics such as the so-called WDM
cross-connects (WXCs), or dynamic, reconfigurable optical
add-drop multiplexers (OADMs), have already been deployed
as an economic way to handle a large amount of traffic at the
wavelength granularity.

In this paper, we will focus on cost-effective designs of
photonic switching fabrics for WDM networks. As pointed
out in [5], for cross-connecting wavelengths, that is, switching
at the wavelength granularity for wavelength-routed or optical
circuit-switched networks, it is not cost-effective to simply
demultiplex all incoming f fibers, each having k wavelengths,
into N = f · k wavelengths, and then use a photonic, purely
space domain switch (or space switch for short) having a large
(e.g., N = 1000) number of inputs and outputs, along with a
stage of N full-range wavelength converters or FWCs (each
of which needs to be capable of converting any one of the k
wavelengths to any other one of the k wavelengths).

One of the biggest challenges is thus to design cost-
effective photonic switching fabrics that can scale in size
beyond a hundred of inputs and outputs, and at the same time,
switch fast (e.g., tens of nanoseconds or less). For example,
while one can achieve sub-nanosecond switching speed using
(polarization independent) LiNBO3 couplers based switches,
not many such couplers can be integrated into a single module
to form a large switch. Similarly, it is difficult to build a large
switch with SOAs and passive InP gate arrays, mainly due to
noise accumulation of the SOAs. On the other hand, optical
MEMS switches can be large but switch only at the speed
of milliseconds. These and other switching technologies have
been described in [6].

In this work, we address the aforementioned challenge by,
for the first time, presenting both strictly and rearrangeably



nonblocking WDM switch designs using a combination of ar-
rayed waveguide grating routers or AWGRs and limited range
wavelength converters or LWCs. An AWGR is wavelength
sensitive, and as such is not the same as a space switch. For
example, a signal carried on wavelength i, 0 ≤ i ≤ k − 1,
at the first input of a k × k AWGR will be (statically) routed
to say, output i of the AWGR without being able to go to
another output, nor a different wavelength at the output i. In
order to route the signal to a different output, say j �= i, it has
to be converted to wavelength j at input i. The signal may
need to be converted again at output j if it is to be carried on
a different wavelength (including the original wavelength i).
On the other hand, signals from multiple inputs of an AWGR
can be routed to the same output (as long as they use different
wavelengths), which make it more versatile (functionally more
powerful) than a space switch (wherein only one input signal
can go to any given output).

AWGRs are also interesting because they can be integrated
in a large scale, and unlike a passive star coupler, the signals
going through an AWGR are virtually lossless. In addition,
with wavelength converters (WCs), fast switching is possible
since the switching speed depends only on the speed of
wavelength conversion, which is tens of nanoseconds or less
even with current technology. Of course, in a W ×W AWGR
router, in order to be able to route a signal to any one of the W
outputs, fast tunable WCs that can cover the entire spectrum
of the W wavelengths are needed. And if W is large, as in
[7] where W = N = f · k, these WCs become too expensive
and perhaps impractical.

Our designs of strictly and rearrangeably nonblocking
WDM switches based on AWGRs and LWCs (each of which
covers the spectrum of less than k wavelengths) can not only
switch faster but also be less expensive than any existing
nonblocking switch designs based on full-range or wider-range
WCs such as FWCs [5]. As far as we know, these are the
first such designs based on multistage construction that are
strictly nonblocking (SNB) in both the space and wavelength
domains. For example, the design described in [8] is blocking
even though it used FWCs. In addition, a trivial extension to
a multistage design using FWCs would lead to rearrangeably
nonblocking (RNB) at the best. Later, we will also present our
RNB designs using a minimal number of LWCs, thus having
a lowest cost compared to any existing RNB designs.

Our designs are useful for both optical circuit-switching
(or wavelength routing) networks and optical packet/burst
switching. More specifically, while our SNB designs are
most effective, for most optical circuit-switching networks, as
well as optical packet/burst switched networks where optical
packets/bursts are switched synchronously or one batch at a
time, our RNB designs offer adequate performance at a lower
cost than their strictly nonblocking counterparts.

The rest of the paper is organized as follows. Section II
defines key concepts and notations used throughout the paper.
Sections III presents and analyzes an RNB construction for one
request model, where an input signal wants to get to a specific
output fiber while it does not care about the exact wavelength

it gets carried on. Section IV describes and analyzes SNB and
RNB constructions for the other request model, where an input
signal wants to go to a specific output wavelength on a specific
output fiber. Section V discusses three other constructions and
analyzes their blocking properties. Section VI compares and
contrasts our constructions with other known designs. The
reader might want to refer to Table I at the end of the paper
to get an overall picture of different designs discussed in this
paper. Lastly, Section VII concludes the paper and discusses
future works.

II. PRELIMINARIES

A. Basic concepts

A general WDM cross-connect (WXC) consists of f1 input
fibers with k1 wavelengths on each, and f2 output fibers with
k2 wavelengths on each, where f1k1 = f2k2. The set of
input wavelengths need not have any relation with the output
counterpart. This kind of WXCs were considered in [9] under
the name “heterogeneous WXCs.”

In this paper, we consider a simpler version where each
WXC2 has f input fibers and f output fibers, each of which
can carry a set Λ = {λ0, . . . , λk−1} of k wavelengths.
It should be noted that our constructions can be extended
quite straightforwardly to the heterogeneous network case. The
restriction was chosen merely for presentation clarity.

Let F and F ′ denote the set of input and output fibers,
respectively. In the (λ, F, F ′)-request model (model 1), a
connection request is of the form (λ, F, F ′), which means that
a connection is to be established from wavelength λ ∈ Λ of
input fiber F ∈ F to any free wavelength in output fiber
F ′ ∈ F ′. In the (λ, F, λ′, F ′)-request model (model 2), the
difference is that the output wavelength λ′ is also specified.

Note that model 1 is useful for switching optical pack-
ets/bursts synchronously or one batch at a time, as well as
for optical circuit-switching in general. Model 2 is particularly
useful for asynchronous switching of optical bursts using JET
(and void filling) [10], [11], as well as certain circuit-switching
applications requiring specific QoS.

We next define the concepts of strictly nonblocking (SNB)
and rearrangeably nonblocking (RNB) for both request mod-
els.

Consider a WXC with a few connections already estab-
lished. Under model 1, a new request (λ, F, F ′) is said to
be valid if λ is a free wavelength in fiber F , and there are at
most k − 1 existing connections at F ′. Under model 2, a new
request (λ, F, λ′, F ′) is valid if λ is free in F and λ′ is free
in F ′.

A request frame under the (λ, F, F ′) model is a set of re-
quests such that no two requests are from the same wavelength
of the same input fiber, and that there are at most k requests
to any output fiber.

A request frame under the (λ, F, λ′, F ′) model is a set of
requests such that no two requests are from the same input

2We will use the term WXC to refer also to WDM switches where switching
speed maybe fast enough for optical packet/burst switching.



wavelength/fiber pair, and no two requests are to the same
output wavelength/fiber pair.

The following definitions hold for both request models. A
request frame is realizable by a WXC if all requests in the
frame can be routed simultaneously. A WXC is rearrangeably
nonblocking iff any request frame is realizable by the WXC.
A WXC is strictly nonblocking iff a new valid request can
always be routed through the WXC without disturbing existing
connections.

Remark II.1. Note that RNB or SNB under the model 2
implies RNB or SNB under model 1. Also, under the same
model, SNB implies RNB.

B. Commonly used notations

The following notations are used throughout the paper.
Let A and B be two subsets of wavelengths (having at most

k wavelengths each). A limited wavelength converter (LWC)
capable of converting any wavelength in A to any wavelength
in B is denoted by LWC(A,B).

We shall assume that k = nb, where n and b are two
positive integers for which n > f . In practice, the number
of wavelengths k per fiber is much larger than the number f
of fibers; hence this assumption is practically no restriction. In
the worse case, we can always take b = 1. Also, our designs
also apply to the case where k = f if we use FWCs, and
where k < f if wider-range WCs are available.

Implicitly, we agree that λi = λi mod k when i ≥ k to avoid
writing too many mod . Given natural numbers i < j, we use
[i, j] to denote the set of (j − i) wavelengths {λi, . . . , λj−1}.
Also, define [j] = [0, j] for short.

In several of our designs, the wavelength set Λ is partitioned
into b bands B0, . . . , Bb−1 of size n each. Band Bi consists
of the set [in, (i + 1)n] of wavelengths.

In this paper, graph theoretic concepts and notations we use
are fairly standard. The reader is referred to [12] for related
information.

C. Arrayed Waveguide Grating Routers

Passive arrayed waveguide grating routers (AWGRs) are
attractive optical switching components because they are
commercially available and inexpensive, relatively simple to
fabricate, and they consume no power [8], [13].

A W × W AWGR on m wavelengths has a fixed routing
pattern defined as follows. Number the inputs and outputs from
0 to W − 1, and the wavelengths from 0 to m − 1. Then, an
input signal on wavelength i at input fiber j gets routed to the
same wavelength on output fiber ((i − j) mod W ).

Remark II.2. Some authors define the output line to be
((j − i) mod W ) instead. This is not a discrepancy, as we
can always re-number the wavelengths and input lines. For
example, renaming λi by λW−1−i′ , and input j by (W − 1−
j′), then (i − j) = (j′ − i′).

III. REARRANGEABLY NONBLOCKING CONSTRUCTION

FOR THE (λ, F, F ′)-REQUEST MODEL

We use WXC-RNB-1 to denote the construction given
in this section. A sample construction of WXC-RNB-1 is
shown in Figure 1. Each band Bi are inputs to an n × n
AWGR, preceded by one LWC(Bi, [n]) for each λ in Bi. The
n × n AWGRs are numbered continuously from AWGR0 to
AWGRfb−1.

At the second stage of the network, only one k× k AWGR
is used. We refer to this AWGR as the middle AWGR. We
use only n inputs numbered 0, b, . . . , (n − 1)b of the middle
AWGR. A multiplexor Mc, 0 ≤ c ≤ n − 1, is connected to
input numbered cb of the middle AWGR.

For each c = 0, . . . , n − 1 and j = 0, . . . , fb − 1, output c
of AWGRj is connected to a separate

LWC([n], [cb, (c + f)b])

and then to the multiplexor Mc.
At the last stage of the construction, there are f multiplexors

combining signals to the output fibers. We connect only the
first fb output lines of the middle AWGR to the output
multiplexors. For each i = 0, . . . , fb − 1, output numbered
i of the middle AWGR is connected to the multiplexor for
output fiber F�i/b�.

Remark III.1. In the description of our construction above,
we used an AWGR in the middle which can take a WDM
link (i.e., a fiber with multiple wavelengths) as one input.
This type of AWRG splits the WDM signals carried on a link
inside the fabric as if there is a passive splitter inside the
fabric (and certainly do not need a wavelength demultiplexer
inside). It utilizes the effectively different refractive indices
(with respect to wavelengths) created by different waveguide
lengths and angles (bending curves) to statically (or passively)
route different wavelengths to different output ports.

One can also replace this type of AWGR by several AWGRs
which take as inputs fibers with only one wavelength on each.
If this type of AWGRs is used, there is no need to have the
multiplexors at the second stage any more.

The following lemma is a nice observation which leads to
the proof that this construction is rearrangeably nonblocking
in the (λ, F, F ′)-model. We use the standard notation Zp =
{0, . . . , p − 1}, for any positive natural number p.

Lemma III.2. Let n, b be natural numbers. Let G = (U ∪
V ;E) be a bipartite multi-graph, where U and V form the
vertex partition, and E is the edge set. Further assume that
each vertex in U has degree at most n, and each vertex in V
has degree at most k = nb.

Then, the edges of G can be colored with colors in the
set Zn × Zb so that vertices in U are incident to colors with
different first coordinates, and vertices in V are incident to
different colors.

Remark III.3. Let (c, d) be a color in the set Zn × Zb, then
c is the first coordinate and d is the second coordinate of this
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Fig. 1. Example of the WXC-RNB-1 construction for the (λ, F, F ′)-request model. The parameters are k = 12, n = 4, b = 3, and f = 2.

color. Two colors in the set Zn×Zb are different iff either the
first or the second coordinates are different.

Proof of Lemma III.2. Construct a bipartite multi-graph G′ =
(U ∪ V ′;E′) from G by splitting each vertex v ∈ V into
b vertices v(0), . . . , v(b−1) ∈ V ′ so that each of the v(i) is
incident to at most n edges which were previously incident
to v. This is certainly possible, since the degree of v in G
is at most nb. In this way, G′ is a bipartite multi-graph with
maximum degree at most n.

By König’s line coloring theorem [14], the graph G′ can
properly be edge-colored with at most n colors. Recall that a
proper edge-coloring is a coloring for which all vertices are
incident to edges of different colors. A few (fast) polynomial-
time coloring algorithms can be found in [15]–[17], for
instance.

We use Zn for this set of n colors, which shall be the first
coordinates of the final coloring. For each i = 0, . . . , b − 1,
all edges incident to the ith copy v(i) of a vertex v ∈ V ′ get
i as their second color-coordinate.

The coloring (with two-coordinate colors) of G′ induces a
coloring of G with the desired property.

Theorem III.4. The WXC-RNB-1 construction described
above is rearrangeably nonblocking under the (λ, F, F ′)-
request model.

Proof. Let R be a request frame for our WXC under the
(λ, F, F ′)-request model. We shall show that all requests in
R can be routed simultaneously through the network.

Recall that we number the input-stage AWGRs from
AWGR0 to AWGRfb−1. Let G = (U ∪ V ;E) be an fb × f
bipartite multi-graph, i.e. |U | = fb, |V | = f , constructed from

R as follows. Let

U = {u0, . . . , ufb−1}
V = {v0, . . . , vf−1}.

There is (a copy of) an edge (ui, vj) ∈ E for each request
(λp, Fq, Fj) ∈ R where i = qb + �p/n�. Basically, there is a
vertex ui for band Bi mod b on input fiber F�i/b�.

For any particular pair (p, q), there can be at most one
request from λp in input fiber Fq. Hence, vertices in U of
the graph G have maximum degree n. For any output fiber
Fj , there can be at most k requests to it; hence, vertices in V
of G have maximum degree k = nb.

Consequently, G can be edge-colored satisfying the conclu-
sions of Lemma III.2. Each request R ∈ R thus gets a color in
the set Zn ×Zb. We shall use this coloring to establish routes
for all requests in R simultaneously.

Let (λp, Fq, Fj) ∈ R be a request which gets colored
(c, d) ∈ Zn × Zb.

The basic idea is to route this request from λp to the cth
output line of its corresponding first-stage AWGR. Next, by
construction there are b output lines of the middle AWGR
which are connected to the multiplexor on output fiber Fj . The
second-stage LWC finishes the job by routing our connection
to the dth line of this set of output lines. Lastly, the properties
of the coloring ensures that our routing algorithm creates no
conflict at the multiplexors as well as at the LWCs.

In order to get to output c of the corresponding input-stage
AWGR, the LWC converts λp to λ(c+(p mod n)) mod n ∈ [n].
We claim that no output of any input-stage AWGR is used
twice. The claim directly follows from the fact that requests
coming out of the same band get different colors, thus get



routed through different output line of the band’s AWGR. It
follows easily that, all the second-stage LWCs are going to be
used at most once.

Let us now go back to the request (λp, Fq, Fj) which is
now on λ(c+(p mod n)) mod n. As the connection gets out on
output c, it is going through an LWC([n], [cb, (c + f)b]) and
then to the multiplexor connected to input numbered cb of the
middle AWGR.

The b outputs of the middle AWGR connected to Fj are
numbered bj, bj +1, . . . , bj +b−1. The dth line on this group
is thus numbered bj + d. For λ(c+(p mod n)) mod n on input
cb to get out on output bj + d, the wavelength needs to be
converted to

λ(bj+d+cb) = λ(c+j)b+d ∈ [cb, (c + f)b].

(Recall that λx = λx mod k.) Hence, the request (λp, Fq, Fj)
is routed to the right destination, so do all requests in R.

As noted earlier, our routing algorithm does not use any
LWC twice, which means there is no conflict at the LWCs.
We next confirm that there is also no multiplexor getting the
same wavelength more than once.

Consider first the multiplexors at the middle AWGR. The
cth multiplexor gets wavelengths of the form λ(c+j)b+d for
different values of j and d. Recall that d ∈ Zb, and j ∈ Zf .
Suppose there is some conflict at the cth middle multiplexor,
then there are two requests to some Fj1 and Fj2 which get
colored (c, d1), (c, d2) such that

(c + j1)b + d1 = (c + j2)b + d2 (mod k).

This implies

(j1 − j2)b = d2 − d1 (mod k).

As 0 ≤ d1, d2 ≤ b − 1, it must be the case that j1 = j2 = j.
Moreover, as k = nb, we must have d1 = d2 mod b, which
means d1 = d2 = d also. This contradicts our coloring which
says that two requests to the same Fj get different (c, d) pairs.

Lastly, consider the multiplexors at the last stage. The
jth multiplexors get wavelengths of the form λ(c+j)b+d for
different values of c and d. A similar argument as above
completes the proof. We omit the details.

Remark III.5. One might wonder if this idea can be used to
construct an SNB WXC for the same request model. We do
have one such construction similar to the one described above,
i.e. only two stages of wavelength converters and AWGRs
are used. Unfortunately, the number of AWGRs and LWCs
is too large to be practical. This is explained by a somewhat
surprising theorem shown in Ngo [18], which basically says
that a WXC is SNB in the (λ, F, F ′)-request model if and
only if it is SNB in the (λ, F, λ′, F ′)-request model.

As far as SNB under the (λ, F, F ′)-request model is con-
cerned, the construction shown in Section IV-B is sufficient.

IV. THE (λ, F, λ′, F ′)-REQUEST MODEL

The constructions in this section are motivated from the
idea of three-stage Clos network [19]. Readers who are
familiar with the Clos networks will undoubtedly recognize
the parallels.

A. Rearrangeably nonblocking construction

Figure 2 shows an illustration of this construction, which
we refer to as WXC-RNB-2.

The first stage of the construction is identical to the WXC-
RNB-1 construction described in Section III.

The second stage consists of n AWGRs of size fb × fb,
numbered from 0 to n − 1. The ith output of the jth first-
stage AWGR is connected to an LWC([n], [fb]), and then to
the jth input of the ith middle-stage AWGR.

The last stage, as before, consists of one multiplexor for
each output fiber. We number the multiplexors from 0 to
f − 1, as usual. The connection patterns from the middle-
stage AWGRs to the multiplexors are identical. The ith
output of a middle stage multiplexor is connected to an
LWC([fb], Bi mod b), and then to the multiplexor numbered
�i/b�.

Theorem IV.1. The WXC-RNB-2 construction described
above is rearrangeably nonblocking under the (λ, F, λ′, F ′)-
request model.

Proof. Let R be a request frame for our WXC under the
(λ, F, λ′, F ′)-request model. We shall show that all requests
in R can be routed simultaneously through the network.

Recall that we number the input-stage AWGRs from
AWGR0 to AWGRfb−1. Let G = (U ∪ V ;E) be an fb× fb
bipartite multi-graph, i.e. |U | = |V | = fb, constructed
from R as follows. Let U = {u0, . . . , ufb−1} and V =
{v0, . . . , vfb−1}. There is an edge (ui, vj) ∈ E for each
request (λr, Fs, λp, Fq) ∈ R where

i = sb + �r/n�
j = qb + �p/n�.

For any particular pair (p, q), there can be at most one request
from λp of input fiber Fq, and there can be as most one request
to λp of output fiber Fq. This conclusion comes from the fact
that R is a request frame.

Thus, it is straightforward that the maximum degree of G
is at most n. Intuitively, there can be at most n requests from
any band on fiber s, and at most n requests to any band on
fiber q.

By König’s line coloring theorem [14], we can properly
edge-colored G with at most n colors. Hence, each request in
R gets a color between 0 and n−1, such that requests coming
out of the same input band and fiber or to the same output
band and fiber get different colors.

In the rest of the proof, we shall use this coloring to route
requests in R. The idea is to route request colored c to the
middle-stage AWGR numbered c.

Consider a request (λr, Fs, λp, Fq) ∈ R, which gets colored
c. We tune the LWC(B�r/n�, [n]), which is connected to λr
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at input fiber Fs, so that it converts λr to λ(c+(r mod n)) mod n

and hence it will get out on output c of its input-stage AWGR.
This signal shall get to the cth middle-stage AWGR at its

(sb+�r/n�) input line. At this point, the corresponding LWC
is tuned to convert

λ(c+(r mod n)) mod n ∈ [n]

to
λ((qb+�p/n�)+(sb+�r/n�)) mod fb ∈ [fb],

which shall get routed to output numbered qb + �p/n� of this
AWGR.

Lastly, this output line is connected to an
LWC([fb], B�p/n�), then multiplexed to output fiber Fq.
This last LWC shall convert the previous wavelength to λp

as desired.
To complete the proof, we need to show that we did not

use any LWC twice.
As the requests from the same input band and fiber get

different colors, no two requests shall be routed through the
same output line of any input-stage AWGR. This means we
did not use any second-stage LWC twice.

Similarly, the requests to the same output band and fiber
get different colors, they will come to the band from different
middle-stage AWGRs.

B. Strictly nonblocking construction

Figure 3 shows an illustration of the construction, called
WXC-SNB-2.

At each input fiber, each line in band Bi is connected to an
LWC(Bi, [2n − 1]) and then to one of the first n inputs of a
(2n − 1) × (2n − 1) AWGR. Thus, the first stage consists of
fb AWGRs of larger size than those in the RNB construction.

At the second stage, there are (2n−1) AWGRs of size fb×
fb. The ith output of the jth first-stage AWGR is connected
to an LWC([2n−1], [fb]), and then to the jth input of the ith
middle-stage AWGR.

The last stage has one multiplexor for each output fiber.
The connection patterns from middle-stage AWGRs to the
multiplexors are identical. The ith output of a middle-stage
AWGR is connected to an LWC([fb], Bi mod b), and then to
the multiplexor on output fiber F�i/b�.

Theorem IV.2. The WXC-SNB-2 construction described
above is strictly nonblocking under the (λ, F, λ′, F ′)-request
model.

Proof. Suppose our WXC has had a few connections set up.
Let (λi, Fj , λp, Fq) be a new valid connection request, i.e. λi

and λp are free wavelengths on input fiber j and output fiber
q, respectively. We want to show that we can find a route for
this request through the WXC without disturbing the routes of
existing connections.

After being demultiplexed at input fiber j, λi comes to
LWC(B�i/n�, [2n−1]), and then connected to the (i mod n)th
input of the first-stage AWGR numbered jb + �i/n�.

As there can be at most n − 1 existing connections which
come from band B�i/n� of input fiber Fj , there must be at least

n outputs of AWGRjb+�i/n� which carry no signal. With the
help of the LWC(B�i/n�, [2n−1]), the signal on λi can get out
on any of these free output lines. Let A be a set of n middle-
stage AWGRs to which n of these free lines are connected to.
Then, a signal on λi can get to any AWGR in A. However,
λi shall be converted to a wavelength in [2n − 1].

To this end, notice that λp belongs to band B�p/n� of output
fiber Fq. By construction, each AWGR in the set A has one
output line connected to an LWC([fb], B�p/n�), and then to the
multiplexor on output fiber q. Let L be this set of output lines.
Since there can only be at most n − 1 existing connections
to wavelengths in band B�p/n� of output fiber Fq, and since
|A| = n, at least one line l ∈ L carries no signal.

Suppose l corresponds to the AWGR A ∈ A. We can now
let the signal on the original λi get to AWGR A, at which it
is converted by the LWC([2n − 1], [fb]) to some wavelength
in [fb] in other to get out at l. Lastly, the LWC([fb], B�p/n�)
will convert the previous wavelength to λp.

V. ANALYSES OF SOME OTHER CONSTRUCTIONS

The design given in Ramamirtham-Turner [8] was not
RNB, even in the less restrictive (λ, F, F ′)-request model. The
Ramamirtham-Turner design essentially looks like the one in
Figure 4, except that there are no wavelength converters at the
second stage. One can also change the patterns of connecting
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Fig. 4. A one-stage construction that is generally blocking, but should be
more powerful than the one in [8].

the AWGRs to the output fibers. This design has the advantage
of being simple and has RNB throughput up to 87% of an RNB
design under the (λ, F, F ′)-request model.

A few natural questions arise. For instance, one might
wonder if adding the second stage of FWCs, as shown in
Figure 4, would yield an RNB design, or even SNB.

In this section, we analyze the design shown in Figure 4 and
another “natural” design shown in Figure 5, which has one
additional stage of k × k AWGRs and FWCs. The analyses
motivates another interesting construction discussed in Section
V-C.

Remark V.1. In most analyses given in this section, we ignore
the issue of divisibility for presentation clarity. In the figures,
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Fig. 5. A two stage construction using FWCs that is RNB-2 but not SNB-1.

the black squares represent FWCs.

A. A one stage construction

We analyze the construction shown in Figure 4 in this
section. We ignore the trivial case when f = 1.

Theorem V.2. The construction shown in Figure 4 is not
rearrangeably nonblocking under the (λ, F, λ′, F ′)-request
model, no matter how we connect the AWGRs to the output
multiplexors.

Proof. No matter what the connection pattern is, there must
be an output multiplexor to which the first AWGR has ≤ k/f
outputs connected. Without loss of generality, assume there
are ≤ k/f links from the first AWGR to the first multiplexor
M0.

We first show that there exists a request frame R in which
there are (f − 1) k

f + 1 requests of the form (λi, F0, λj , F0),
so that converting λi to λj would direct a signal on input λi

to an output link not connected to M0.
To form such a request frame, we need a one on one

matching of size (f − 1) k
f + 1 between the λi and their

candidates. We verify P. Hall’s matching condition ( [20]) to
show the claim.

Let Λ̄ be any subset of size (f − 1) k
f + 1 of Λ =

{λ0, . . . , λk−1}. Note that, for each λi ∈ Λ̄ there are at least
(f − 1) k

f candidate wavelengths for λj , one for each output
line not connected to M0. Moreover, two different λi have
two different candidate sets. Thus, any subset of size ≥ 2
of Λ̄ has at least 1 + (f − 1) k

f total candidates. A subset
of size 1 certainly has at least 1 candidate. Consequently, P.
Hall’s matching theorem ( [20]) shows the existence of such
a request frame.

To realize a request in such an R, each λi has to use a
second stage FWC. However, the number of requests (f −
1) k

f + 1 is strictly more than the number of available FWCs,
which is at most k

f . Hence, this construction is not RNB.

Theorem V.3. The construction shown in Figure 4 is not
strictly nonblocking under the (λ, F, F ′)-request model, no
matter how we connect the AWGRs to the output multiplexors.

Proof. Without loss of generality, assume there is a set L of
≤ k/f links from the first AWGR to the first multiplexor M0.

Let S be the set of wavelengths to which λ0 has to be
converted to, in order to get out on any link in L. Noting that
k/f ≤ k − 1, it is easy to construct a state of the network in
which λ0 is not part of any current request, and each FWC
on each link in L is used to convert an incoming wavelength
to separate wavelength in S.

The request (λ0, F0, F0) is now blocked.

Lastly, we show that even in the less restrictive (λ, F, F ′)-
request model, this design is generally not RNB. Unlike the
previous two theorems, we only prove the following theorem
for the particular connection pattern shown in Figure 4, where
there are two AWGRs which have the first k/f outputs
connected to M0.

Remark V.4. Much less restrictive forms of the following
theorem can also be shown, at the expense of clarity.

Theorem V.5. Consider the construction shown in Figure 4.
Suppose there is an output multiplexor to which two AWGRs
have their first k/f outputs connected to. Then, when f ≥ 6
the construction is not rearrangeably nonblocking under the
(λ, F, F ′)-request model.

Proof. Without loss of generality, we assume the two AWGRs
are AWGR0 and AWGR1 and the multiplexor is M0.

Let Λ̄ = {λ0, . . . , λk/2−1}. Consider a request frame R =
R0∪R1, in which Ri contains k/2 requests from wavelengths
in Λ̄ of input-Fi to output-F0, i = 0, 1. The main idea is still
to show that there are not enough FWCs to avoid conflicts at
M0.



For each λi ∈ Λ̄, let W (λi) be the set of wavelengths
λi has to be converted to, in order to get out to M0. Note
that |W (λi)| = k/f , and, due to the circular shift nature of
AWGRs,

∣∣∣∣∣∣

⋃

0≤i≤k/2−1

W (λi)

∣∣∣∣∣∣
= k/2 + k/f − 1.

(We ignore the issue of divisibility for clarity.) For each i =
0, 1, the requests in Ri can only use at most k/f second-stage
FWCs, leaving the other k/2 − k/f requests not being able
to convert after getting out of the AWGR.

Consequently, when

k/2 − k/f >
1
2
(k/2 + k/f − 1),

or k/2 > 3k/f − 1, there must be some conflict between
requests in R0 and requests in R1.

We can ensure k/2 > 3k/f − 1 whenever f ≥ 6.

B. A two-stage construction

The one-stage construction in the previous section is fairly
restrictive. In this section, we analyze the two stage construc-
tion shown in Figure 5 and its variations.

Lemma V.6. Let f, k be positive integers where f |k. Let G =
(U ∪V ;E) be a k-regular bipartite multi-graph, where U and
V form the vertex partition, and E is the edge set.

Then, the edges of G can be colored with f colors such that
each vertex is incident to exactly k/f edges of any particular
color.

Proof. Splitting each vertex w ∈ U ∪ V into k/f copies of
degree f each, we obtain an f -regular graph G′. König’s
theorem [14] ensures that G′ is f -edge colorable. (Again,
coloring algorithms can be found in [15]–[17].) This coloring
of G′ induces a desired coloring of G.

Theorem V.7. The construction shown in Figure 5 is rear-
rangeably nonblocking under the (λ, F, λ′, F ′)-request model.
The connection patterns could be arbitrary, as long as they
are evenly divided into groups of size k/f at each stage.

Proof. Without loss of generality, consider a full request frame
R of size fk. If all full request frames are realizable, then all
request frames are realizable.

Construct an f × f bipartite multi-graph G = (U ∪ V,E),
where

U = {u0, . . . , uf−1},
V = {v0, . . . , vf−1},

and there is an edge (ui, vj) for each request (λp, Fi, λq, Fj) ∈
R.

Clearly G is k-regular and can be colored according to
Lemma V.6. Let Zf be the set of colors. We separately route
k/f requests from Fi which were colored c to the cth second-
stage AWGR. Each of these requests can be routed on a
separate link to the AWGR. As there are also f/k requests

colored c to output fiber Fj , the FWCs at the cth AWGR can
be used to distribute k/f requests on f/k links to each output
fiber. The last stage of FWCs finishes the job by converting
their incoming wavelengths to the desired wavelengths.

Remark V.8. The details of the above proof can be done in a
similar fashion as in Theorem III.4. We were brief in this proof
due to the similarity and the space limit. The proof implicitly
contains a routing algorithm.

Theorem V.9. The construction is shown in Figure 5 is not
strictly nonblocking under the (λ, F, F ′)-request model.

Proof. The proof of this fact is quite simple, yet fairly tedious
to present formally. Inspection for the case f = 2 should give
the reader a good idea of how a blocking network state can
be constructed. We omit the details for this version of the
paper.

C. A rearrangeably nonblocking construction for f = 2 under
the (λ, F, F ′)-request model

In this section, we present an interesting and very simple
construction, albeit limited to f = 2. We believe that this
construction contains a good idea to be explored further.

The construction is shown in Figure 6. It is self-explanatory.
All wavelength converters are FWCs.
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Fig. 6. A two fiber construction that is RNB-1 using less than 2 stages of
FWCs.

Theorem V.10. The construction for f = 2 shown in Figure
6 is rearrangeably nonblocking under the (λ, F, F ′)-request
model.

Proof. Consider a fixed output fiber Fj , j = 0, 1. We first
claim that any request frame S of at most k/2 requests of the
form (λp, Fq, Fj), p ∈ Zk, q ∈ Z2, is realizable without using
the second-stage converters. In fact, we can route all requests
in S in a greedy manner. Consider a state of the cross-connect
where there are < k/2 connections already established to Fj .
Let (λp, Fq, Fj) be a new request to Fj . The input FWC for
λp allows k/2 different choice for λp to get out on Fj . Each
of these choices requires λp to be converted to a different
wavelength. As there are currently < k/2 wavelengths at the
multiplexor for Fj , there is always one available choice for
λp.

Next, we show that any request frame Sj of requests of the
form (λp, Fq, Fj), for a fixed j, is realizable. This fact will
complete the proof.



Let Sij be the subset of requests of Sj initiated from fiber
Fi. Without loss of generality, assume j = 0 and |Sj | = k.

Suppose |S10| ≥ k/2, then all requests in S10 can be
routed through the first output of the second AWGR. (The
first output is connected to output fiber F0.) For the set S00 we
can route them through separate outputs of the first AWGR.
These outputs are connected to FWCs, which shall convert
the requests to the free wavelengths. Note that this is possible
since |Sj | = k and there are k available wavelengths.

On the other hand, suppose |S10| < k/2. This set S10 along
with k/2−|S10| requests from S00 can be routed greedily. The
other k/2 requests from S00 make full use of k/2 wavelength
converters.

Remark V.11. The above proof implicitly yields a routing
algorithm, whose details we omit.

VI. COMPARISONS WITH KNOWN CONSTRUCTIONS

A. The (λ, F, F ′)-request model

Wilfong et al. [5] proposed several rearrangeably nonblock-
ing architectures, and also a strictly nonblocking construction
under the (λ, F, F ′)-model. Their architectures did not make
use of AWGRs. The basic components of their designs were
multiplexors and demultiplexors, 2 × 2 wavelength selec-
tive cross-connects (WSC) or optical add-drop multiplexors
(OADM), And a special component named wavelength inter-
changer (WI) which is capable of permuting the wavelengths
on its input fiber to the output. Essentially, a WI is equivalent
to k full-range wavelength converters (FWCs).

Their rearrangeably nonblocking designs include the WI-
Beneš and the WI-Cantor cross-connects. The WI-Beneš de-
sign needs about f lg f OADMs and f WIs, which are
equivalent to kf FWCs. The WI-Cantor design needs about
f(lg f)2 OADMs and f WIs, which are equivalent to kf
FWCs.

Their strictly nonblocking design is the Cantor/2-Beneš-
Cantor/2 (CBC) cross-connect. This architecture needs about
f(lg f)2 OADMs and f lg f WIs, which are equivalent to
kf lg f FWCs.

All the above three networks have O(lg f) number of stages.
Ramamirtham and Turner [8] proposed an architecture using

AWGRs, which is not rearrangeably nonblocking. However,
their simulations show that their construction can achieve a
throughput of 87% of a nonblocking switch. This construction
has essentially one stage, uses f k×k AWGRs, and fk FWCs.

As compared to the constructions above, our 2-stage RNB
construction in Section III uses 2fk LWCs, fb n×n AWGRs,
and one k × k AWGR.

It is quite difficult to compare these designs which use
different types of optical components. Number-wise, however,
our construction for this request model is definitely competi-
tive.

B. The (λ, F, λ′, F ′)-request model

Rasala and Wilfong [9], [21] described a strictly non-
blocking construction using the so-called WDM split cross-
connects, which consists of two WSCs a number of WIs in

the middle. If the number of WIs is 2f−1, then the split cross-
connect is strictly nonblocking. On the other hand, although
not mentioned in their papers, it is quite easy to show that n
WIs are necessary and sufficient for a split cross-connect to
be rearrangeably nonblocking.

In summary, a SNB split cross-connect requires two (2f −
1)×f WSCs and about (2f −1)k FWCs. A RNB split cross-
connect requires two f × f WSCs and about fk FWCs.

Our SNB construction from Section IV uses fb n × n-
AWGRs, 2n − 1 fb × fb-AWGRs, and a total of

kf + 2(2n − 1)fb = 5kf − 2fb

LWCs of various kinds. In the worst case when b = 1, we
need (5k − 2)f LWCs.

Our RNB construction from Section IV requires fb n× n-
AWGRs, n fb × fb-AWGRs, and a total of 3kf LWCs of
various kinds.

Again, it is quite difficult to compare these different con-
structions as we used more limited wavelength converters
than their full wavelength converters. On the other hand, the
AWGRs are much cheaper than the WSCs. One of our future
works is to find a good cost model to compare these different
constructions.

Table I compares all constructions in this paper with the
known constructions. Entries marked with “-” means NO, and
entries marked with “?” are open questions.

VII. CONCLUSIONS AND FUTURE WORKS

We have given a number of novel constructions of rear-
rangeably nonblocking (RNB) and strictly nonblocking (SNB)
WDM cross-connects (or switches) under two different request
models. The optical components we used are multiple stages
of limited-range wavelength converters (LWCs) and small to
medium sized arrayed waveguide grating routers (AWGRs).
Our designs are all relatively simple and easy to be laid out,
and are useful for both optical circuit-switching and optical
packet/burst switching.

There is no prior multistage SNB or RNB designs based
on AWGRs and certainly not LWCs. For example, the design
proposed in [8] which used a single stage of AWGRs is
blocking, in addition to using full-range wavelength converters
(FWCs). Other known designs have used wavelength selective
cross-connects and FWCs [5].

We have not considered a nonblocking degree called wide-
sense nonblocking [22] (WSNB), which is less restrictive than
strictly, yet more powerful than rearrangeably nonblocking,
One particular reason is that even in the classical switching
networks, there are relatively few results on WSNB. The
reader is refer to [23], [24] for some recent WSNB works.

Last but not least, developing a good cost, complexity and
performance model taking into consideration the switching
speed, the amplification needed, the signal-to-noise ratio, and
the integrability, for the purpose of evaluating and comparing
various WDM cross-connects, especially those constructed
from wavelength converters and AWGRs is an interesting
research topic.



TABLE I

TABULATED COMPARISONS OF DIFFERENT CONSTRUCTIONS. THE SECOND HALF OF THE TABLE CONTAINS OUR CONSTRUCTIONS, REFERRED TO BY THE

SECTION NUMBERS THEY WERE ANALYZED. NOTE THAT k = nb. WE USE p ⊗ q TO MEAN p AWGRS OF SIZE q. RNB/SNB-1 MEANS RNB/SNB UNDER

THE (λ, F, F ′)-MODEL. RNB/SNB-2 IS FOR THE (λ, F, λ′, F ′)-MODEL.

SNB-1 RNB-1 SNB-2 RNB-2 #FWCs #LWCs #AWGRs #WSCs #OADMs

WI-Beneš [5] - Yes - - kf - - - f lg f

WI-Cantor [5] - Yes - - kf - - - f(lg f)2

CBC [5] Yes Yes - ? kf lg f - - - f(lg f)2

Ref. [8] - - - - fk - f ⊗ k - -

Ref. [9], [21] Yes Yes Yes Yes (2f -1)k - - 2 of dim. -

f × (2f -1) -

Section III - Yes - - - 2fk fb ⊗ n - -

1 ⊗ k - -

Section IV-A - Yes - Yes - 3fk fb ⊗ n - -

n ⊗ fb - -

Section IV-B Yes Yes Yes Yes - 5fk-2fb fb ⊗ n - -

2n-1 ⊗ fb - -

Section V-A - - - - 2fk - f ⊗ k - -

Section V-B - Yes - Yes 3fk - 2f ⊗ k - -

Section V-C - Yes - - 3k - 2 ⊗ k - -

(f = 2)

REFERENCES

[1] Lucent Technologies Press Release, “Lucent Technologies
unveils untra-high-capacity optical system; Time Warner
Telecom first to announce it will deploy the system,” 2001,
http://www.lucent.com/press/0101/010117.nsa.html.

[2] Lucent Technologies Press Release, “Lucent Technologies engi-
neer and scientists set new fiber optic transmission record,” 2002,
http://www.lucent.com/press/0302/020322.bla.html.

[3] Lucent Technologies Website, “What is dense wave
division multiplexing (DWDM),” 2002, http://www.bell-
labs.com/technology/lightwave/dwdm.html.

[4] Zhigang Jing H. Jonathan Chao, Kung-Li Deng, “A petabit photonic
switch (p3s),” in Proceedings of IEEE Infocom’03, San Francisco, USA.,
April 2003.

[5] G. Wilfong, B. Mikkelsen, C. Doerr, and M. Zirngibl, “WDM cross-
connect architectures with reduced complexity,” Journal of Lightwave
Technology, vol. 17, no. 10, pp. 1732–1741, Oct 1999.

[6] L.Y. Lin, E.L. Goldstein, L.M. Lunardi, and R.W. Tkach, “Optical
crossconnects for high-capacity lightwave networks,” Journal of High
Speed Networks, vol. 8, no. 1, pp. 17–34, 1999.

[7] S. J. B. Yoo et al., “High-performance optical-label switching packet
routers and smart edge routers for the next generation internet,” IEEE
JSAC Special issue on High-Performance Optical-Electronic Switches-
Routers for High-Speed Internet, To appear.

[8] Jeyashankher Ramamirtham and Jonathan S. Turner, “Design of wave-
length converting switches for optical burst switching,” in Proceedings
of the 21st Annual Joint Conference of the IEEE Computer and Com-
munications Societies (INFOCOM). 2002, vol. 2, pp. 1162–1171, IEEE.

[9] April Rasala and Gordon Wilfong, “Strictly non-blocking WDM cross-
connects for heterogeneous networks,” in Proceedings of the Thirty-
Second Annual ACM Symposium on Theory of Computing (STOC’2000,
Portland, OR), New York, 2000, pp. 513–524, ACM.

[10] Jinhui Xu, Chunming Qiao, Jikai Li, and Guang Xu, “Efficient
channel scheduling algorithms in optical burst switching networks,” in
Proceedings of IEEE Infocom’03, San Francisco, USA., April 2003.

[11] C. Qiao and M. Yoo, “Optical burst switching (obs) - a new paradigm
for an optical internet,” Journal of High Speed Networks, vol. 8, no. 1,
pp. 69–84, 1999.

[12] Douglas B. West, Introduction to graph theory, Prentice Hall Inc.,
Upper Saddle River, NJ, 1996.

[13] C. Dragone, “An n × n optical multiplexor using a planar arrangment
of two star couplers,” IEEE Photonic Technology Letters, vol. 6, pp.
812–815, 1991.
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