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Abstract— We propose a graph model for the qualitative and
quantitative analyses of wavelength division multiplexed (WDM)
multicast/broadcast switching networks. The graph model, called
[w, f ]-distributor, turns out to be a generalized version of the
graph model for classical circuit switching theory, which include
important classes of graphs such as the distributors (also called
generalized connectors). We then give lower bounds for[w, f ]-
distributors and [w, f ]-distributors of a fixed depth. Many of the
results generalize corresponding results from circuit switching.
We also show that, under two prominent request models, strictly
nonblocking [w, f ]-distributors are equivalent.

I. I NTRODUCTION

With the advances of dense wavelength division multiplexing
(DWDM) technology [1–3], the number of wavelengths in a
wavelength division multiplexed (WDM) network increases to
hundreds or more per fiber, and each wavelength operates at
10Gbps (OC-192) or higher [4–6]. While raw bandwidth has
increased by more than four order of magnitudes over the last
decade or so, capacity of switches has only been up by a factor
of ten [7]. Switching speed is the bottleneck at the core of the
optical network infrastructure [7]. Consequently, a challenge
is to design cost-effective photonic switching fabrics that can
scale in size beyond a hundred of inputs and outputs, and at the
same time, switch fast (e.g., tens of nanoseconds or less).

The notion of “cost-effectiveness” is difficult to capture. One
can analyze and compare WDM switches both qualitatively and
quantitatively.

Qualitatively, we need to know if a design is strictly non-
blocking (SNB), rearrangeably nonblocking (RNB), and/or
widesense nonblocking (WSNB) under different request mod-
els [8–12] and different traffic patterns (unicast [9], multicast
[13]). Presumably each new design is guided by a particular
qualitative feature. For example, one might come up with an
RNB design under one request model, which may or may not
be SNB under another request model. One might also have an
intuitively good design, and hence need to know what qualita-
tive feature the design possesses. This question is challenging
in general. We shall see later that the graph models introduced
in this paper help, in several ways, answer these types of ques-
tions.

Quantitatively, comparing different designs, or asking how
close to be optimal a new design is, are very important ques-
tions. This is a multi-dimensional problem, as there are many
factors effecting the “cost” of a switch. Some factors such as
actual cost in dollars are business matters. Other factors in-
clude: the numbers of different types of switching components,

cross-talk, power consumption and attenuation, integratability
and scalability, blocking probabilities, and other factors such as
the multicast capacity [13].

It should be apparent that we cannot hope to have a cost
model that fits all needs. However, one can devise cost models
which give good approximated measures on how “complex” a
construction is. The notion of complexity should roughly cap-
ture as many practical parameters as possible.

In a recent paper, Ngo [14] outlined an intriguing approach to
model switch complexity which not only helps analyze WDM
switches quantitatively and qualitatively, but also suggests in-
teresting generalizations of classical switching network theory
[15, 16]. Ngo then gave several complexity results and ex-
plicit constructions of the so-called[w, f ]-connectors, which
are graphs that model one-to-one WDM switching networks.

In this paper, we continue with the aforementioned approach
and study graphs which model one-to-many WDM switching
networks. We shall give several complexity bounds and an
equivalence relationship of these graphs, some of which gen-
eralize known results in classical switching theory.

II. REQUEST MODELS AND NONBLOCKINGNESS

A general WDM cross-connect (WXC1) consists off input
fibers each of which can carry a setΛ = {λ1, . . . , λw} of w
wavelengths, andf ′ output fibers each of which can carry a set
Λ′ = {λ′1, . . . , λ′w′} of w′ wavelengths, wherefw = f ′w′.
This setting is referred to as theheterogeneouscase [11], which
is needed to connect subnetworks from different manufacturers.
From now on, letn = fw = f ′w′, unless specified otherwise.

Let F = {F1, . . . , Ff} andF ′ = {F ′
1, . . . , F

′
f ′} denote the

set of input and output fibers, respectively. There are many dif-
ferent request models for multicast WDM switching networks.
We introduce here the two most common request models:
Request model 1:A multicast request is of the form(λ, F,P)
whereλ ∈ Λ, F ∈ F , andP ⊆ Λ′ × F ′ such that noF ′ ∈ F ′

appears more than once inP. (That is, if (a, b) and(c, d) are
different pairs inP, thenb 6= d.) This restriction was made
since in practical networks it is often not necessary to have a
multicast connection going to the same output fiber on two dif-
ferent wavelengths [13,17].
Request model 2:A multicast request is of the form(λ, F,S),
whereλ ∈ Λ, F ∈ F , andS ⊆ F ′. Basically, in this case
we do not indicate the precise output wavelengths that the re-
quest should be routed to. We are only interested in the output

1We will use the term WXC to refer also to WDM switches where switching
speed maybe fast enough for optical packet/burst switching.



fibersS. A multicast tree satisfying this request must have a
leaf representing one wavelength from each fiber inS.

For each type of request models, three degree of non-
blockingness can be defined: rearrangeably nonblocking
(RNB), wide-sense nonblocking (WSNB), and strictly non-
blocking (SNB). The basic idea is that a RNB switching net-
work should be able to route a set of compatible requests given
in advance. In the WSNB case, requests are nonblocking pro-
vided that they are routed according to some algorithm. In the
SNB case, a new request compatible with any valid network
state can always be routed.

One might expect that the complexity a switching network
could be less under model 2 than model 1, since nonblocking
under model 1 implies nonblocking under 2. What is interesting
is that this is not always the case, as we shall see later.

Due to space limitation, we have been informal in the de-
scriptions above. The reader familiar with switching theory
[18, 19] should not have difficulties understanding these con-
cepts. We shall be more rigorous in our graph definitions to
come.

III. A GRAPH MODEL

In this section, we describe a graph model proposed by Ngo
[14], which was used to study one-to-one communication is
WDM switching networks. We shall then extend this model
to the one-to-many communication case.

We classify optical switching components into fibers and
other switching components. For any switch design, we apply
the following procedure to construct a directed acyclic graph
(DAG) from the design: (a) replace each fiber by a set of ver-
ticesΛ ∪ Λ′, which represents all possible wavelengths which
can be carried on the fiber; (b) the edges of the DAG are defined
according to the functional capability of switching components
in the design. The edges connect wavelengths (i.e. vertices) on
the inputs of each switching component to the outputs in accor-
dance with the functionality of the switching component.

Due to space limitation, we shall be brief on this construc-
tion. However, the reader will undoubtedly see the basic idea.
As an example, Figure 1 shows how to turn an arrayed waveg-
uide grating router (AWGR), a full-range wavelength converter
(FWC), and a multiplexor (MUX) into edges. On the other
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Fig. 1. Turning optical components into parts of a graph. A fiber is replaced
by a set of vertices representing the wavelengths it can carry. Other compo-
nents define edges connecting input wavelengths to output wavelengths. For
the AWGR, MUX, and FWC, we illustrate withw = 3. Edges are directed
from left to right.

hand, Figure 2 shows a complete construction of the DAG from
the design on the left. It is easy to see thata set of compatible
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Fig. 2. A WDM switch design and its corresponding DAG.

routes from input wavelengths to output wavelengths corre-
spond to a set of vertex disjoint paths from the inputs to the
outputs of the DAG.

There are two main parameters of the DAG, which capture
the notion of “switch complexity” discussed earlier.

The number of edges of the DAG, called thesize of the
DAG, is roughly proportional to the total cost of various compo-
nents in the design. For example, a full-range wavelength con-
verter (FWC) corresponds to3w edges while a wavelength in-
terchanger [11] with corresponds tow2 edges; aw×w AWGR
corresponds tow2 edges, a wavelength interchanger (WI) also
corresponds tow2 edges, while aw × w WDM crossbar corre-
sponds tow4 edges, etc. Since WIs and WDM crossbars are
more expensive than FWCs and AWGRs, this model makes
sense. Other components follow the same trend.

The reader might have noticed that different components
contribute different “weights” to the total cost, hence summing
up the number of edges may not give the “right” cost. To answer
this doubt, we make three points. Firstly, as argued earlier one
cannot hope to have a perfect model which fits all needs, and
part of the notion of cost is a business matter. Our first aim is at
a more theoretical level. Secondly, this is the first step toward a
good cost model. One certainly can envision weighted graphs
as the next step. Thirdly, we certainly can and should still use
more traditional cost functions such as the direct counts of the
number of each components and compare them individually.

The second measure on the DAG is itsdepth, i.e. the length
of a longest path from any input to any output. As signals pass-
ing through different components of a design, they lose some
power. The depth of the DAG hence reflects power loss, and in
some cases even the signal delay. Again, different components
impose different power loss factors. Hence, other information
need to be taken into account to estimate power loss. However,
it is clear that network depth is an important measure.

Last but not least, this DAG model provides a nice bridge
between classical switching theory and WDM switching the-
ory. As we shall see in later sections, this model helps us
tremendously in answering qualitative questions about a par-
ticular construction. For example, if anwf -input wf -output
DAG must have sizeΩ(f2w2) to be SNB, then we know for
sure that a construction of cost (reflected by the DAG’s size)
o(f2w2) cannot be SNB.

IV. M ORE RIGOROUS SETTINGS

In this section, we shall give more rigorous descriptions
of the DAG models motivated from the last section. Our
graphs shall capture different degrees of nonblockingness and
the tradeoff between size and depth of a network.



A [w, f ]-networkis a directed acyclic graph

N = (V,E;A,B;B1, . . . , Bf )

with vertex setV and edge setE, a setA of n = wf distin-
guished nodes calledinputs and a disjoint setB of n distin-
guished nodes calledoutputs. The setB is further partitioned
into f subsetsB1, . . . , Bf of sizew each. The setsBi repre-
sent output fibers, and their elements represent wavelengths. To
shorten notations, we shall writeN = (V,E;A,B), with the
Bi being implicit. The vertices inV −A∪B are calledinternal
vertices. The in-degrees of the inputs and the out-degrees of the
outputs are zero. Thesizeof a network is its number of edges.
Thedepthof a network is the maximum length of a path from
an input to an output. Note that we do not specify input fibers
and their wavelengths since they are indistinguishable as far as
our request models are concerned.

(a) Request model 1
For any setX, let P (X) denote the power set ofX. Given

a [w, f ]-networkN = (V,E;A,B), a pairD = (a, S) ∈ A ×
P (B), where|S ∩ Bi| ≤ 1,∀i, is called adistribution request
under model 1(DR1) for N . As we are only concerned with
distribution networks in this paper, the term “request” should
be implicitly understood as “distribution request” henceforth.

A distribution assignment under model 1(DA1) is a setD
of DR1 where no two requests share an input nor an output. A
DR1 D = (a, S) is compatiblewith a DA1 D iff D ∪ {D} is
also aDA1. A distribution routeR for a DR1 D = (a, S) is
a (directed) tree rooted ata whose leaves are nodes inS. We
also sayR realizesD. A stateofN is a setR of vertex disjoint
distribution routes. Each state ofN realizes a uniqueDA1, one
route per request. ADA1 D is realizableiff there is a network
state realizing it. A request iscompatiblewith a state if it is
compatible with theDA1 realized by the state.

A rearrangeable (RNB)[w, f ]1-distributor is a [w, f ]-
network in which anyDA1 is realizable.

A strictly nonblocking (SNB)[w, f ]1-distributor is a [w, f ]-
networkN in which given any network stateR realizing aDA1

D, and given a new requestD compatible withD, there exists a
routeR such thatR∪{R} is a network state realizingD∪{D}.

As requests come and go, a strategy to pick new routes for
new requests is called arouting algorithm. A [w, f ]-network
is called awidesense nonblocking (WSNB)[w, f ]1-distributor
with respect to a routing algorithmA if A can always pick a
new route for a new request compatible with the current net-
work state. We can also replaceA by a class of algorithmsA.
In general, an[w, f ]-networkN is WSNB iff it is WSNB with
respect tosomealgorithm.

We often consider two classes of functions on each network
type: (a) the minimum size of a network, and (b) the mini-
mum size of a network with a given depth. The main theme
of research on classical switching networks is to investigate the
tradeoffs between size and depth [16,20].

Let rd1(w, f), wd1(w, f), and sd1(w, f) denote the min-
imum size of an RNB, WSNB, and SNB[w, f ]1-distributor,
respectively. Letrd1(w, f, k), wd1(w, f, k), andsd1(w, f, k)
denote the minimum size of an RNB, WSNB, and SNB[w, f ]1-
distributor with depthk, respectively.

RemarkIV.1. In the classical switching literature, distributors
are also calledgeneralized connectors.

(b) Request model 2
The difference between model 2 and model 1 is that a re-

quest only specify the set of output fibers, not the specific wave-
lengths on the fibers.

Given a [w, f ]-network N , a distribution request under
model 2(DR2) is a pairD = (a, T ) ∈ A × P ({1, . . . , f}).
A distribution routeR for a DR2 D = (a, T ) is a tree rooted
at a with exactly |T | leaves, one in eachBj , j ∈ T . A dis-
tribution assignment under model 2(DA2) is a setD of DR2

such that no two inputs appear twice inD, and that for each
j ∈ {1, . . . , f},

|{T : (a, T ) ∈ D andj ∈ T}| ≤ w. (1)

In words, no output fiber is involved in more thanw requests.
The rest of the definitions are similar to the ones under model
1. The following observations are straightforward from defini-
tions.

Proposition IV.2. An SNB, WSNB, RNB[w, f ]1-distributor
is also an SNB, WSNB, RNB[w, f ]2-distributor, respectively.
Consequently,xd2(·) ≤ xd1(·), wherex stands for eitherr, w
or s, and the· is either(w, f) or (w, f, k).

Proposition IV.3. We have

rdi(·) ≤ wdi(·) ≤ sdi(·),

wherei = 1, 2, and the· is either(w, f) or (w, f, k).

V. ON THE EQUIVALENCE OF STRICTLY NONBLOCKING

[w, f ]-DISTRIBUTORS UNDER TWO REQUEST MODELS

The following theorem essentially shows that being SNB in
the more relaxed request model2 gives us no advantage as far
as network cost is concerned.

Theorem V.1. Letw, f be positive integers wheref ≥ 2. Then,
a [w, f ]-network is an SNB[w, f ]1-distributor if and only if it
is an SNB[w, f ]2-distributor.

Proof. It is obvious that an SNB[w, f ]1-distributor is also an
SNB [w, f ]2-distributor. We now show the converse.

LetN = (V,E;A,B) be an SNB[w, f ]2-distributor. (Recall
that the partitionB = B1∪· · ·∪Bf is implicit.) LetR be a state
of N , namelyR is a set of vertex disjoint trees whose roots are
inputs, whose leaves are outputs ofN . Let D = (a, S) be a
DR1 compatible withR. We shall show that there is a treeR
rooted ata with leavesS, andR is vertex disjoint from trees
in R. For eachs ∈ S, let Bj(s) denote the output band in
which s is a member of. Recall that, by definition ofDR1,
Bj(s) 6= Bj(s′), for memberss 6= s′ of S.

The main idea is that we shall show there is a stateS of N
such thatR ⊆ S, a is free inS, and that eachs in S is the only
free output inBj(s). Suppose such a stateS can be constructed.
Consider the request(a, T ), whereT = {j(s) | s ∈ S}. This
request is compatible withS under model 2. SinceN is an
SNB [w, f ]2-distributor, there is a treeR realizing(a, T ). This



is the tree we are looking for, as the leaves of the tree have to
be precisely those inS.

To show the existence of such a stateS, let us consider two
cases as follows.
Case 1:there is some route inRwith more than one leaf.LetX
(Y ) be the number of free inputs (outputs) inR. Then,a ∈ X
and|X| > |Y |, because the total numbers of inputs and outputs
are the same. Now, letk be such thatBk has some free output
in R. Let x be a member ofX − {a}. The request(x, k) is
compatible withR; hence, there is a routeR1 from x to some
output inBk for whichR∪{R1} is a state. Repeat this process
|Y | times, we will have a stateR′ = R ∪ {R1, . . . , R|Y |} in
which there is no more free outputs, yeta is still free. Now,
remove fromR′ all routes whose endpoints are those inS, we
get the desired stateS.
Case 2:all routes inR are one-to-one routes.This is a much
trickier case, as|X| = |Y | and a has to be involved in the
“filling up” process. As in case 1, we make requests of the
form (x, k), x ∈ X. The vertexa is somewhat special, we
make sure that a request(a, j(s̄)) was created first, for some
s̄ ∈ S. The rest of the(x, k) requests are arbitrary as before.
For eachx ∈ X, let Rx denote the corresponding route for the
request(x, k). As in case 1, letR′ = R∪{Rx | x ∈ X} be the
final state.

If Ra ends ats̄, then we are lucky. Remove fromR′ the
routesRa and all theRx which end at somes in S, we get the
desired stateS.

If we are not lucky,Ra ends at somet in Bj(s̄), t 6= s̄. Let
ā ∈ X be an input such thatRā ends at̄s. Let b be any input
whose corresponding route inR′ is (b, v1, . . . , vp, u), where
u ∈ Bi for somei 6= j(s̄). (Sincef ≥ 2, we are sure that there
is somei 6= j(s̄).)

Let S ′ = R′ − {Ra, Rā, Rb}, which is a network state.
We claim that there is an(ā, t)-route compatible withS ′.

Consider the stateS ′ ∪ {Ra}. The request(b, j(s̄)) is com-
patible with the state. Moreover,̄s is the only free output in
Bj(s̄) in the stateS ′. Thus, there is a(b, s̄)-routeRbs̄ such that
S ′ ∪ {Ra, Rbs̄} is a state. Now, in the stateS ′ ∪ {Rbs̄} the
outputt is the only free output inBj(s̄). Hence, the compati-
ble request(ā, j(s̄)) has to be routed tot. Hence, there is an
(ā, t)-route compatible withS ′ as claimed.

To this end, we further consider two cases as follows.
(2a)among all(ā, t)-routes which are compatible withS ′, there
is a routeRāt which is vertex disjoint fromRb. In this case,
S ′ ∪ {Rb, Rāt} is a state in whicha and s̄ are the only free
vertices. A request(a, j(s̄)) then brings us back to the “lucky”
situation considered earlier.
(2b) every(ā, t)-route compatible withS ′ intersectsRb at some
point. LetRāt be such an(ā, t)-route whose last intersection
vertex on(v1, . . . , vp) has the largest index, sayvq, where1 ≤
q ≤ p. Then,Rāt is composed of two parts: the part from̄a to
vq, and the part fromvq to t.

Now, let Rbt be a (b, t)-path consisting of the part
(b, v1, . . . , vq) concatenated with the(vq, t)-part ofRāt. Then,
certainlyS ′ ∪ {Rbt} is a state in which the request(a, j(s̄)) is
valid, ands̄ is the only free output inBj(s̄). Hence, there is an
(a, s̄)-routeRas̄ which is compatible withS ′ ∪ {Rbt}.

If the routeRas̄ is vertex disjoint fromRb, then the request
(ā, j(s̄)) under the stateS ′∪{Rb, Ras̄} can only be satisfied by

routing ā to t. The resulting state brings us back to the “lucky”
situation.

For the contrary, supposeRas̄ intersectsRb at some vertex.
Then, due to the fact thatRas̄ is vertex disjoint fromRbt, the
vertices in the intersection must all come aftervq. Let vq′ , q′ >
q, be a vertex in the intersection ofRas̄ andRb. Let Rbs̄ be the
route obtained by concatenating the route(b, v1, . . . , vq′) and
the (vq′ , s̄)-part of Ras̄. In the stateS ′ ∪ {Rbs̄}, the request
(ā, j(s̄)) is valid. A route realizing this request must intersect
Rb (since we are in case 2b) at a point aftervq′ (since we are in
the stateS ′ ∪ {Rbs̄}), contradicting the maximality ofq.

Corollary V.2. Given positive integersw, f, and k, we have
sd1(w, f) = sd2(w, f) andsd1(w, f, k) = sd2(w, f, k).

Corollary V.3. sd1(w, f, 1) = sd2(w, f, 1) = (wf)2.

Proof. It is easy to see thatsd1(w, f, 1) = (wf)2.

VI. L OWER BOUNDS FOR REARRANGEABLE

[w, f ]-DISTRIBUTORS

An n-networkis a directed acyclic graphG = (V,E;A,B)
with a subsetA of n vertices calledinputsand a disjoint subset
B of n vertices calledoutputs. The inputs (outputs) have in-
degree (out-degree) zero.

Let A = {a0, . . . , an−1} andB = {b0, . . . , bn−1}. An n-
shifter is ann-networkG = (V,E;A,B) such that for each
k ∈ {0, . . . , n− 1}, there aren vertex disjoint paths joiningai

to b(i+k) mod n, for i = 0, . . . , n.
The following lemma was shown by Pippenger and Yao [21].

Lemma VI.1. An n-shifter of depthk has at leastkn1+ 1
k

edges.

Theorem VI.2. For k ≥ 2, a depth-k [w, f ]1-distributor must
have size at leastk(wf)1+1/k. Specifically

rd1(w, f, k) ≥ k(wf)1+1/k. (2)

Proof. LetN = (V,E;A,B) be a depth-k [w, f ]1-distributor.
Let n = wf . Arbitrarily assign labels to the inputs inA
and outputs inB so thatA = {a0, . . . , an−1} and B =
{b0, . . . , bn−1}. For eachq = 0, . . . , n − 1, consider the fol-
lowing set

Dq =
{
(ai, {b(i+q) mod n}) | i ∈ {0, . . . , n− 1}

}
.

ClearlyDq is aDA1. Hence, there existsn vertex disjoint paths
joining ai to b(i+q) mod n. Consequently,N is ann-shifter of
depthk. Our result now follows from Lemma VI.1.

Corollary VI.3. For k ≥ 2, rd1(w, f) ≥ ewf(ln f + lnw),
wheree is the base of the natural log.

Proof. The functiong(k) = k(wf)1+1/k, with k ≥ 1, is mini-
mized atk = ln(wf).

Let Tk(f) be a directed rooted tree withf leaves and depth
at mostk where all edges directed to the direction of the leaves.
Let P1, . . . , Pf be thef paths from the root to the leaves of
Tk(f). Define

∆(Tk(f)) :=
f∑

j=1

∑
v∈Pj

out-degree(v). (3)



For the case of[w, f ]2-distributors, we shall make use of an
idea and the following lemma from [21].

Lemma VI.4. ∆(Tk(f)) ≥ kf1+ 1
k .

Theorem VI.5. For k ≥ 2, a depth-k [w, f ]2-distributor must
have size at leastkwf1+1/k. Specifically

rd2(w, f, k) ≥ kwf1+1/k. (4)

Proof. Note that we are working under request model 2. As
usual, letn = wf . Let N = (V,E;A,B) be a [w, f ]2-
distributor, whereA = {a1, . . . , an}. For eachq in {1, . . . , f},
define a function

φq(i) = (i + q − 1 (mod f)) + 1, 1 ≤ i ≤ n.

Also define the followingDA2, for eachq,

Dq := {(ai, {φq(i)}) | 1 ≤ i ≤ n} .

SinceN is a [w, f ]2-distributor, for eachq = 1, . . . , f there
aren vertex disjoint pathsPiq, i = 1, . . . , n, such thatPiq joins
ai to some vertex inBφq(i).

To this end, for1 ≤ i ≤ n, 1 ≤ q ≤ f , ande ∈ E, let

µ(i, q, e) :=

{
1 if e is an arc emitted from a node onPiq

0 otherwise.

Fix an i, assemble allf pathsPiq into a treeTi (keeping only
the initial common segments of the paths), thenTi is a tree with
f leaves and depth at mostk.

For each vertexv ∈ V , let out-degreeTi
(v) denote the out-

degree ofv in Ti. It is easy to see the following∑
e∈E

µ(i, q, e) ≥
∑

v∈Piq

out-degreeTi
(v). (5)

Basically, the left hand side counts also some arcs not inTi (but
starts onPiq).

Summing (5) overi = 1, . . . , n andq = 1, . . . , f , we get

n∑
i=1

f∑
q=1

∑
e∈E

µ(i, q, e) ≥
n∑

i=1

f∑
q=1

∑
v∈Piq

out-degreeTi
(v)

=
n∑

i=1

∆(Ti)

≥ nkf1+1/k. (6)

The last inequality comes from Lemma (VI.4).
On the other hand, since the pathsPiq for a fixedq are vertex

disjoint, we have
n∑

i=1

µ(i, q, e) ≤ 1.

Consequently,

n∑
i=1

f∑
q=1

∑
e∈E

µ(i, q, e) =
f∑

q=1

∑
e∈E

n∑
i=1

µ(i, q, e) ≤ f |E|. (7)

Together, (6) and (7) lead to|E| ≥ kwf1+1/k as desired.

We get a similar result as the one in Corollary VI.3.

Corollary VI.6. For k ≥ 2, rd2(w, f) ≥ ewf ln f , wheree is
the base of the natural log.
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