Multiwavelength Distribution Networks

Hung Q. Ngo
Computer Science and Engineering,
State University of New York at Buffalo.
hungngo@cse.buffalo.edu

Abstract— We propose a graph model for the qualitative and cross-talk, power consumption and attenuation, integratability
quantitative analyses of wavelength division multiplexed (WDM)  and scalability, blocking probabilities, and other factors such as
multicast/broadcast switching networks. The graph model, called the multicast capacity [13].

[w, f]-distributor, turns out to be a generalized version of the It should b t that th to h t
graph model for classical circuit switching theory, which include shou . € apparent that we cannot hope . 0 have a cos
important classes of graphs such as the distributors (also called model that fits all needs. However, one can devise cost models
generalized connectors). We then give lower bounds fdw, f]-  which give good approximated measures on how “complex” a
distributors and [w, f]-distributors of a fixed depth. Many of the  construction is. The notion of complexity should roughly cap-
results generalize corresponding results from circuit switching. ture as many practical parameters as possible
We also show that, under two prominent request models, strictly | i N 147 outlined an intri " ht
nonblocking [w, f]-distributors are equivalent. n arec_en paper, 90[ ]_OU Ined an intriguing approach to
model switch complexity which not only helps analyze WDM
switches quantitatively and qualitatively, but also suggests in-
I. INTRODUCTION teresting generalizations of classical switching network theory

) o _ . [15,16]. Ngo then gave several complexity results and ex-
With the advances of dense wavelength division muIUpngwgiCit constructions of the so-callef, f]-connectors, which
(DWDM) technology [1-3], the number of wavelengths in @ye graphs that model one-to-one WDM switching networks.
wavelength division multiplexed (WDM) network increases to |, this paper, we continue with the aforementioned approach
hundreds or more per_fiber, and each _Wavelength o_perate%ﬁ(g study graphs which model one-to-many WDM switching
10Gbps (OC-192) or higher [4-6]. While raw bandwidth hagetworks. We shall give several complexity bounds and an
increased by more than four order of magnitudes over the '%%fuivalence relationship of these graphs, some of which gen-

decade or so, capacity of switches has only been up by a factpfjize known results in classical switching theory.
of ten [7]. Switching speed is the bottleneck at the core of the

optical network infrastructure [7]. Consequently, a challenge
is to design cost-effective photonic switching fabrics that can
scale in size beyond a hundred of inputs and outputs, and at thé general WDM cross-connect (WXEconsists off input
same time, switch fast (e.g., tens of nanoseconds or less). fibers each of which can carry a set= {A;,..., Ay} of w
The notion of “cost-effectiveness” is difficult to capture. On&/avelengths, and’ output fibers each of which can carry a set

can analyze and compare WDM switches both qualitatively add = {A1;---, A,/ } of v’ wavelengths, wher¢w = f'w'.
quantitatively. This setting is referred to as theterogeneousase [11], which

Qualitatively, we need to know if a design is strictly noniS Neéeded to connect subnetworks from different manufacturers.

blocking (SNB), rearrangeably nonblocking (RNB), and/df"om nowon, let = fw = f’w’, unless specified otherwise.
widesense nonblocking (WSNB) under different request mod-L€t# = {F1,..., Fy} and7" = {Fj, ..., F},} denote the
els [8-12] and different traffic patterns (unicast [9], multica§t€t Of input and output fibers, respectively. There are many dif-
[13]). Presumably each new design is guided by a particul“&rre.”t request models for multicast WDM switching networks.
qualitative feature. For example, one might come up with af{€ introduce here the two most common request models:
RNB design under one request model, which may or may rfggduest model 1:A multicast request is of the for\, F', P)

be SNB under another request model. One might also have'd#ereA € A, F' € F, andP C A’ x 7 such that nad™ € 7’
intuitively good design, and hence need to know what qualitgPPears more than oncen (That is, if (a, b) and(c, d) are

tive feature the design possesses. This question is challendgifgrent pairs inP, thenb # d.) This restriction was made

in general. We shall see later that the graph models introducdfice in practical networks it is often not necessary to have a
in this paper help, in several ways, answer these types of qu@éj_mcast connection going to the same output fiber on two dif-
tions. ferent wavelengths [13, 17].

Quantitatively, comparing different designs, or asking hoffeduest model 2:A multicast request is of the forif, %, 5),
close to be optimal a new design is, are very important quééherer € A, F" € F, andS ¢ 7. Basically, in this case
tions. This is a multi-dimensional problem, as there are maM{f do not indicate the precise output wavelengths that the re-
factors effecting the “cost” of a switch. Some factors such &&'€st should be routed to. We are only interested in the output

actual cost in dollars a!’e business matters. _Other factors INe will use the term WXC to refer also to WDM switches where switching
clude: the numbers of different types of switching componentgeed maybe fast enough for optical packet/burst switching.

II. REQUEST MODELS AND NONBLOCKINGNESS



fibersS. A multicast tree satisfying this request must have a oo ol
leaf representing one wavelength from each fibe$.in 4:‘:: 252 8<Z ZXZ@Z 9
For each type of request models, three degree of non- oo o
blockingness can be defined: rearrangeably nonblocking ! ><
(RNB), wide-sense nonblocking (WSNB), and strictly non- 2 x 2 I N . 8}0
blocking (SNB). The basic idea is that a RNB switching net- e G}\gégX8@g -

work should be able to route a set of compatible requests given L
in advance. In the WSNB case, requests are nonblocking PEY;
vided that they are routed according to some algorithm. In the
SNB case, a new request compatible with any valid network
state can always be routed. routes from input wavelengths to output wavelengths corre-

One might expect that the complexity a switching networkpond to a set of vertex disjoint paths from the inputs to the
could be less under model 2 than model 1, since nonblockigtputs of the DAG.
under model 1 implies nonblocking under 2. What is interesting There are two main parameters of the DAG, which capture
is that this is not always the case, as we shall see later. the notion of “switch complexity” discussed earlier.

Due to space limitation, we have been informal in the de- The number of edges of the DAG, called thize of the
scriptions above. The reader familiar with switching theor?AG. is roughly proportional to the total cost of various compo-
[18, 19] should not have difficulties understanding these coRents in the design. For example, a full-range wavelength con-
cepts. We shall be more rigorous in our graph definitions ¥§rter (FWC) corresponds tw edges while a wavelength in-
come. terchanger [11] with corresponds#¢ edges; av x w AWGR

corresponds ta? edges, a wavelength interchanger (WI) also
corresponds tav? edges, while av x w WDM crossbar corre-
I1l. A GRAPH MODEL sponds tow* edges, etc. Since WIs and WDM crossbars are

In this section, we describe a graph model proposed by Nggre expensive than FWCs and AWGRs, this model makes

[14], which was used to study one-to-one communication nse. Other components follow the same trend.

WDM switching networks. We shall then extend this model The reader might have noticed that different components
to the one-to-many communication case contribute different “weights” to the total cost, hence summing

We classify optical switching components into fibers an p the number of edges may not give the “right” cost. To answer

o . . this doubt, we make three points. Firstly, as argued earlier one
other switching components. For any switch design, we a ’ o
g b y 9 PR nnot hope to have a perfect model which fits all needs, and

the following procedure to construct a directed acyclic grap . . . : .
(DAG) from the design: (a) replace each fiber by a set of ve[?f"rt of the notion of cost is a business matter. Our first aim is at

ticesA U A’, which represents all possible wavelengths which more theoretical level. Secondly, this is the first step toward a

can be carried on the fiber; (b) the edges of the DAG are defin%%Od cost model. Oﬂe certainly can envision weighted graphs
S the next step. Thirdly, we certainly can and should still use

according to the functional capability of switching componenfs - . .
9 P y 9 P %re traditional cost functions such as the direct counts of the

in th ign. Th nnect wavelengths (i.e. verti
the desig e edges connect wavelengths (i.e. ve tces)na mber of each components and compare them individually.

the inputs of each switching component to the outputs in accOX : :
dance with the functionality of the switching component. The second measure on the DAG isdtpth i.e. the length

Due to space limitation, we shall be brief on this constru?or—:c atlr?rr;%esht g?fgrx[ﬂcﬂ 'gﬁgtn:g 3?3;(3::2”; A;iemglr:) ilg girsnsé
tion. However, the reader will undoubtedly see the basic ideag g P gn, they

As an example, Figure 1 shows how to turn an arrayed wav ower. The depth of the DAG hence reflects power loss, and in

) ) m ven the signal delay. Again, different componen
uide grating router (AWGR), a full-range wavelength convertés(r% € cases eve the signal delay. Again, differe t'co pone ts
. . impose different power loss factors. Hence, other information
(FWC), and a multiplexor (MUX) into edges. On the other : :
need to be taken into account to estimate power loss. However,

it is clear that network depth is an important measure.

2. A WDM switch design and its corresponding DAG.

_ —{ S L EWX Last but not least, this DAG model provides a nice bridge
afiber — between classical switching theory and WDM switching the-
o o 9 2 o 2 ory. As we shall see ir_l later s_ect_ions, this_ model helps us
oA o o o@o o tremendously in answering qualitative questions about a par-
é g g © o ticular construction. For example, if anf-input w f-output
O . . . DAG must have sizé)(f?w?) to be SNB, then we know for

8 8 8 sure that a construction of cost (reflected by the DAG's size)

2,2
Fig. 1. Turning optical components into parts of a graph. A fiber is replacgo(f w ) cannot be SNB.
by a set of vertices representing the wavelengths it can carry. Other compo-

nents define edges connecting input wavelengths to output wavelengths. For IV. MORE RIGOROUS SETTINGS
the AWGR, MUX, and FWC, we illustrate withv = 3. Edges are directed ] o ) ) o
from left to right. In this section, we shall give more rigorous descriptions

of the DAG models motivated from the last section. Our
hand, Figure 2 shows a complete construction of the DAG frogmaphs shall capture different degrees of nonblockingness and
the design on the left. It is easy to see taatet of compatible the tradeoff between size and depth of a network.



A [w, f]-networkis a directed acyclic graph RemarklV.1. In the classical switching literature, distributors
are also calledgeneralized connectors
N = (V,E;A,B;By,...,By)
(b) Request model 2
with vertex setl” and edge sef/, a setd of n = wf distin- The difference between model 2 and model 1 is that a re-
guished nodes calleitiputs and a disjoint seB of n distin- quest only specify the set of output fibers, not the specific wave-
guished nodes callesutputs The setB is further partitioned lengths on the fibers.
into f subsetsBs, ..., By of sizew each. The set®,; repre- Given a [w, f]-network N, a distribution request under
sent output fibers, and their elements represent wavelengthsmiadel 2(DRy) is a pairD = (a,T) € A x P({1,...,f}).
shorten notations, we shall writ¢" = (V, E; A, B), with the A distribution routeR fora DRy D = (a,T) is a tree rooted
B, being implicit. The vertices il — AU B are callednternal at a with exactly |T'| leaves, one in eacB;,j € T. A dis-
vertices. The in-degrees of the inputs and the out-degrees oftifieution assignment under model(® A,) is a setD of DR,
outputs are zero. Thazeof a network is its number of edges.such that no two inputs appear twicedh and that for each
Thedepthof a network is the maximum length of a path fromy € {1,..., f},
an input to an output. Note that we do not specify input fibers
and their wavelengths since they are indistinguishable as far as HT:(a,T) e Dandj € T} < w. (1)
our request models are concerned.

In words, no output fiber is involved in more thanrequests.
() Request model 1 The rest of the definitions are similar to the ones under model

For any setX, let P(X) denote the power set of. Given 1 Tpe following observations are straightforward from defini-
alw, f]-network V' = (V, E; A, B), apairD = (a,S) € A X {ons.

P(B), where|S N B;| < 1,Vi, is called adistribution request
under model XDR;) for A'. As we are only concerned with Proposition 1V.2.. An SNB, WSNB, RNBo, f];-distributor
distribution networks in this paper, the term “request” shoul§ also an SNB, WSNB, RNR, f],-distributor, respectively.
be implicitly understood as “distribution request” henceforth. Consequentlyxd,(-) < xd, (-), wherex stands for either, w
A distribution assignment under mode(DA;) is a setD  Of s, and the- is either(w, f) or (w, f, k).
of DR; where no two requests §hare an inpgt nor an OUtPUt-Pﬁ*oposition IV.3. We have
DRy D = (a,S) is compatiblewith a DA; D iff DU {D} is
also aDA;. A distribution routeR fora DRy D = (a,S) is rd;(-) < wd;(+) < sdi(-),
a (directed) tree rooted atwhose leaves are nodes$h We
also sayR realizesD. A stateof N is a setR of vertex disjoint wherei = 1,2, and the is either(w, f) or (w, f, k).
distribution routes. Each state.&f realizes a uniqu® A1, one
route per request. M A; D is realizableiff there is a network
state realizing it. A request isompatiblewith a state if it is
compatible with theD A, realized by the state.
A rearrangeable (RNB)[w, f];-distributor is a [w, f]- The following theorem essentially shows that being SNB in
network in which anyD 4, is realizable. the more relaxed request modegives us no advantage as far
A strictly nonblocking (SNB)w, f];-distributor is a[w, f]- as network cost is concerned.

network\in which given any network stat@ realizing 2D A1 Theorem V.1. Letuw, f be positive integers whege> 2. Then,
D, and given a new request compatible withD, there exists a 5 1, f]-network is an SNBuw, f],-distributor if and only if it
route R such thaR U{ R} is a network state realizifl@U{D}. g an SNBw, f],-distributor.

As requests come and go, a strategy to pick new routes for
new requests is called rauting algorithm A [w, f]-network Proof. It is obvious that an SNBuw, f];-distributor is also an
is called awidesense nonblocking (WSNRB), f];-distributor SNB [w, f]2-distributor. We now show the converse.
with respect to a routing algorithmA if A can always pick a LetN = (V, E; A, B) be an SNBw, f]»-distributor. (Recall
new route for a new request compatible with the current nehat the partition3 = B,U- - -UBy isimplicit.) LetR be a state
work state. We can also replageby a class of algorithmgl. of A/, namelyR is a set of vertex disjoint trees whose roots are
In general, arjw, f]-network\ is WSNB iff it is WSNB with  inputs, whose leaves are outputs/déf Let D = (a,S) be a
respect tesomealgorithm. DR, compatible withR. We shall show that there is a tré&
We often consider two classes of functions on each netwaidoted ata with leavessS, and R is vertex disjoint from trees
type: (a) the minimum size of a network, and (b) the minin R. For eachs € S, let Bj(, denote the output band in
mum size of a network with a given depth. The main themehich s is a member of. Recall that, by definition iR,
of research on classical switching networks is to investigate thg ) # B;(,/), for members; # s’ of S.
tradeoffs between size and depth [16, 20]. The main idea is that we shall show there is a sfate#f A/
Let rdq(w, f), wdi(w, f), and sd; (w, f) denote the min- suchthatR C S, ais free inS, and that each in S is the only
imum size of an RNB, WSNB, and SNRv, f];-distributor, free outputin3;,. Suppose such a stafecan be constructed.
respectively. Letd,(w, f,k), wdi(w, f, k), andsd; (w, f,k) Consider the request, T'), whereT = {j(s) | s € S}. This
denote the minimum size of an RNB, WSNB, and SNBf];- request is compatible witl§ under model 2. Sincé/ is an
distributor with depthk, respectively. SNB [w, f]-distributor, there is a tre® realizing(a, T'). This

V. ON THE EQUIVALENCE OF STRICTLY NONBLOCKING
[w, f]-DISTRIBUTORS UNDER TWO REQUEST MODELS



is the tree we are looking for, as the leaves of the tree havertutinga to t. The resulting state brings us back to the “lucky”

be precisely those if. situation.
To show the existence of such a st&telet us consider two  For the contrary, suppos,s intersectsR?, at some vertex.
cases as follows. Then, due to the fact thak, s is vertex disjoint fromRy;, the

Case l:there is some route iR with more than one leatet X  vertices in the intersection must all come after Letv,/, ¢’ >
(Y) be the number of free inputs (outputs)f Then,a € X ¢, be a vertex in the intersection &f,; andR;,. Let Ry; be the
and|X| > |Y'|, because the total numbers of inputs and outpuisute obtained by concatenating the ro(guy, . . .,v,/) and
are the same. Now, létbe such thaf3;, has some free output the (v, , 5)-part of R,s. In the stateS’ U { R}, the request
in R. Letx be a member oX — {a}. The requestz, k) is (a,;(s)) is valid. A route realizing this request must intersect
compatible withR; hence, there is a routg, from z to some R, (since we are in case 2b) at a point aftgr(since we are in
output in By, for whichR U { R, } is a state. Repeat this processhe stateS’ U { Rys}), contradicting the maximality of. [
Y| times, we will have a stat®’ = R U {Ry,..., Ry} in , L
\|/vh|ich there is no more free outputs, yei{s still freeﬁ ﬁow, Corollary V.2. leep positive integera, f, and k, we have
remove fromR’ all routes whose endpoints are thosesinwe sdy(w, f) = sdy(w, f) andsdy (w, f, k) = sdy(w, f, k).
get the desired state. Corollary V.3. sdi(w, f,1) = sda(w, f,1) = (wf)?.
Case 2:all routes inR are one-to-one routesThis is a much . . 9
trickier case, agX| = |Y| anda has to be involved in the Proof. Itis easy to see thaidy (w, f, 1) = (wf)". =
“filling up” process. As in case 1, we make requests of the Vi
form (z,k), x € X. The v.e[texa is somewha_t special, we [w, f]-DISTRIBUTORS
make sure that a reque@t, j(5)) was created first, for some . . ,
5 € S. The rest of thdx, k) requests are arbitrary as before. 'An n-NEWorkis a dwgcted acyclic graply = (,V,’ E5 A, B)
For eachr € X, let R, denote the corresponding route for thavith a subs_em of n vertices Callednputsand a disjoint subs_et
reques(z, k). Asin case 1, leR’ = RU{R, | = € X} be the B of n vertices callecbutputs The inputs (outputs) have in-
final state. degree (out-degree) zero.

If R, ends ats, then we are lucky. Remove froR’ the I,-et’fl = {ao,..-,an—1} andB = {bo,...,bo_1}. Ann-
routesR, and all theR,, which end at some in S, we get the Shifteris ann-networkG = (V, E; A, B) such that for each
desired stats. k € {0,...,n — 1}, there aren vertex disjoint paths joining;

If we are not lucky,R, ends at somein B;(s), t # 5. Let 0 b(i+k) mod ns fOri =0,...,n. _
a@ € X be an input such thak, ends ats. Letb be any input The following lemma was shown by Pippenger and Yao [21].
whose corresponding route R’ is (b,v1,...,vp,u), where Lemma VI.1. An n-shifter of depthk has at leastkn!**
u € B; for somei # j(5). (Sincef > 2, we are sure that there edges.
is somei # j(35).)
LetS’ = R’ — {R,, Ra, Ry}, which is a network state.
We claim that there is afa,t)-route compatible withS’.
Consider_the staté’ U {R,}. Thﬁe. requestb, j(5)) is com- rdy(w, f,k) > k(wf) Yk, @)
patible with the state. Moreoveg, is the only free output in o
Bj (s in the stateS’. Thus, there is &, 5)-route Ry such that Proof. Let ' = (V; E; A, B) be a depthk [w, f];-distributor.
S’ U {R,, Ry} is a state. Now, in the stat®’ U {R,s} the Letn = wf. Arbitrarily assign labels to the inputs i

. LOWER BOUNDS FOR REARRANGEABLE

Theorem VI.2. For k > 2, a depthk [w, f];-distributor must
have size at least(w f)'*+'/*. Specifically

outputt is the only free output i3, s). Hence, the compati- @nd outputs inB so thatA = {ao,...,an1} and B =
ble reques(a, j(5)) has to be routed to. Hence, there is an {bo,---,bn—1}. For eachy = 0,...,n — 1, consider the fol-
(@, t)-route compatible witls” as claimed. lowing set

To this end, we further consider two cases as follows. ST . _
(2a)among all(a, t)-routes which are compatible wis, there Dy = {(ai, {D(i+q) moan}) |1 € {0,...,n —1}}.

is a routeRs; Which is vertex disjoint fromr,. In this case, ClearlyD, isaDA;. Hence, there exisisvertex disjoint paths
&' U {Ry, Rat} is a state in whichu and s are the only free joining a; t0 b(;;4) moa n- CONsequently\' is ann-shifter of
vertices. A requeda, j(5)) then brings us back to the “lucky” depthk. Our result now follows from Lemma VI.1. O

situation considered earlier.
(2b) every(a, t)-route compatible witks’ intersects;, at some Corollary VI.3. For k > 2, rdi(w, f) > ewf(In f + Inw),
wheree is the base of the natural log.

point. LetR;; be such ar(a, t)-route whose last intersection
vertex on(vy, ..., v,) has the largest index, say, wherel < Proof. The functiong(k) = k(wf)**+/*, with k > 1, is mini-
g < p. Then,Rg, is composed of two parts: the part framo  mized atk = In(wf). O
vg, and the part fromy, to ¢.

Now, let R,. be a (b,t)-path consisting of the part
(b,v1,...,v,) concatenated with the,, t)-part of Rz,. Then,
certainlyS’ U { Ry: } is a state in which the requegt, j(5)) is
valid, ands is the only free output iB;(5). Hence, there is an
(a, §)-route R,z which is compatible witts” U { R }. !

If the route R,5 is vertex disjoint fromR;, then the request A(Ty(f)) == Z Z out-degreév). (3)
(@, 7(8)) under the stat8’ U{ R, R,5} can only be satisfied by J=1veP,

Let 7. (f) be a directed rooted tree withleaves and depth
at mostk where all edges directed to the direction of the leaves.
Let P,..., Py be thef paths from the root to the leaves of
Tk (f). Define



For the case ofw, f]o-distributors, we shall make use of an

idea and the following lemma from [21].
Lemma VI.4. A(Ty(f)) > kfite.

Theorem VI.5. For k > 2, a depthk [w, f]o-distributor must
have size at leagtw f11/%. Specifically

rdy(w, f, k) > kwfH/k, (4)
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(1]

Proof. Note that we are working under request model 2. A42]

usual, letn = wf. Let N = (V,E;A,B) be afw, f]2-

distributor, whered = {a;,...,a,}. Foreachyin {1,..., f},
define a function
¢q(i) =(i+g—1 (mod f))+1,1<i<n.
Also define the followingD As, for eachy,
Dy = {(ai, {¢g()}) |1 <i < n}.
SinceN is a|w, f]»-distributor, for eacly = 1,.. ., f there

aren vertex disjoint path$’,, i = 1, ..., n, such thatP;, joins
a; to some vertex itBy,_(;)-
Tothisend, forl <i<n,1<q¢< f,ande € F, let

1 if eis an arc emitted from a node dn),

1,q,€) := .
uii, g €) 0 otherwise.

Fix ani, assemble alf pathsP;, into a treeT; (keeping only
the initial common segments of the paths), tfiers a tree with
f leaves and depth at mast

For each vertex € V, let out-degreg (v) denote the out-
degree ob in T;. It is easy to see the following

> uliyg.e) > > out-degreg (v).

eel vEP;q

(5)

Basically, the left hand side counts also some arcs rbt (but
starts onP;,).
Summing (5) ovei = 1,...,nandqg=1,..., f, we get

f n f
Z Z (i, g, e) Z Z Z out-degreg (v)

n

> >
i=1g=1leck i=1 qg=1vEP;,
= Y ATM)
i=1
> kit (6)

The last inequality comes from Lemma (VI.4).
On the other hand, since the paffg for a fixedq are vertex
disjoint, we have

> uliq.e) < 1.
i=1

Consequently,

~

n

n f
YD uige) =YD uliae) < fIE|. (7)

=1 g=1e€cFE g=leckE i=1
Together, (6) and (7) lead t&| > kwf'*'/* as desired. O
We get a similar result as the one in Corollary VI.3.

Corollary VI.6. For k > 2, rda(w, f) > ewf In f, wheree is
the base of the natural log.

(3]

(4]

(3]

(6]

8]

[9]
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