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Abstract

We explore a new approach to shape recognition based on a virtually in�nite family

of binary features (\queries") of the image data, designed to accommodate prior in-

formation about shape invariance and regularity. Each query corresponds to a spatial

arrangement of several local topographic codes (\tags") which are in themselves too

primitive and common to be informative about shape. All the discriminating power

derives from relative angles and distances among the tags. The important attributes of

the queries are (i) a natural partial ordering corresponding to increasing structure and

complexity; (ii) semi-invariance, meaning that most shapes of a given class will answer

the same way to two queries which are successive in the ordering; and (iii) stability,

since the queries are not based on distinguished points and substructures.

No classi�er based on the full feature set can be evaluated and it is impossible

to determine a priori which arrangements are informative. Our approach is to select

informative features and build tree classi�ers at the same time by inductive learning.

In e�ect, each tree provides an approximation to the full posterior where the features

chosen depend on the branch which is traversed. Due to the number and nature of the

queries, standard decision tree construction based on a �xed length feature vector is

not feasible. Instead we entertain only a small random sample of queries at each node,

constrain their complexity to increase with tree depth, and grow multiple trees. The

terminal nodes are labeled by estimates of the corresponding posterior distribution over

shape classes. An image is classi�ed by sending it down every tree and aggregating the

resulting distributions.

The method is applied to classifying handwritten digits and synthetic linear and

nonlinear deformations of three hundred Latex symbols. State-of-the-art error rates

are achieved on the NIST database of digits. The principal goal of the experiments on

Latex symbols is to analyze invariance, generalization error and related issues, and a

comparison with ANN methods is presented in this context.
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1 Introduction

We explore a new approach to shape recognition based on the joint induction of shape features

and tree classi�ers. The data are binary images of two-dimensional shapes of varying sizes.

The number of shape classes may reach into the hundreds (see Figure 1) and there may be

considerable within-class variation, as with handwritten digits. The fundamental problem is

how to design a practical classi�cation algorithm which incorporates the prior knowledge that

the shape classes remain invariant under certain transformations. The proposed framework

is analyzed within the context of invariance, generalization error and other methods based

on inductive learning, principally arti�cial neural networks (ANN).

Classi�cation is based on a large, in fact virtually in�nite, family of binary features of

the image data which are constructed from local topographic codes (\tags"). A large sample

of small subimages of �xed size is recursively partitioned based on individual pixel values.

The tags are simply labels for the cells of each successive partition and each pixel in the

image is assigned all the labels of the subimage centered there. As a result, the tags do not

involve detecting distinguished points along curves, special topological structures, or any

other complex attributes whose very de�nition can be problematic due to locally ambiguous

data. In fact, the tags are too primitive and numerous to classify the shapes.

Although the mere existence of a tag conveys very little information, one can begin

discriminating among shape classes by investigating just a few spatial relationships among

the tags, for example asking whether there is a tag of one type \north" of a tag of another

type. Relationships are speci�ed by coarse constraints on the angles of the vectors connecting

pairs of tags and on the relative distances among triples of tags. No absolute location or scale

constraints are involved. An image may contain one or more instances of an arrangement,

with signi�cant variations in location, distances, angles, etc. There is one binary feature

(\query") for each such spatial arrangement; the response is positive if a collection of tags

consistent with the associated constraints is present anywhere in the image. Hence a query

involves an extensive disjunction (ORing) operation.

Two images which answer the same to every query must have very similar shapes. In

fact, it is reasonable to assume that the shape class is determined by the full feature set, i.e.,

the theoretical Bayes error rate is zero. But no classi�er based on the full feature set can
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be evaluated and it is impossible to determine a priori which arrangements are informative.

Our approach is to select informative features and build tree classi�ers (Breiman, Friedman,

Olshen & Stone (1984), Casey & Nagy (1984), Quinlan (1986)) at the same time by inductive

learning. In e�ect, each tree provides an approximation to the full posterior where the

features chosen depend on the branch which is traversed.

There is a natural partial ordering on the queries which results from regarding each tag

arrangement as a labeled graph: Vertex labels correspond to the tag types and edge labels

to angle and distance constraints; see Figures 6,7. In this ways the features are ordered

according to increasing structure and complexity. A related attribute is semi-invariance,

which means that a large fraction of those images of a given class which answer the same

way to a given query will also answer the same way to any query immediately succeeding

it in the ordering. This leads to nearly invariant classi�cation with respect to many of the

transformations which preserve shape, such as scaling, translation, skew, and small non-linear

deformations of the type shown in Figure 2.

Due to the partial ordering, tree construction with an in�nite-dimensional feature set

is computationally e�cient. During training multiple trees (Breiman (1994), Dietterich &

Bakiri (1995), Shlien (1990)) are grown and a form of randomization is used to reduce the

statistical dependence from tree to tree; weak dependence is veri�ed experimentally. Simple

queries are used at the top of the trees and the complexity of the queries increases with tree

depth. In this way semi-invariance is exploited and the space of shapes is systematically

explored by calculating only a tiny fraction of the answers.

Each tree is regarded as a random variable on image space whose values are the termi-

nal nodes. In order to recognize shapes, each terminal node of each tree is labeled by an

estimate of the conditional distribution over the shape classes given that an image reaches

that terminal node. The estimates are simply relative frequencies based on training data and

require no optimization. A new data point is classi�ed by dropping it down each of the trees,

averaging over the resulting terminal distributions, and taking the mode of this aggregate

distribution. Due to averaging and weak dependence, considerable errors in these estimates

can be tolerated. Moreover, since tree-growing (i.e., question selection) and parameter esti-

mation can be separated, the estimates can be re�ned inde�nitely without reconstructing the
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trees, simply by updating a counter in each tree for each new data point.

The separation between tree-making and parameter estimation, and the possibility of

using di�erent training samples for each phase, opens the way to selecting the queries based

on either unlabeled samples (i.e., unsupervised learning) or based only on samples from

some of the shape classes. Both of these perform surprisingly well compared with ordinary

supervised learning.

Our recognition strategy di�ers from those based on true invariants (algebraic, di�eren-

tial, etc.) or \structural features" (holes, endings, etc.). These methods certainly introduce

prior knowledge about shape and structure and we share that emphasis. However, invariant

features usually require image normalization and/or boundary extraction, and are generally

sensitive to shape distortion and image degradation. Similarly, structural features can be

di�cult to express as well-de�ned functions of the image (as opposed to model) data. In

contrast, our queries are stable and primitive, precisely because they are not truly invariant

and are not based on distinguished points or sub-structures.

A popular approach to multi-class learning problems in pattern recognition is based on

ANNs, such as feedforward, multilayer perceptrons (Dietterich & Bakiri (1995), Fukushima

& Miyake (1982), Knerr, Personnaz & Dreyfus (1992), Martin & Pitman (1991)). For exam-

ple the best rates on handwritten digits are reported in LeCun, Boser, Denker, Henderson,

Howard, Hubbard & Jackel (1990). Classi�cation trees and neural networks certainly have

aspects in common; for example, both rely on training data, are fast on-line, and require

little storage; see Brown, Corruble & Pittard (1993), Gelfand & Delp (1991). However,

our approach to invariance and generalization is, by comparison, more direct in that certain

properties are acquired by \hardwiring" rather than depending on learning or image normal-

ization. With ANNs, the emphasis is on parallel and local processing and a limited degree of

disjunction, in large part due to assumptions regarding the operation of the visual system.

However only a limited degree of invariance can be achieved with such models. In contrast,

the features here involve extensive disjunction and more global processing, thus achieving a

greater degree of invariance. This comparison is pursued in x12.
The paper is organized as follows. Other approaches to invariant shape recognition are

reviewed in x2; synthesized random deformations of 293 basic Latex symbols (Figures 1,2)
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provide a controlled experimental setting for an empirical analysis of invariance in a high

dimensional shape space. The basic building blocks of the algorithm, namely the tags and

the tag arrangements, are described in x3. In x4 we address the fundamental question of

how to exploit the discriminating power of the feature set; we attempt to motivate the use

of multiple decision trees in the context of the ideal Bayes classi�er and the tradeo� between

approximation error and estimation error. In x5 we explain the roles of the partial ordering

and randomization for both supervised and unsupervised tree construction; we also discuss

and quantify semi-invariance. Multiple decision trees and the full classi�cation algorithm

are presented in x6, together with an analysis of the dependence on the training set. In x7
we calculate some rough performance bounds, both for individual and multiple trees. Gen-

eralization experiments, where the training and test samples represent di�erent populations,

are presented in x8; and incremental learning is addressed in x9. \Fast indexing," another

possible role for shape quantization, is considered in x10. We then apply the method in x11
to a real problem - classifying handwritten digits - using the NIST database for training

and testing, achieving state-of-the-art error rates. In x12 we develop the comparison with

ANNs in terms of invariance, generalization error, and connections to observed functions in

the visual system. We conclude in x13 by assessing extensions to other visual recognition

problems.

2 Invariant Recognition

Invariance is perhaps the fundamental issue in shape recognition, at least for isolated shapes.

Some basic approaches are reviewed within the following framework. Let X denote a space of

digital images and let C denote a set of shape classes. Let us assume that each image x 2 X
has a true class label Y (x) 2 C = f1; 2; :::;Kg. Of course we cannot directly observe Y . In

addition, there is a probability distribution P on X. Our goal is to construct a classi�er

Ŷ : X! C such that P (Ŷ 6= Y ) is small.

In the literature on statistical pattern recognition it is common to address some variation

by preprocessing or normalization. Given x, and before estimating the shape class, one

estimates a transformation  such that  (x) represents a \standardized" image. Finding
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 involves a sequence of procedures which brings all images to the same size and then

corrects for translation, slant and rotation by one of a variety of methods. There may also

be some morphological operations to standardize stroke thickness; Bottou, Cortes, Denker,

Drucker, Guyon, Jackel, LeCun, Muller, Sackinger, Simard & Vapnik (1994),Hastie, Buja &

Tibshirani (1995). The resulting image is then classi�ed by one of the standard procedures

(discriminant analysis, multilayer neural network, nearest-neighbors, etc.), in some cases

essentially ignoring the global spatial properties of shape classes. Di�culties in generalization

are often encountered because the normalization is not robust or does not accommodate

nonlinear deformations. This de�ciency can only be ameliorated with very large training

sets; see the discussions in Hussain & Kabuka (1994), Raudys & Jain (1991), Simard, LeCun

& Denker (1994), Werbos (1991) in the context of neural networks. Still, it is clear that

robust normalization methods which reduce variability and yet preserve information can

lead to improved performance of any classi�er; we shall see an example of this in regard to

\slant correction" for handwritten digits.

Template-matching is another approach. One estimates a transformation from x for each

of the prototypes in the library. Classi�cation is then based on the collection of estimated

transformations. This requires explicit modeling of the prototypes, extensive computation

at the estimation stage (usually involving relaxation methods) and appears impractical with

large numbers of shape classes.

A third approach, closer in spirit to ours, is to search for invariant functions �(x), mean-

ing that P (�(x) = �cjY = c) = 1 for some constants �c, c = 1; :::;K. The discriminating

power of � depends on the extent to which the values �c are distinct. Many invariants

for planar objects (based on single views) and for non-planar objects (based on multiple

views) have been discovered and proposed for recognition; see Reiss (1993) and the refer-

ences therein. Some invariants are based on Fourier descriptors and image moments; for

example, the magnitude of Zernike moments (Khotanzad & Lu (1991)) are invariant to ro-

tation. Most invariants require computing tangents from estimates of the shape boundaries

(Forsyth, Mundy, Zisserman, Coelho, Heller & Rothwell (1991), Sabourin & Mitiche (1992)).

Examples of such invariants include in
exions and discontinuities in curvature. In general

the mathematical level of this work is advanced, borrowing ideas from projective, algebraic
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Figure 1: Latex symbols.

and di�erential geometry (Mundy & Zisserman (1992)).

Other successful treatments of invariance include geometric hashing Lamdan, Schwartz

& Wolfson (1988) and nearest-neighbor classi�ers based on a�ne invariant metrics ( Simard

et al. (1994)). Similarly, structural features involving topological shape attributes (such

as junctions, endings, loops, etc.) or distinguished boundary points (such as points of high

curvature) have some invariance properties, and many authors (e.g., Lee, Srihari & Gaborski

(1991)) report much better results with such features than with standardized raw data.

In our view true invariant features of the form above might not be su�ciently stable

for intensity-based recognition because the data structures are often too crude to analyze

with continuum-based methods. In particular, such features are not invariant to non-linear
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deformations and depend heavily on preprocessing steps such as normalization and boundary

extraction. Unless the data is of very high quality, these steps may result in a lack of

robustness to distortions of the shapes, due for example to digitization, noise, blur, and

other degrading factors; see the discussion in Reiss (1993). Structural features are di�cult

to model and to extract from the data in a stable fashion. Indeed, it may be more di�cult

to recognize a \hole" than to recognize an \8". (Similar doubts about hand-crafted features

and distinguished points are expressed in Jung & Nagy (1995).) In addition, if one could

recognize the components of objects without recognizing the objects themselves, then the

choice of classi�er would likely be secondary.

Our features are not invariant. However, they are semi-invariant in an appropriate sense,

and might be regarded as coarse substitutes for some of the true geometric, point-based

invariants in the literature cited above. In this sense, we share at least the outlook expressed

in recent, model-based work on \quasi-invariants" (Binford & Levitt (1993),Burns, Weiss &

Riseman (1993)), where strict invariance is relaxed; however the functionals we compute are

entirely di�erent.

The invariance properties of the queries are related to the partial ordering and the manner

in which they are selected during recursive partitioning. Roughly speaking, the complexity of

the queries is proportional to the depth in the tree, i.e., to the number of questions asked. For

elementary queries at the bottom of the ordering, we would expect that for each class c, either

P (Q = 1jY = c) >> :5 or P (Q = 0jY = c) >> :5; however this collection of elementary

queries would have low discriminatory power. (These statements will be ampli�ed later on.)

Queries higher up in the ordering have much higher discriminatory power, and maintain

semi-invariance relative to subpopulations determined by the answers to queries preceding

them in the ordering. Thus if ~Q is a query immediately preceding Q in the ordering, then

P (Q = 1j ~Q = 1; Y = c) >> :5 or P (Q = 0j ~Q = 1; Y = c) >> :5 for each class c. This will

be de�ned more precisely in x5 and veri�ed empirically.

Experiments on invariant recognition are scattered throughout the paper. Some involve

real data - handwritten digits. Most employ synthetic data, in which case the data model

involves a prototype x�c for each shape class c 2 C (see Figure 1) together with a space

� of image-to-image transformations. We assume that the class label of the prototype is
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Figure 2: Top: Perturbed Latex symbols. Bottom: Training data for one symbol.

preserved under all transformation in �, namely c = Y (�(x�c)) for all � 2 �, and that no two

distinct prototypes can be transformed to the same image. We use \transformations" in a

rather broad sense, referring to both a�ne maps, which alter the \pose" of the shapes, and to

nonlinear maps, which \deform" the shapes. (We shall use \degradation" for noise, blur, etc.)

Basically, � consists of perturbations of the identity. In particular, we are not considering

the entire \pose space" but rather only perturbations of a reference pose, corresponding to

the identity.

The probability measure P on X is derived from a probability measure �(d�) on the

space of transformations as follows: for any D � X,

P (D) =
X
c

P (DjY = c)�(c) =
X
c

�f� : �(x�c) 2 Dg�(c)

where � is a prior distribution on C, which we will always take to be uniform. Thus P
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is concentrated on the space of images f�(x�c)g�;c. Needless to say, the situation is more

complex in many actual visual recognition problems, for example in unrestricted 3D object

recognition under standard projection models. Still, invariance is already challenging in the

above context.

It is important to emphasize that this model is not used explicitly in the classi�cation

algorithm. Knowledge of the prototypes is not assumed, nor is � estimated as in template

approaches. The purpose of the model is to generate samples for training and testing.

The images in Figure 2 were made by random sampling from a particular distribution �

on a space � containing both linear (scale, rotation, skew) and nonlinear transformations.

Speci�cally, the log-scale is drawn uniformly between �1=6 to 1=6; the rotation angle is

drawn uniformly from += � 10 degrees; and the log-ratio of the axes in the skew is drawn

uniformly from �1=3 to +1=3. The nonlinear part is a smooth random deformation �eld

constructed by creating independent random horizontal and vertical displacements, each of

which is generated by random trigonometric series with only low frequency terms and with

Gaussian coe�cients. All images are 32 � 32 but the actual size of the object in the image

varies signi�cantly, both from symbol to symbol and within symbol classes due to random

scaling.

3 Shape Queries

We �rst illustrate a shape query in the context of curves and tangents in an idealized,

continuum setting. The example is purely motivational. In practice we are not dealing with

one dimensional curves in the continuum but rather with a �nite pixel lattice, strokes of

variable width, corrupted data, etc. The types of queries we actually use are described in

x3.1 and x3.2.
Observe the three versions of the digit \3" in Figure 3 (left) ; they are obtained by

spline interpolation of the center points of the segments shown in Figure 3 (middle) in such

a way that the segments represent the direction of the tangent at those points. All three

segment arrangements satisfy the geometric relations indicated in Figure 3 (right): there

is a vertical tangent northeast of a horizontal tangent, which in turn is south of another
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Ver. NE of Hor.

Hor. NW of Ver.
Hor. N of Hor.

Hor. NW of Ver.

Ver. NE of Hor.

Figure 3: Left: Three curves corresponding to the digit `3'. Middle: Three tangent con�g-

urations determining these shapes via spline interpolation. Right: Graphical description of

relations between locations of derivatives consistent with all three con�gurations.

horizontal tangent, and so forth. Notice that the directional relations between the points are

satis�ed to within rather coarse tolerances. Not all curves of a \3" contain �ve points whose

tangents satisfy all these relations. Put di�erently, some \3"s answer \no" to the query \Is

there a vertical tangent northeast of a ...?". However rather substantial transformations of

each of the versions below will answer \yes." Moreover among those \3"s which answer \no",

it is possible to choose a small number of alternative arrangements in such a way that the

entire space of \3"s is covered.

3.1 Tags

We employ primitive local features called tags which provide a coarse description of the

local topography of the intensity surface in the neighborhood of a pixel. Instead of trying

to manually characterize local con�gurations of interest, for example trying to de�ne local

operators to identify gradients in the various directions, we adopt an information-theoretic

approach and \code" a microworld of subimages by a process very similar to tree-structured

vector quantization. In this way we sidestep the issues of boundary detection and gradients

in the discrete world, and allow for other forms of local topographies. This approach has

been extended to grey level images in Jedynak & Fleuret (1996).

The basic idea is to re-assign symbolic values to each pixel based on examining a few

pixels in its immediate vicinity; the symbolic values are the tag types and represent labels
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for the local topography. The neighborhood we choose is the 4� 4 subimage containing the

pixel at the upper left corner. We cluster the subimages with binary splits corresponding to

adaptively choosing the �ve most informative locations of the sixteen sites of the subimage.

Note that the size of the subimages used must depend on the resolution at which the

shapes are imaged. The 4 � 4 subimages are appropriate for a certain range of resolutions,

roughly 10 � 10 through 70 � 70 in our experience. The size must be adjusted for higher

resolution data and the ultimate performance of the classi�er will su�er if the resolution of

the test data is not approximately the same as that of the training data. The best approach

would be one that is multi-resolution, something we have not done in this paper (except for

some preliminary experiments in x11), but which is carried out in Jedynak & Fleuret (1996)

in the context of grey-level images and 3D objects.

A large sample of 4 � 4 subimages are randomly extracted from the training data. The

corresponding shape classes are irrelevant and are not retained. The reason is that the

purpose of the sample is to provide a representative database of micro-images and to discover

the \biases" at that scale; the statistics of that world is largely independent of global image

attributes, such as symbolic labels. This family of subimages is then recursively partitioned

with binary splits. There are 4 � 4 = 16 possible \questions": \Is site (i; j) black?" for

i; j = 1; 2; 3; 4. The criterion for choosing a question at a node t is dividing the subimages

Ut at the node as equally as possible into two groups. This corresponds to reducing as much

as possible the entropy of the empirical distribution on the 216 possible binary con�gurations

for the sample Ut. There is a tag type for each node of the resulting tree, except for the

root. Thus, if three questions are asked there are 2 + 4 + 8 = 14 tags and if �ve questions

are asked there are 62 tags. Depth �ve tags correspond to a more detailed description of the

local topography than depth three tags, although eleven of the sixteen pixels still remain

unexamined. Observe also that tags corresponding to internal nodes of the tree represent

unions of those associated with deeper ones. At each pixel we assign all the tags encountered

by the corresponding 4 � 4 subimage as it proceeds down the tree. Unless otherwise stated

all experiments below use 62 tags.

At the �rst level every site splits the population with nearly the same frequencies. How-

ever, at the second level some sites are more informative than others, and by level four and
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Figure 4: First three tag levels with most common con�gurations.

�ve there is usually one site which partitions the remaining subpopulation much better than

all others. In this way, the world of micro-images is e�ciently coded. For e�ciency, the

population is restricted to subimages containing at least one black and one white site within

the center four, which then obviously concentrates the processing in the neighborhood of

boundaries. In the grey-level context it is also useful to consider more general tags, allowing

for example for variations on the concept of local homogeneity.

The �rst three levels of the tree are shown in Figure 4 together with the most common

con�guration found at each of the eight level three nodes. Notice that the \level one" tag

alone (i.e., the �rst bit in the code) determines the original image, so this \transform" is

invertible and redundant. In Figure 5 we show all the 2 bit tags and 3 bit tags appearing in

an image.

3.2 Tag Arrangements

The queries involve geometric arrangements of the tags. A query QA asks whether a speci�c

geometric arrangement A of tags of certain types is present (QA(x) = 1) or is not present

(QA(x) = 0) in the image. Figure 6 shows several Latex symbols which contain a speci�c
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Figure 5: Top: All instances of the four 2 bit tags. Bottom: All instances of the eight 3 bit

tags.

geometric arrangement of tags: tag 16 northeast of tag 53 which is northwest of tag 19.

Notice that there are no �xed locations in this description whereas the tags in any speci�c

image do carry locations. \Present in the image" means there is at least one set of tags in

x of the prescribed types whose locations satisfy the indicated relationships. In Figure 6,

notice for example how di�erent instances of the digit 0 still contain the arrangement. Tag

16 is a depth four tag; the corresponding four questions in the subimage are indicated by the

following mask:

0
@

n n n 1

0 n n n

n 0 0 n

n n n n

1
A where 0 corresponds to background, 1 to object, and n to \not

asked." These neighborhoods are loosely described by \background to lower left, object to

upper right." Similar interpretations can be made for tags 53 and 19.

Restricted to the �rst ten symbol classes (the ten digits), the conditional distribution

P (Y = cjQA = 1) on classes given the existence of this arrangement in the image is given in

Table 1. Already this simple query contains signi�cant information about shape.

To complete the construction of the feature set we need to de�ne a set of allowable rela-

tionships among image locations. These are binary functions of pairs, triples, etc. of planar

points which depend only on their relative coordinates. An arrangement A is then a labeled

(hyper)graph. Each vertex is labeled with a type of tag and each edge (or \superedge") is

labeled with a type of relation. The graph in Figure 6, for example, has only binary rela-
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Figure 6: Top: Instances of a geometric arrangement in several 0's. Bottom: Several in-

stances of the geometric arrangement in one 6

0 1 2 3 4 5 6 7 8 9

.13 .003 .03 .08 .04 .07 .23 0 .26 .16

Table 1: Conditional distribution on digit classes given the arrangement of Figure 6.

tions. In fact, all the experiments on the Latex symbols are restricted to this setting. The

experiments on handwritten digits also use a ternary relationship of the metric type - see

below.

There are eight binary relations between any two locations u and v corresponding to the

eight compass headings \north," \northeast," \east," etc. For example, u is \north" of v if

the angle of the vector u�v is between �=4 and 3�=4. More generally, the two points satisfy

relation k (k = 1; :::; 8) if the angle of the vector u�v is within �=4 of k ��=4. Let A denote

the set of all possible arrangements and let Q = fQA : A 2 Ag, our feature set.
There are many other binary and ternary relations that have discriminating power. For

example, there is an entire family of \metric" relationships that are, like the \directional"

relationships above, completely scale and translation invariant. Given points u; v; w; z, one

example of a ternary relation is k u� v k<k u�w k, which inquires whether or not u closer

is to v than to w. With four points we might ask if k u� v k<k w � z k.

18



4 The Posterior Distribution and Tree-Based Approx-

imations

For simplicity, and in order to facilitate comparisons with other methods, we restrict ourselves

to queries QA of bounded complexity. For example, consider arrangements A with at most

twenty tags and twenty relations; this limit is never exceeded in any of the experiments.

Enumerating these arrangements in some fashion, let Q = (Q1; :::; QM) be the corresponding

feature vector assuming values in f0; 1gM . Each image x then generates a bit string of length

M which contains all the information which is available for estimating Y (x). Of course M

is enormous. Nonetheless, it is not evident how we might determine a priori which features

are informative and thereby reduce M to manageable size.

Evidently these bit strings partition X. Two images which generate the same bit string

or \atom" need not be identical. Indeed, due to the invariance properties of the queries,

the two corresponding symbols may vary considerably in scale, location and skew, and are

not even a�ne-equivalent in general. Nonetheless, two such images will have very similar

shapes. As a result, it is reasonable to expect that H(Y jQ) is very small, in which case we

can in principle obtain high classi�cation rates using Q.

To simplify things further, at least conceptually, we will assume that H(Y jQ) = 0;

as indicated above, this is not an unreasonable assumption for large M . An equivalent

assumption is that the shape class Y is determined by Q and the error rate of the Bayes

classi�er

ŶB = arg max
c
P (Y = cjQ)

is zero. Needless to say, perfect classi�cation cannot actually be realized: Due to the size of

M , the full posterior cannot be computed and the classi�er ŶB is only hypothetical.

Suppose we examine some of the features by constructing a single binary tree T based on

entropy-driven recursive partitioning and randomization and that T is uniformly of depth

D so that D of the M features are examined for each image x. The exact procedure is

described in the following section and the details are not important for the moment. Su�ce

it to say that a feature Qm is assigned to each interior node of T and the set of features

Q�1; :::; Q�D along each branch from root to leaf is chosen sequentially and based on the
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current information content given the observed values of the previously chosen features. The

classi�er based on T is then

ŶT = arg max
c
P (Y = cjT )

= arg max
c
P (Y = cjQ�1; :::; Q�D):

Since D �M , ŶT is not the Bayes classi�er. However, even for values of D on the order of

hundreds or thousands we can expect that

P (Y = cjT ) � P (Y = cjQ)

We shall refer to the di�erence between these distributions (in some appropriate norm) as

the \approximation error" (\AE"). This is one of the sources of error in replacing Q by a

subset of features. Of course we cannot actually compute a tree of such depth since at least

several hundred features are needed to achieve good classi�cation; we shall return to this

point shortly.

Regardless of the depth D, in reality we do not actually know the posterior distribution

P (Y = cjT ). Rather it must be estimated from a training set L = f(x1; Y (x1)); :::; (xm; Y (xm))g,
where x1; :::;xm is a random sample from P . (The training set is also used to estimate the

entropy values during recursive partitioning.) Let P̂L(Y = cjT ) denote the estimated dis-

tribution, obtained by simply counting the number of training images of each class c which

land at each terminal node of T . If L is su�ciently large then

P̂L(Y = cjT ) � P (Y = cjT )

We call the di�erence \estimation error" (\AE"), which of course only vanishes as jLj ! 1.

The purpose of multiple trees (x6) is to solve the approximation error problem and the

estimation error problem at the same time. Even if we could compute and store a very

deep tree there would still be too many probabilities (speci�cally K2D) to estimate with a

practical training set L. Our approach is to build multiple trees T1; :::; TN of modest depth.

In this way tree construction is practical and

P̂L(Y = cjTn) � P (Y = cjTn); n = 1; :::; N:
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Moreover, the total number of features examined is su�ciently large to control the approxi-

mation error. The classi�er we propose is

ŶS = argmax
c

1

N

NX
n=1

P̂L(Y = cjTn):

An explanation for this particular way of aggregating the information from multiple trees

is provided in x6.1. In principle, a better way to combine the trees would be to classify

based on the mode of P (Y = cjT1; :::; TN). However this is impractical for reasonably-sized

training sets for the same reasons that a single deep tree is impractical; see x6.4 for some

numerical experiments. The tradeo� between \AE" and \EE" is related to the tradeo�

between \bias" and \variance," which is discussed in x6.2 and the relative error rates among

all these classi�ers is analyzed in more detail in x6.4 in the context of parameter estimation.

5 Tree-Structured Shape Quantization

Standard decision tree construction (Breiman et al. (1984), Quinlan (1986)) is based on

a scalar-valued \feature" or \attribute" vector z = (z1; :::; zk) where k is generally about

10 � 100. Of course in pattern recognition the raw data are images and �nding the \right"

attributes is widely regarded as the main issue. Standard splitting rules are based on func-

tions of this vector, usually involving a single component zj (e.g., applying a threshold) but

occasionally involving multivariate functions or \trans-generated features" (Friedman (1973),

Gelfand & Delp (1991), Guo & Gelfand (1992), Sethi (1991)). In our case, the queries fQAg
are the candidates for splitting rules. We now describe the manner in which the queries are

used to construct a tree.

5.1 Exploring Shape Space

Since the set of queriesQ is indexed by graphs there is a natural partial ordering under which

a graph precedes any of its extensions. The partial ordering corresponds to a hierarchy of

structure. Small arrangements with few tags produce coarse splits of shape space. As the

arrangements increase in size (say the number of tags plus relations), they contain more

and more information about the images which contain them. However, fewer and fewer
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images contain such an instance; that is, P (Q = 1) � 0 for a query Q based on a complex

arrangement.

One straightforward way to exploit this hierarchy is to build a decision tree using the

collection Q as candidates for splitting rules, with the complexity of the queries increasing

with tree depth (distance from the root). In order to begin to make this computationally

feasible, we de�ne a minimal extension of an arrangement A to mean the addition of exactly

one relation between existing tags, or the addition of exactly one tag and one relation binding

the new tag to an existing one. By a binary arrangement we mean one with two tags and

one relation; the collection of associated queries is denoted B � Q.

Now build a tree as follows. At the root search through B and choose the query Q 2 B

which leads to the greatest reduction in the mean uncertainty about Y given Q. This is the

standard criterion for recursive partitioning in machine learning and other �elds. Denote

the chosen query QA0
. Those data points for which QA0

= 0 are in the \no" child node

and we search again through B. Those data points for which QA0
= 1 are in the \yes"

child node and have one or more instances of A0, the \pending arrangement." Now search

among minimal extensions of A0 and choose the one which leads to the greatest reduction

in uncertainty about Y given the existence of A0. The digits in Figure 6 were taken from a

depth 2 (\yes/yes") node of such a tree.

We measure uncertainty by Shannon entropy. The expected uncertainty in Y given a

random variable Z is

H(Y jZ) = �X
z

P (Z = z)
X
c

P (Y = cjZ = z) log2 P (Y = cjZ = z):

De�ne H(Y jZ;B) for an event B � X in the same way, except that P is replaced by the

conditional probability measure P (:jB).
Given we are at a node t of depth k > 0 in the tree, let the \history" be Bt = fQA0

=

q0; :::; QAk�1
= qk�1g, meaning that QA1

is the second query chosen given that q0 2 f0; 1g
is the answer to the �rst, QA2

is the third query chosen given the answers to the �rst two

are q0 and q1, and so forth. The pending arrangement, say Aj , is the deepest arrangement

along the path from root to t for which qj = 1, so that qi = 0; i = j +1; :::; k� 1. Then QAk

minimizes H(Y jQA; Bt) among minimal extensions of Aj. Continue in this fashion until a
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Figure 7: Examples of node spitting. All six images lie in the same node and have a pending

arrangement with three vertices. The 0's are separated from the 3's and 5's by asking for the

presence of a new tag and then the 3's and 5's are separated by asking a question about the relative

angle between two existing vertices. The particular tags associated with these vertices are not

indicated.

stopping criterion is satis�ed, e.g., the number of data points at every terminal node falls

below a threshold. Each tree may then be regarded as a discrete random variable T on X;

each terminal node corresponds to a di�erent value of T .

In practice, we cannot compute these expected entropies; we can only estimate them

from a training set L. Then P is replaced by the empirical distribution P̂L on fx1; :::;xmg
in computing the entropy values.

5.2 Randomization

Despite the growth restrictions, the procedure above is still not practical; the number of bi-

nary arrangements is very large and there are too many minimal extensions of more complex

arrangements. In addition, if more than one tree is made, even with a fresh sample of data

points per tree, there might be very little di�erence among the trees. The solution is simple:

Instead of searching among all the admissible queries at each node, we restrict the search to

a small random subset.
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5.3 A Structural Description

Notice that only connected arrangements can be selected, meaning either every two tags

are \neighbors" (participate in a relation) or are connected by a sequence of neighboring

tags. As a result, training is more complex than standard recursive partitioning. At each

node, a list must be assigned to each data point consisting of all instances of the pending

arrangement, including the coordinates of each participating tag. If a data point passes to

the \yes" child, then only those instances which can be incremented are maintained and

updated; the rest are deleted. The more data points the more bookkeeping.

Another, far simpler, possibility is sampling exclusively fromB, the binary arrangements

(i.e., two vertices and one relation) listed in some order. In fact, we can imagine evaluating

all the queries in B for each data point. This vector could then be used with a variety

of standard classi�ers, including decision trees built in the standard fashion. In the latter

case the pending arrangements are unions of binary graphs, each one disconnected from

all the others. This approach is much simpler and faster to implement and preserves the

semi-invariance.

However the price is dear: we lose the common, global characterization of shape in terms

of a large connected graph. Here we are referring to the pending arrangements at the terminal

nodes (except at the end of the all \no" branch); by de�nition, this graph is found in all

the shapes at the node. This is what we mean by a structural description. The di�erence

between one connected graph and a union of binary graphs can be illustrated as follows.

Relative to the entire population X, a random selection in B is quite likely to carry some

information about Y , measured say by the mutual information I(Y;Q) = H(Y ) �H(Y jQ).
On the other hand, a random choice among all queries with, say, �ve tags will most likely

have no information because nearly all data points x will answer \no." In other words, it

makes sense to at least start with binary arrangements.

Assume, however, we are restricted to a subset fQA = 1g � X determined by an ar-

rangement A of moderate complexity. (In general, the subsets at the nodes are determined

the \no" answers as well, but the situation is virtually the same.) On this small subset a

randomly sampled binary arrangement will be less likely to yield a signi�cant drop in uncer-

tainty than a randomly sampled query among minimal extensions of A. These observations
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Figure 8: Samples from data sets. Top: Spot noise. Middle: Duplication. Bottom: Severe

perturbations.

have been veri�ed experimentally and we omit the details.

This distinction becomes more pronounced if the images are noisy (top panel of Figure

8) or contain structured backgrounds (bottom panel of Figure 11) because there will be

many \false positives" for arrangements with only two tags. However, the chance of �nding

complex arrangements utilizing \noise tags" or \background tags" is much smaller. Put

di�erently a structural description is more robust than a list of attributes. The situation

is the same for more complex shapes; see for example the middle panel of Figure 8 where

the shapes were created by duplicating each symbol four times with some shifts. Again,

a random choice among minimal extensions carries much more information than a random

choice in B.

5.4 Semi-Invariance

Another bene�t of the structural description is what we refer to as semi-invariance. Given

a node t, let Bt be the history and let Aj be the pending arrangement. For any minimal
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extension A of Aj, and for any shape class c, we want

max (P (QA = 0jY = c;Bt); P (QA = 1jY = c;Bt) >> :5:

In other words, most of the images in Bt of the same class should answer the same way to

query QA. In terms of entropy, semi-invariance is equivalent to relatively small values of

H(QAjY = c;Bt) for all c. Averaging over classes, this in turn is equivalent to small values

of H(QAjY;Bt) at each node t.

In order to verify this property we created ten trees of depth �ve using the data set

described in x2 with 32 samples per symbol class. At each non-terminal node t of each tree,

the average value of H(QAjY;Bt) was calculated over 20 randomly sampled minimal exten-

sions. Over all nodes, the mean entropy was m = :33; this is the entropy of the distribution

(:06; :94). The standard deviation over all nodes and queries was � = :08. Moreover there

was a clear decrease in average entropy (i.e., increase in the degree of invariance) as the

depth of the node increases.

We also estimated the entropy for more severe deformations. On a more variable data

set with approximately double the range of rotations, log-scale, and log-skew (relative to the

values in x2), and the same non-linear deformations, the corresponding numbers were m =

:38; � = :09. Finally for rotations sampled from (�30; 30) degrees, log-scale from (�:5; :5),
log-skew from (�1; 1), and doubling the variance of the random non-linear deformation

(see bottom panel of Figure 8), the corresponding mean entropy was m = :44 (� = :11),

corresponding to a (:1; :9) split. In other words, on average, ninety percent of the images in

the same shape class still answer the same way to a new query.

Notice that invariance property is independent of the discriminating power of the query,

i.e., the extent to which the distribution P (Y = cjBt; QA) is more peaked than the distribu-

tion P (Y = cjBt). Due to the symmetry of mutual information,

H(Y jBt)�H(Y jQA; Bt) = H(QAjBt)�H(QAjY;Bt):

This means that if we seek a question which maximizes the reduction in the conditional

entropy of Y , and if we assume the second term on the right is small due to semi-invariance,

then we need only �nd a query which maximizes H(QAjBt). This however does not in-
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volve the class variable and hence points to the possibility of unsupervised learning which is

discussed in the following section.

5.5 Unsupervised Learning

We outline two ways to construct trees in an unsupervised mode, i.e., without using the

class labels Y (xj) of the samples xj in L. Clearly each query Qm decreases uncertainty

about Q, and hence about Y . Indeed, H(Y jQm) � H(QjQm) since we are assuming Y is

determined by Q. More generally, if T is a tree based on some of the components of Q, and

if H(QjT ) << H(Q), then T should contain considerable information about the shape class.

Recall that in the supervised mode the query Qm chosen at node t minimizes H(Y jBt; Qm)

(among a random sample of admissible queries), where Bt is the event in X corresponding

to the answers to the previous queries. Notice that typically this is not equivalent to simply

maximizing the information content ofQm becauseH(Y jBt; Qm) = H(Y;QmjBt)�H(QmjBt)

and both terms depend on m. However, in light of the discussion in the preceding section

about semi-invariance, the �rst term can be ignored and we can focus on maximizing the

second term. Another way to motivate this criterion is to replace Y by Q, in which case

H(QjBt; Qm) = H(Q; QmjBt)�H(QmjBt)

= H(QjBt)�H(QmjBt):

Since the �rst term is independent of m, the query of choice will again be the one maximizing

H(QmjBt). Recall that the entropy values are estimated from training data and that Qm is

binary. It follows that growing a tree aimed at reducing uncertainty about Q is equivalent to

�nding at each node that query which best splits the data at the node into two equal parts.

This results from the fact that maximizing H(p) = p log2(p) + (1� p) log2(1� p) reduces to

minimizing jp� :5j.
In this way we generate shape quantiles or clusters ignoring the class labels. Still, the tree

variable T is highly correlated with the class variable Y . This would be the case even if the

tree were grown from samples representing only some of the shape classes. In other words,

these clustering trees produce a generic quantization of shape space. In fact, the same trees

can be used to classify new shapes; see x9.
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We have experimented with such trees, using the splitting criterion described above as

well as another unsupervised one based on the \question metric"

dQ(x;x
0) =

1

M

MX
m=1

�(Qm(x) 6= Qm(x
0)); x;x0 2 X

where �(:::) = 1 if the statement is true and �(:::) = 0 otherwise. Since Q leads to Y ,

it makes sense to divide the data so that each child is as \homogeneous" as possible with

respect to dQ; we omit the details. Both clustering methods lead to classi�cation rates which

are of course inferior to those obtained with splits determined by separating classes but still

surprisingly high; one such experiment is reported in x6.1.

6 Multiple Trees

We have seen that small random subsets of the admissible queries at any node will invariably

contain at least one query which is informative about the shape class. What happens if many

such trees are constructed using the same training set L? Because the familyQ of queries is

so large, and because di�erent queries - tag arrangements - address di�erent aspects of shape,

separate trees should provide separate structural descriptions, characterizing the shapes from

di�erent \points of view". This is visually illustrated in Figure 9 where the same image is

shown with an instance of the pending graph at the terminal node in �ve di�erent trees.

Hence, aggregating the information provided by a family of trees (see x6.1) should yield

more accurate and more robust classi�cation. This will be demonstrated in experiments

throughout the remainder of the paper.

Generating multiple trees by randomization was proposed in Geman, Amit & Wilder

(1996). Previously, other authors had advanced other methods for generating multiple trees.

One of the earliest was \weighted voting trees" Casey & Jih (1983); Shlien (1990) uses

di�erent splitting criteria; Breiman (1994) uses bootstrap replicates of L; and Dietterich

& Bakiri (1995) introduce the novel idea of replacing the multiclass learning problem by a

family of 2-class problems, dedicating a tree to each of these. Most of these papers deal

with �xed size feature vectors and coordinate-based questions. All authors report gains in

accuracy and stability.
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Figure 9: Graphs found in an image at terminal nodes of �ve di�erent trees

6.1 Aggregation

Suppose we are given a family of trees T1; :::; TN. The best classi�er based on these is

ŶA = arg max
c
P (Y = cjT1; :::; TN)

but this is not feasible (see x6.4). Another option would be to regard the trees as high-

dimensional inputs to standard classi�ers. We tried that with CART, linear and nonlinear

discriminant analysis, k-means clustering and nearest neighbors, all without improvement

over simple averaging (see below) for the amount of training data we used.

By \averaging" we mean the following. Let �n;� (c) denote the posterior distribution

P (Y = cjTn = � ); n = 1; : : : ; N; c = 1; : : : ;K, where � denotes a terminal node. We write

�Tn for the random variable �n;Tn . These probabilities are the parameters of the system and

the problem of estimating them will be discussed in x6.4. De�ne

��(x) =
1

N

NX
n=1

�Tn(x);

the arithmetic average of the distributions at the leaves reached by x. The mode of ��(x) is

the class assigned to the data point x, i.e.

ŶS = argmax
c

��c:

Using a training database of 32 samples per symbol from the distribution described in x2
we grew N = 100 trees of average depth d = 10, and tested the performance on a test set of 5
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samples per symbol. The classi�cation rate was 96%. This experiment was repeated several

times with very similar results. On the other hand growing one hundred unsupervised trees

of average depth 11 and using the labeled data only to estimate the terminal distributions a

classi�cation rate of 94.5% was achieved.

6.2 Dependence on the Training Set

The performance of classi�ers constructed from training samples can be adversely a�ected

by over-dependence on the particular sample. One way to measure this is to consider the

population of all training sets L of a particular size and to compute, for each data point

x, the average ELeL(x), where eL denotes the error at x for the classi�er made with L.
(These averages may then be further averaged over X.) The average error decomposes into

two terms, one corresponding to \bias" and the other to \variance" (Geman, Bienenstock

& Doursat (1992)). Roughly speaking, the bias term captures the systematic errors of

the classi�er design and the variance term measures the error component due to random


uctuations from L to L. Generally, parsimonious designs (e.g., those based on relatively

few unknown parameters) yield low variance but highly biased decision boundaries, whereas

complex nonparametric classi�ers (e.g., neural networks with many parameters) su�er from

high variance, at least without enormous training sets. Good generalization requires striking

a balance. See Geman et al. (1992) for a comprehensive treatment of the \bias/variance

dilemma"; see also the discussions in Breiman (1994), Kong & Dietterich (1995) and Raudys

& Jain (1991).

One simple experiment was carried out to measure the dependence of our classi�er ŶS on

the training sample; we did not systematically explore the decomposition mentioned above.

We made 10 sets of 20 trees from ten di�erent training sets, each consisting of 32 samples

per symbol. The average classi�cation rate was 85:3%; the standard deviation was :8%.

Table 2 shows the number of images in the test set correctly labeled by j of the classi�ers,

j = 0; 1; :::; 10. For example, we see that 88% of the test points are correctly labeled at least

six out of ten times. Taking the plurality of the ten classi�ers improves the classi�cation rate

to 95:5% so there is some pointwise variability among the classi�ers. However, the decision

boundaries and overall performance are fairly stable with respect to L.
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No. of correct classi�ers 0 1 2 3 4 5 6 7 8 9 10

No. of points 9 11 20 29 58 42 59 88 149 237 763

Table 2: Number of points as function of number of correct classi�ers

We attribute the relatively small variance component to the aggregation of many weakly

dependent trees, which in turn results from randomization. The bias issue is more com-

plex, and we have de�nitely noticed certain types of \structural errors" in our experiments

with handwritten digits from the NIST database, for example certain styles of writing are

systematically misclassi�ed despite the randomization e�ects.

6.3 Relative Error Rates

Due to estimation error we favor many trees of modest depth over a few deep ones, even

at the expense of theoretically higher error rates were perfect estimation possible. In this

section we analyze those error rates for some of the alternative classi�ers discussed above in

the asymptotic case of in�nite data and assuming the total number of features examined is

held �xed, presumably large enough to guarantee low approximation error. The implications

for �nite data are outlined in x6.4.
Instead of making N trees T1; :::; TN of depth D suppose we made just one tree T � of

depth ND; in both cases we are asking ND questions. Of course this is not practical for

the values of D and N mentioned above (e.g., D = 10, N = 20), but it is still illuminating

to compare the hypothetical performance of the two methods. Suppose further that the

criterion for selecting T � is to minimize the error rate over all trees of depth ND:

T � = argmax
T

E[max
c
P (Y = cjT )];

where the maximum is over all trees of depth ND. The error rate of the corresponding

classi�er Ŷ � = arg maxc P (Y = cjT �) is then e(Ŷ �) = 1�E[maxc P (Y = cjT �)]. Notice that

�nding T � would require the solution of a global optimization problem which is generally

intractable, accounting for the nearly universal adoption of greedy tree-growing algorithms
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based on entropy reduction, such as the one we are using. Notice also that minimizing the

entropy H(Y jT ) or the error rate P (Y 6= Ŷ (T )) amounts to basically the same thing.

Let e(ŶA) and e(ŶS) be the error rates of ŶA and ŶS respectively. Then it is easy to show

that

e(Ŷ �) � e(ŶA) � e(ŶS):

The �rst inequality results from the observation that the N trees of depth D could be

combined into one tree of depth ND simply be grafting T2 onto each terminal node of T1,

then grafting T3 onto each terminal node the new tree, and so forth. The error rate of the

tree so-constructed is just e(ŶA). However, the error rate of T
� is minimal among all trees

of depth ND, and hence is lower than e(ŶA). Since ŶS is a function of T1; :::; TN, the second

inequality follows from a standard argument:

P (Y 6= ŶS) = E[P (Y 6= ŶS jT1; :::; TN)]
� E[P (Y 6= arg max

c
P (Y = cjT1; :::; TN))jT1; :::; TN)]

= P (Y 6= ŶA):

6.4 Parameter Estimation

In terms of tree depth, the limiting factor is parameter estimation not computation or storage.

The probabilities P (Y = cjT �); P (Y = cjT1; :::; TN) and P (Y = cjTn) are unknown and

must be estimated from training data. In each of the cases Ŷ � and ŶA there are K � 2ND

parameters to estimate (recall K is the number of shape classes) whereas for ŶS there are

K �N � 2D parameters. Moreover, the number of data points in L available per parameter

is k L k =(K2ND) in the �rst two cases and k L k =(K2D) with aggregation.

For example, consider the family of N = 100 trees described in x6.1 which were used

to classify the K = 293 Latex symbols. Since the average depth is D = 8, then there are

approximately 100�28�293 � 7:5�106 parameters, although most of these are nearly zero.

Indeed in all experiments reported below only the largest 5 elements of �n;� are estimated; the

rest are set to zero. It should be emphasized, however, that the parameter estimates can be

re�ned inde�nitely using additional samples from X, a form of incremental learning; see x9.
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For ŶA = arg maxc P (Y = cjT1; :::; TN) the estimation problem is overwhelming, at least

without assuming conditional independence or some other model for dependence. This was

illustrate when we tried to compare the magnitudes of e(ŶA) with e(ŶS) in a simple case.

We created N = 4 trees of depth D = 5 to classify just the �rst K = 10 symbols, which

are the ten digits. The trees were constructed using a training set L with 1000 samples per

symbol. Using ŶS , the error rate on L was just under 6%; on a test set V of 100 samples per

symbol the error rate was 7%.

Unfortunately L was not large enough to estimate the full posterior given the four trees.

Consequently, we tried using 1000; 2000; 4000; 10000 and 20000 samples per symbol for esti-

mation. With two trees, the error rate was consistent from L to V, even with 2000 samples

per symbol, and was slightly lower than e(ŶS). With three trees, there was a signi�cant

gap between the (estimated) e(ŶA) on L and V, even with 20000 samples for symbol; the

estimated value of e(ŶA) on V was 6% compared with 8% for e(ŶS). With four trees, and

using 20000 samples per symbol, the estimate of e(ŶA) on V was about 6%, and about 1%

on L. It was only 1% better than e(ŶS), which was 7% and required only 1000 samples per

symbol.

We did not go beyond 20000 samples per symbol. Ultimately ŶA will do better, but the

amount of data needed to demonstrate this is prohibitive, even for four trees. Evidently, the

same problems would be encountered in trying to estimate the error rate for a very deep

tree.

7 Performance Bounds

We divide this into two cases: individual trees and multiple trees. Most of the analysis for

individual trees concerns a rather ideal case (\twenty questions") in which the shape classes

are \atomic"; there is then a natural metric on shape classes and one can obtain bounds

on the expected uncertainty after a given number of queries in terms of this metric and an

initial distribution over classes. The key issue for multiple trees is weak dependence and the

analysis there is focused on the dependence structure among the trees.
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7.1 Individual Trees: Twenty Questions

Suppose �rst that each shape class or hypothesis c is \atomic" - consists of a single atom

of Q (as de�ned in x4 above). In other words each \hypothesis" c has a unique codeword

which we denote by Q(c) = (Q1(c); :::; QM(c)), so that Q is determined by Y . This setting

corresponds exactly to a mathematical version of the \twenty questions game." There is

also an initial distribution �(c) = P (Y = c). For each c = 1; :::;K, the binary sequence

(Qm(1); :::; Qm(K)) determines a subset of hypotheses - those which answer \yes" to query

Qm. Since the codewords are distinct, asking enough questions will eventually determine

Y . The mathematical problem is to �nd the ordering of the queries which minimizes the

mean number of queries needed to determine Y , or minimizes the mean uncertainty about

Y after a �xed number of queries. The best known example is when there is a query for

every subset of f1; :::;Kg, so that M = 2K. The optimal strategy is given by the Hu�man

code, in which case the mean number of queries required to determine Y lies in the interval

[H(Y );H(Y ) + 1); see Cover & Thomas (1991).

Suppose �1; :::; �k represent the indices of the �rst k queries. The mean residual uncer-

tainty about Y after k queries is then

H(Y jQ�1; :::; Q�k) = H(Y;Q�1; :::; Q�k)�H(Q�1 ; :::; Q�k)

= H(Y )�H(Q�1; :::; Q�k)

= H(Y )�
�
H(Q�1) +H(Q�2 jQ�1) + :::+H(Q�k jQ�1; :::; Q�k�1

)
�
:

Consequently, if at each stage there is a query which divides the \active" hypotheses into

two groups such that the mass of the smaller group is at least � (0 < � � :5) then

H(Y jQ�1; :::; Q�k) � H(Y ) � kH(�). The mean decision time is roughly H(Y )=H(�). In

all unsupervised trees we produced, we found H(Q�k jQ�1; :::; Q�k�1
) to be greater than .99

(corresponding to � � :5) at 95% of the nodes.

If assumptions are made about the degree of separation among the codewords, one can

obtain bounds on mean decision times and on the expected uncertainty after a �xed number

of queries, in terms of the prior distribution �. For these types of calculations, it is easier

to work with the \Hellinger" measure of uncertainty than with Shannon entropy. Given a
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probability vector p = (p1; :::; pJ), de�ne

G(p) =
X
j 6=i

p
pj
p
pi

and de�ne G(Y ); G(Y jBt) and G(Y jBt; Qm) the same way as with the entropy function H.

(G andH have similar properties; for example,G is minimized on a point mass, maximized on

the uniform distribution, and it follows from Jensen's inequality that H(p) � log2[G(p)+1].)

The initial amount of uncertainty is

G(Y ) =
X
c6=c0

�1=2(c)�1=2(c0):

For any subset fm1; :::;mkg � f1; :::;Mg, using Bayes rule and the fact that P (QjY ) is
either 0 or 1, we obtain

G(Y jQm1
; :::; Qmk

) =
X
c6=c0

kY
i=1

�(Qmi
(c) = Qmi

(c0))�1=2(c)�1=2(c0):

Now suppose we average G(Y jQm1
; :::; Qmk

) over all subsets fm1; :::;mkg (allowing repeti-

tion). The average is

M�k
X

(m1;:::;mk)

G(Y jQm1
; :::; Qmk

) =
X
c6=c0

M�k
X

(m1;:::;mk)

kY
i=1

�(Qmi
(c) = Qmi

(c0))�1=2(c)�1=2(c0)

=
X
c6=c0

(1� dQ(c; c
0))k�1=2(c)�1=2(c0)

Consequently, any \better than average" subset of queries satis�es

G(Y jQm1
; :::; Qmk

) � X
c 6=c0

(1 � dQ(c; c
0))k�1=2(c)�1=2(c0) (�)

If 
 = minc;c0 dQ(c; c0), then the residual uncertainty is at most (1 � 
)kG(Y ). In order to

disambiguate K hypotheses under a uniform starting distribution (in which case G(Y ) =

K � 1) we would need approximately k � � logK
log(1�
) queries, or k � logK=
 for small


. (This is clear without the general result in (*) since we eliminate a fraction 
 of the

remaining hypotheses with each new query.) This value of k is too large to be practical for

realistic values of 
 (due to storage, etc.) but does express the \divide-and-conquer" nature

of recursive partitioning in the logarithmic dependence on the number of hypotheses.
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Needless to say, the \compound" case is the only realistic one, where the number of atoms

in a shape class is a measure of its complexity. (For example, we would expect many more

atoms per handwritten digit class than per printed font class.) In the compound case one can

obtain results similar to those mentioned above by considering the degree of homogeneity

within classes as well as the degree of separation between classes. For example, the index 


must be replaced by one based on both the maximum distance Dmax between codewords of

the same class and the minimum distance Dmin between codewords from di�erent classes.

Again, the bounds obtained call for trees which are too deep to actually be made, and much

deeper than those which are empirically demonstrated to obtain good discrimination. We

achieve this in practice due to semi-invariance, guaranteeing that Dmax is small, and the

extraordinary richness of the world of spatial relationships, guaranteeing that Dmin is large.

7.2 Multiple Trees: Weak Dependence

From a statistical perspective, randomization leads to weak conditional dependence among

the trees. For example, given Y = c, the correlation between two trees T1 and T2 is small.

In other words, given the class of an image, knowing the leaf of T1 which is reached would

not aid us in predicting the leaf reached in T2.

In this section we analyze the dependence structure among the trees and obtain a crude

lower bound on the performance of the classi�er ŶS for a �xed family of trees T1; :::; TN

constructed from a �xed training set L. Thus we are not investigating the asymptotic per-

formance of ŶS as either N ! 1 or jLj ! 1. With in�nite training data a tree could

be made arbitrarily deep, leading to arbitrarily high classi�cation rates since nonparametric

classi�ers are generally strongly consistent.

Let Ec�� = (Ec��(1); :::; Ec��(K)) denote the mean of �� conditioned on Y = c: Ec��(d) =

1
N

PN
i=1E(�Tn(d)jY = c). We make three assumptions about the mean vector, all of which

turn out to be true in practice:

1. arg maxd Ec��(d) = c;

2. Ec��(c) = �c >> 1=K;

3. Ec��(d) � (1 � �c)=(K � 1)
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The validity of the �rst two is clear from the table below. The last assumption says that

the amount of mass in the mean aggregate distribution which is o� the true class tends to

be uniformly distributed over the other classes.

Let SK denote the K-dimensional simplex (probability vectors in RK) and let Uc = f� :

arg maxd �(d) = cg, an open convex subset of SK . De�ne �c to be the (Euclidean) distance

from Ec�� to @Uc, the boundary of Uc. Clearly k��Ec��k < �c implies that arg maxd �(d) = c,

where k � k denotes Euclidean norm. This is used below to bound the misclassi�cation rate.

First, however, we need to compute �c. Clearly,

@Uc = [d:d6=cf� 2 Uc : �(c) = �(d)g:

From symmetry arguments a point in @Uc which achieves the minimum distance to Ec��

will lie in each of the sets in the union above. A straightforward computation involving

orthogonal projections than yields �c = (�cK � 1)=
p
2(K � 1).

Using Chebyshev's inequality a crude upper bound on the misclassi�cation rate for class

c is obtained as follows.

P (ŶS 6= cjY = c) = P (x : argmax
d

��(x; d) 6= cjY = c)

� P (k��� Ec��k > �cjY = c)

� 1

�2c
Ek�� �Ec��k2

=
1

�2cN
2

KX
d=1

[
NX
n=1

V ar(�Tn(d)jY = c) +
X
n6=m

Cov(�Tn(d); �Tm(d)jY = c)]:

Let �c denote the sum of the conditional variances and let 
c the sum of the conditional

covariances, both averaged over the trees:

1

N

NX
n=1

KX
d=1

V ar(�Tn(d)jY = c) = �c
1

N2

X
n6=m

KX
d=1

Cov(�Tn(d); �Tm(d)jY = c) = 
c:

We see that

P (ŶS 6= cjY = c) � 
c + �c=N

�2c
=

2(
c + �c=N)(K � 1)2

(�cK � 1)2
:

Since �c=N will be small compared with 
c, the key parameters are �c and 
c. This inequality

yields only coarse bounds. However, it is clear that, under the assumptions above, high
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Class 0 1 2 3 4 5 6 7 8 9

�c 0.66 0.86 0.80 0.74 0.74 0.64 0.56 0.86 0.49 0.68


c 0.03 0.01 0.01 0.01 0.03 0.02 0.04 0.01 0.02 0.01

ec 0.14 0.04 0.03 0.04 0.11 0.13 0.32 0.02 0.23 0.05

Table 3: Estimates of �c, 
c and ec for 10 classes

classi�cation rates are feasible as long as 
c is su�ciently small and �c is su�ciently large,

even if the estimates �Tn are poor.

Observe that the N trees form a simple random sample from some large population T
of trees under a suitable distribution on T . This is due to the randomization aspect of tree

construction. (Recall that at each node the splitting rule is chosen from a small random

sample of queries.) Both Ec�� and the sum of variances are sample means of functionals on

T . The sum of the covariances has the form of a U-statistic. Since the trees are drawn

independently, and since the range of the corresponding variables is very small (typically

less than 1), standard statistical arguments imply that these sample means are close to the

corresponding population means for a moderate number N of trees, say tens or hundreds.

In other words, �c � ET EX(�T (c)jY = c) and 
c � ET �T

PK
d=1 CovX(�T1(d); �T2(d)jY = c):

Thus the conditions on �c and 
c translate into conditions on the corresponding expectations

over T , and the performance variability among the trees can be ignored.

Table 3 shows some estimates of �c and 
c and the resulting bound ec on the misclassi�-

cation rate P (ŶS 6= cjY = c). Ten pairs of random trees were made on ten classes to estimate


c and �c. Again, the bounds are crude; they could be re�ned by considering higher-order

joint moments of the trees.

8 Generalization

For convenience, we will consider two types of generalization, referred to as \interpolation"

and \extrapolation." Our use of these terms may not be standard, and is decidedly ad hoc.

Interpolation is the easier case, in which both the training and testing samples are randomly
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drawn from (X; P ) and the number of training samples is su�ciently large to \cover" the

space X. Consequently, for most test points, the classi�er is being asked to \interpolate"

among \nearby" training points.

By extrapolation we mean situations in which the training samples do not \represent"

the space from which the test samples are drawn. Examples of this would be i) training on a

very small number of samples per symbol (e.g., one); ii) using di�erent perturbation models

to generate the training and test sets, perhaps adding more severe scaling or skewing; iii)

degrading the test images with correlated noise or lowering the resolution. Another example

of this occurred at the �rst NIST competition Wilkinson, Geist, Janet, Grother, Gurges,

Creecy, Hammond, Hull, Larsen, Vogl, & Wilson (1992); the hand-printed digits in the test

set were written by a di�erent population than those in the distributed training set. (Not

surprisingly, the distinguishing feature of the winning algorithm was the size and diversity

of the actual samples used to train the classi�er.) One way to characterize such situations is

to regard P as a mixture distribution P =
P

i �iPi, where the Pi might correspond to writer

populations, perturbation models, levels of degradation, etc. In complex visual recognition

problems the number of terms might be very large, but the training samples might be drawn

from relatively few of the Pi and hence represent a biased sample from P .

In order to gauge the di�culty of the problem, we shall consider the performance of two

other classi�ers, based on k-nearest-neighbor classi�cation with k = 5, which was more or

less optimal in our setting. (Using nearest-neighbors as a benchmark is common; see e.g.,

Geman et al. (1992), Khotanzad & Lu (1991)). Let \NN(raw)" refer to nearest-neighbor

classi�cation based on Hamming distance in (binary) image space, i.e., between bitmaps.

This is clearly the wrong metric, but helps to calibrate the di�culty of the problem. Of

course this metric is entirely \blind" to invariance, but is not entirely unreasonable when

the symbols nearly �ll the bounding box and the degree of perturbation is limited.

Let \NN(B)" refer to nearest-neighbor classi�cation based on the binary tag arrange-

ments. Thus two images x and x0 are compared by evaluating Q(x) and Q(x0) for all

Q 2 B0 � B and computing the Hamming distance between the corresponding binary se-

quences. B0 was chosen as the subset of binary tag arrangements which split X to within

5% of 50-50. There were 1510 such queries out of the total 15376 binary tag arrangements.
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Sample size Trees NN(B) NN(raw)

1 44 11 5

8 87 57 31

32 96 74 55

Table 4: Classi�cation rates in percent for various training sample sizes compared with

nearest neighbor methods.

Due to invariance and other properties, we would expect this metric to work better than

Hamming distance in image space, and of course it does (see below).

8.1 Interpolation

One hundred (randomized) trees were constructed from a training data set with 32 samples

for each of the K = 293 symbols. The average classi�cation rate per tree on a test set V
consisting of 100 samples per symbol is 27%. However the performance of the classi�er ŶS

based on 100 trees is 96%. This clearly demonstrates the weak dependence among random-

ized trees (as well as the discriminating power of the queries). With the NN(B)-classi�er,

the classi�cation rate was 74%; with NN(raw), the rate is 55%; see Table 4. All of these

rates are on the test set.

When the only random perturbations are non-linear (i.e., no scaling, rotation or skew),

there is not much standardization that can be done to the raw image; see Figure 10. With

32 samples per symbol, NN(raw) climbs to 76%, whereas the trees reach 98:5%.

8.2 Extrapolation

We also grew trees using only the original prototypes x�c; c = 1; :::; 293, recursively dividing

this group until pure leaves were obtained. Of course the trees are relatively shallow. In this

case, only about half the symbols in X could then be recognized; see Table 4.

The 100 trees grown with 32 samples per symbol were tested on samples which exhibit a
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Figure 10: Latex symbols perturbed only with non-linear deformations

Figure 11: Top: Upscaling. Middle: Downscaling. Bottom: Clutter.
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Type of Perturbation Trees NN(B) NN(raw)

Original 96 74 55

Upscaling 88 57 0

Downscaling 80 52 0

Spot Noise 71 28 57

Clutter 74 27 59

Table 5: Classi�cation rates in percent for various perturbations

greater level of distortion or variability than described up to this point. The results appear in

Table 5. \Upscaling" (resp. \downscaling") refers to uniform sampling between the original

scale and twice (resp. half) the original scale, as in the top (resp. middle) panel of Figures

11; \spot noise" refers to adding correlated noise (top panel of Figure 8). Clutter (bottom

panel of Figure 11) refers to the addition of pieces of other symbols in the image. All of

these distortions came in addition to the random nonlinear deformations, skew and rotations.

Downscaling creates more confusions due to extreme thinning of the stroke. Notice that the

NN(B) classi�er falls apart with spot noise. The reason is the number of false positives: tags

due to the noise induce random occurrences of simple arrangements. In contrast, complex

arrangements A are far less likely to be found in the image by pure chance; therefore, chance

occurrences are \weeded out" deeper in the tree.

8.3 Note

The purpose of all the experiments in this paper is to illustrate various attributes of the

recognition strategy. No e�ort was made to optimize the classi�cation rates. In particular,

the same tags and tree-making protocol were used in every experiment. Experiments were

repeated several times; the variability was negligible.

One direction which appears promising is explicitly introducing di�erent protocols from

tree to tree in order to decrease the dependence. One small experiment was carried out in

this direction. All the images were subsampled to half the resolution, e.g. 32 � 32 images
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become 16 � 16. A tag tree was made with 4 � 4 subimages from the subsampled data set,

and one hundred trees are grown using the subsampled training set. The output of these

trees is combined with the output of the original trees on the test data. No change in the

classi�cation rate was observed for the original test set. For the test set with spot noise, the

two sets of trees each had a classi�cation rate of about 72%. Combined however they yield

a rate of 86%. Clearly there is a signi�cant potential for improvement in this direction.

9 Incremental Learning and Universal Trees

As mentioned earlier, the parameters �n;� (c) = P (Y = cjTn = � ) can be incrementally

updated with new training samples. Given a set of trees, the actual counts from the training

set (instead of the normalized distributions) are kept in the terminal nodes � . When a new

labeled sample is obtained, it can be dropped down each of the trees and the corresponding

counters incremented. There is no need to keep the image itself.

This separation between tree construction and parameter estimation is crucial. It pro-

vides a mechanism for gradually learning to recognize an increasing number of shapes. Trees

originally constructed with training samples from a small number of classes can eventually

be updated to accommodate new classes; namely the parameters can be re-estimated. In

addition, as more data points are observed the estimates of the terminal distributions can be

perpetually re�ned. Finally, the trees can be further deepened as more data becomes avail-

able. Each terminal node is assigned a randomly chosen list of minimal extensions of the

pending arrangement. The answers to these queries are then calculated and stored for each

new labeled sample which reaches that node; again there is no need to keep the sample itself.

When su�ciently many samples are accumulated the best query on the list is determined by

a simple calculation based on the stored information and the node can then be split.

The adaptivity to additional classes is illustrated in the following experiment. A set of 100

trees was grown with training samples from 50 classes randomly chosen from the full set of

293 classes. The trees were grown to depth 10 just as before (x8). Using the original training
set of 32 samples per class for all 293 classes, the terminal distributions were estimated

and recorded for each tree. The aggregate classi�cation rate on all 293 classes was about

43



90%, as compared with about 96% when the full training set is used for both quantization

and parameter estimation. Clearly �fty shapes are su�cient to produce a reasonably sharp

quantization of the entire shape space.

As for improving the parameter estimates, recall that the 100 trees grown with the pure

symbols reached 44% on the test set. The terminal distributions of these trees were then

updated using the original training set of 32 samples per symbol. The classi�cation rate on

the same test set climbed from 44% to 90%.

10 Fast Indexing

One problem with recognition paradigms such as \hypothesize and test" is determining which

particular hypothesis to test. \Indexing" into the shape library is therefore a central issue,

especially with methods based on matching image data to model data, and involving large

numbers of shape classes. The standard approach in model-based vision is to 
ag plausi-

ble interpretations by searching for \key features" or discriminating \parts" in hierarchical

representations.

Indexing e�ciency seems to be inversely related to stability with respect to image degra-

dation. Deformable templates are highly robust because they provide a global interpretation

for much of the image data. However, a good deal of searching may be necessary to �nd the

\right" template. The method of invariant features lies at the other extreme of this axis:

The indexing is \one shot" but there is not much tolerance to distortions of the data.

We have not attempted to formulate this trade-o� in a manner susceptible to experimen-

tation. We have noticed, however, that multiple trees appear to o�er a reliable mechanism

for \fast indexing," at least within the framework of this paper and in terms of narrowing

down the number of possible classes. For example, in the original experiment with 96%

classi�cation rate, the �ve highest ranking classes in the aggregate distribution �� contained

the true class in all but 4 images in a test set of size 1465 (�ve samples per class). Even with

upscaling, for example, the true label was among the top �ve in 98% of the cases. These

experiments suggest that very high recognition rates could be obtained with \�nal tests"

dedicated to ambiguous cases, as determined, for example, by the mode of the ��.
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11 Handwritten Digit Recognition

The OCR problem has many variations and the literature is immense; one recent survey

is Mori, Suen & Yamamoto (1992). In the area of handwritten character recognition, per-

haps the most di�cult problem is the recognition of unconstrained script; zip codes and

hand-drawn checks also present a formidable challenge. The problem we consider is o�-

line recognition of isolated binary digits. Even this special case has attracted enormous

attention, including a competition sponsored by the National Institute of Standards and

Technology (NIST) (Wilkinson et al. (1992)), and there is still no solution that matches

human performance, nor even one that is commercially viable except in restricted situations.

For comparisons among methods see Bottou et al. (1994) and the lucid discussion in Brown

et al. (1993). The best reported rates seem to be those obtained by the ATT research group,

up to 99:3% by training and testing on composites of the NIST training and test sets (Bottou

et al. (1994)).

We present a brief summary of the results of experiments using the tree based shape

quantization method to the NIST data base. For a more detailed description see Geman et

al. (1996). Our experiments were based on portions of the NIST database, which consists of

approximately 223; 000 binary images of isolated digits written by more than 2000 writers.

The images vary widely in dimensions, ranging from about twenty to one hundred rows, and

also vary in stroke thickness and other attributes. We used 100; 000 for training and 50; 000

for testing. A random sample from the test set is shown in Figure 12.

All results reported in the literature utilize rather sophisticated methods of preprocessing,

such as thinning, slant correction and size normalization. For the sake of comparison we did

several experiments using a crude form of slant correction and scaling, and no thinning.

Twenty-�ve trees were made. We stopped splitting when the number of data points in the

second largest class fell below ten. The depth of the terminal nodes (i.e., number of questions

asked per tree) varied widely, the average over trees being 8:8. The average number of

terminal nodes was about 600 and the average classi�cation rate (determined by taking the

mode of the terminal distribution) was about 91%. The best error rate we achieved with a

single tree was about 7%.

The classi�er was tested in two ways. First, we preprocessed (scaled and slant-corrected)
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Figure 12: Random sample of test images before (top) and after (bottom) pre-processing.
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Figure 13: Classi�cation rate vs. Number of trees.
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the test set in the same manner as the training set. The resulting classi�cation rate is 99:2%

(with no rejection). Figure 13 shows how the classi�cation rate grows with the number of

trees. Recall from x6.1 that the estimated class of an image x is the mode of the aggregate

distribution ��(x). A good measure of the con�dence in this estimate is the value of ��(x) at

the mode, call it M(x). It provides a natural mechanism for rejection by classifying only

those images x for which M(x) > m; no rejection corresponds to m = 0. For example, the

classi�cation rate is 99:5% with one percent rejection and 99:8% with three percent rejection.

Finally, doubling the number of trees makes the classi�cation rates 99:3%; 99:6% and 99:8%

at zero, one and two percent rejection, respectively.

We performed a second experiment in which the test data was not preprocessed in the

manner of the training data; in fact, the test images were classi�ed without utilizing the

size of the bounding box. This is especially important in the presence of noise and clutter

when it is essentially impossible to determine the size of the bounding box. Instead, each

test image was classi�ed with the same set of trees at two resolutions (original and halved)

and three (�xed) slants. The highest of the resulting six modes determines the classi�cation.

The classi�cation rate was 98:9%.

We classify approximately 15 digits per second on a single processor SUN Sparcstation

20 (without special e�orts to optimize the code); the time is approximately equally divided

between transforming to tags and answering questions. Test data can be dropped down the

trees in parallel, in which case classi�cation would become approximately 25 times faster.

12 Comparison with ANN's

The comparison with ANNs is natural in view of their widespread use in pattern recog-

nition (Werbos (1991)) and several common attributes. In particular, neither approach is

\model-based" in the sense of utilizing explicit shape models. In addition, both are compu-

tationally very e�cient in comparison with model-based methods as well as with \memory-

based" methods (e.g., nearest neighbors). Finally, in both cases performance is diminished

by over-dedication to the training data (\over-�tting") and problems result from de�cient

approximation capacity and/or parameter estimation. Two key di�erences are described in
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the following two subsections.

12.1 The Posterior Distribution and Generalization Error

It is not clear how a feature vector such as Q could be accommodated in the ANN framework.

Direct use is not likely to be successful since ANNs based on very high dimensional input

su�er from poor generalization (Baum & Haussler (1989)) and very large training sets are

then necessary in order to approximate complex decision boundaries (Raudys & Jain (1991)).

The role of the posterior distribution P (Y = cjQ) is more explicit in our approach,

leading to a somewhat di�erent explanation of the sources of error. In our case the approx-

imation error results from replacing the entire feature set by an adaptive subset (or really

many subsets, one per tree). The di�erence between the full posterior and the tree-based

approximations can be thought of as the analog of approximation error in the analysis of the

learning capacity of ANNs; see e.g. Niyogi & Girosi (1996). In that case one is interested in

the set of functions which can be generated by the family of networks of a �xed architecture.

Some work has centered on approximation of the particular function Q ! P (Y = cjQ).

For example, Lee et al. (1991) consider least-squares approximation to the Bayes rule under

conditional independence assumptions on the features; the error vanishes as the number of

hidden units goes to in�nity.

Estimation error in our case results from an inadequate amount of data to estimate the

conditional distributions at the leaves of the trees. The analogous situation for ANNs is

well-known: Even for a network of unlimited capacity there is still the problem of estimating

the weights from limited data (Niyogi & Girosi (1996)).

Finally, classi�ers based on ANNs address classi�cation in a less nonparametric fashion.

In contrast to our approach, the classi�er has an explicit functional (input-output) repre-

sentation from the feature vector to Ŷ . Of course a great many parameters may need to be

estimated in order to achieve low approximation error, at least for very complex classi�ca-

tion problems such as shape recognition. This in turn leads to a relatively large variance

component in the bias/variance decomposition. In view of these di�culties, the small er-

ror rates achieved by ANNs on handwritten digits and other shape recognition problems is

noteworthy.
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12.2 Invariance and the Visual System

The structure of ANNs for shape classi�cation is partially motivated by observations about

processing in the visual cortex. Thus the emphasis has been on parallel processing and the

local integration (\funneling") of information from one layer to the next. Since this local

integration is done in a spatially stationary manner, translation invariance is achieved. The

most successful example in the context of handwritten digit is the convolution neural net

LeNET (LeCun et al. (1990)). Scale, deformation, and other forms of invariance are achieved

to a lesser degree, partially from using gray level data and soft thresholds, but mainly by

utilizing very large training sets and sophisticated image normalization procedures.

The neocognitron (Fukushima & Miyake (1982), Fukushima & Wake (1991)) is an inter-

esting mechanism to achieve a degree of robustness to shape deformations and scale changes

in addition to translation invariance. This is done using hidden layers which carry out a

local ORing operation mimicking the operation of the complex neurons in V1. These layers

are referred to as \C-type" layers in Fukushima & Miyake (1982) . A dual resolution version

(Gochin (1994)) is aimed at achieving scale invariance over a larger range.

Spatial stationarity of the connection weights, the C-layers and the use of multiple res-

olutions are all forms of ORing aimed at achieving invariance. The complex cell in V1 is

indeed the most basic evidence of such an operation in the visual system. There is additional

evidence for disjunction at a very global scale in the cells of the inferotemporal cortex with

very large receptive �elds. These respond to certain shapes at all locations in the receptive

�eld, at a variety of scales but also for a variety of non-linear deformations such as changes

in proportions of certain parts (see Ito, Tamura, Fujita & Tanaka (1995), Ito, Fujita, Tamura

& Tanaka (1994)).

It would be extremely ine�cient to obtain such invariance through ORing of responses

to each of the variations of these shapes. It would be preferable to carry out the global

ORing at the level of primitive generic features which can serve to identify and discriminate

between a large class of shapes. We have demonstrated that global features consisting of

geometric arrangements of local responses (tags) can do just that. The detection of any

of the tag arrangements described in the preceding sections can be viewed as an extensive

and global ORing operation. The \ideal" arrangement, e.g. a vertical edge northwest of a
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horizontal edge, is tested at all locations, all scales, and at a large range of angles around

the northwest vector. A positive response to any of these produces a positive answer to the

associated query. This leads to a property we have called semi-invariance and allows our

method to perform well without preprocessing and without very large training sets. Good

performance extends to transformations or perturbations not encountered during training,

e.g., scale changes, spot noise, and clutter.

The local responses we employ are very similar to ones employed at the �rst level of the

convolution neural nets, for example in Fukushima & Wake (1991). However at the next

level our geometric arrangements are de�ned explicitly and designed to accommodate a priori

assumptions about shape regularity and variability. In contrast, the features in convolution

neural nets are all implicitly derived from local inputs to each layer and from the \slack"

obtained by local ORing, or soft thresholding, carried out layer by layer. It is not clear that

this is su�cient to obtain the required level of invariance, nor is it clear how portable they

are from one problem to another.

Evidence for correlated activities of neurons with distant receptive �elds is accumulating,

not only in V1 but in LGN and in the retina (Neuenschwander & Singer (1996)). Gilbert, Das,

Ito, Kapadia & Westheimer (1996) report increasing evidence for more extensive horizontal

connections. Large optical point spreads are observed, where subthreshold neural activation

appears in an area covering the size of several receptive �elds. When an orientation sensitive

cell �res in response to a stimulus in its receptive �eld, subthreshold activation is observed

in cells with the same orientation preference in a wide area outside the receptive �eld. It

appears therefore that the integration mechanisms in V1 are more global and de�nitely

more complex than previously thought. Perhaps the features described in this paper can

contribute to bridging the gap between existing computational models and new experimental

�ndings regarding the visual system.

13 Conclusion

We have studied a new approach to shape classi�cation and illustrated its performance in high

dimensions, both with respect to the number of shape classes and the degree of variability
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within classes. The basic premise is that shapes can be distinguished from one another by a

su�ciently robust and invariant form of recursive partitioning. This \quantization" of shape

space is based on growing binary classi�cation trees using geometric arrangements among

local topographic codes as splitting rules. The arrangements are semi-invariant to linear and

nonlinear image transformations. As a result, the method generalizes well to samples not

encountered during training. In addition, due to the separation between quantization and

estimation, the framework accommodates unsupervised and incremental learning.

The codes are primitive and redundant, and the arrangements involve only simple spa-

tial relationships based on relative angles and distances. It is not necessary to isolate dis-

tinguished points along shape boundaries or any other special di�erential or topological

structures, nor to perform any form of grouping, matching or functional optimization. Con-

sequently, a virtually in�nite collection of discriminating shape features is generated with

elementary computations at the pixel level. Since no classi�er based on the full feature set

is realizable, and since it is impossible to know apriori which features are informative, we

have selected features and built trees at the same time by inductive learning. Another data-

driven non-parametric method for shape classi�cation is based on ANN's and a comparison

was drawn in terms of invariance, and generalization error, leading to the conclusion that

prior information plays a relatively greater role in our approach.

We have experimented with the NIST database of handwritten digits and with a synthetic

database constructed from linear and nonlinear deformations of about three hundred Latex

symbols. Despite a large degree of within-class variability, the setting is evidently simpli�ed

since the images are binary and the shapes are isolated.

Looking ahead, the central question is whether our recognition strategy can be extended

to more unconstrained scenarios, involving, for example, multiple or solid objects, general

poses and a variety of image formation models. We are aware that our approach di�ers

from the standard one in computer vision, which emphasizes viewing and object models, 3D

matching, and advanced geometry. Nonetheless, we are currently modifying the strategy in

this paper in order to recognize 3D objects against structured backgrounds (e.g., cluttered

desktops) based on grey-level images acquired from ordinary video cameras; see Jedynak &

Fleuret (1996). We are also looking at applications to document processing, e.g., omni-font
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OCR.
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