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ABSTRACT

Spectral clustering is widely used in data mining, machine learning and pattern recognition. There have been
some recent developments in adding pairwise constraints as side information to enforce top-down structure into the
clustering results. However, most of these algorithms are “passive” in the sense that the side information is provided
beforehand. In this paper, we present a spectral active clustering method that actively select pairwise constraints
based on a novel notion of node uncertainty rather than pair uncertainty. In our approach, the constraints are
used to drive a purification process on the k-nearest neighbor graph—edges are removed from the graph based
on the constraints—that ultimately leads to an improved, constraint-satisfied clustering. We have evaluated our
framework on three datasets (UCI, gene and image sets) in the context of baseline and state of the art methods and
find the proposed algorithm to be superiorly effective.
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1. INTRODUCTION

Data clustering is a fundamental problem in data mining and computer vision, such as image segmentation,
object classification, gene analysisand social network analysis.Spectral clustering [Von Luxburg, 2007] is one
of the most widely used clustering methods developed in recent years, for a variety of reasons including its
minimal assumptions on the distribution of the data and strong mathematical underpinnings. In its original
unsupervised form, spectral clustering groups samples based on pairwise similarity, which is expressed through
a graph Laplacian matrix. However, in this formulation there is no way to ensure that the resulting clusters
correspond to the semantic or other user-specified notions of categories in the data.

To address this problem, methods have been proposed that allow the algorithm to integrate pairwise con-
straints on the data as side information[Basu et al., 2004b, Li and Liu, 2009, Lu and Carreira-Perpinan, 2008].
These constraints may be either must-link (the two points belong in the same cluster) or cannot-link (the two
points belong in different clusters). These papers have shown that the use of pairwise constraints can signif-
icantly improve the correspondence between clusters and semantic labels, when the constraints are selected
well. Davidson et al. [Davidson et al., 2006] demonstrated that poorly chosen constraints can lead to worse
performance than no constraints at all. However, selecting and identifying good constraint sets remains an open
problem.

This issue of constraint selection in semi-supervised clustering is compounded by the nature of the state of
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Figure 1: (a)Flowchart for spectral active clustering, which iteratively seeks new constraints based on the current clustering
to refine the k-NN graph; (b)Two examples showing the effectiveness k-NN graph purification (k = 20). See Section 5.
for details on the data sets. The graphs plot the cluster accuracy against number of nodes purified. Cluster accuracy is
computed using the well-known V-Measure[Rosenberg and Hirschberg, 2007] algorithm.

the art methods: most are passive and require that their entire constraint set be selected before the clustering
operation begins. Thus, these methods cannot know what effect a given constraint will have on the algorithm.

To overcome these limitations, we propose an spectral active clustering method that actively (iteratively)
selects new pair-constraints based on the current clustering (illustrated in Figure 1)(a). As new constraints are
selected, we ask an oracle, which generally is human, if the selected constraint is must-link or cannot-link.
Then the k-Nearest Neighbor (k-NN) graph is refined to enforce these constraints and the spectral clustering
is reevaluated. We note earlier work in the active selection of constraints for semi-supervised clustering exists,
but previous active clustering methods either limit the number of clusters to two [Wang and Davidson, 2010,
Xu et al., 2005], are computationally expensive [Hoi and Jin, 2008], or use simpler clustering regimes [Basu
et al., 2004a, Klein et al., 2002, Mallapragada et al., 2008] (e.g., k-means) that require stringent assumptions
on the cluster distribution (see our review in Section 2. for details).

In contrast, our active clustering approach can handle multiple clusters situation within the spectral cluster-
ing framework and is comparatively computationally simple. We approach the spectral active clustering prob-
lem by iteratively purifying the k-NN graph—a process that finds uncertain nodes, select constraings based on
these sampled nodes, queries the oracle for new constraints and then refines the £-NN graph to satisfy the new
constraints. Theoretical justification for these ideas is discussed in Section 3..

We compare our method and active selection criteria with baseline and state of the art approaches on UCI
machine learning datasets [Asuncion and Newman, 2007], two gene datasets [Cho et al., 1998, Iyer et al., 1999]
and part of the Caltech image dataset [Fei-Fei et al., 2006]. The results show that given the same number of
pairs queried which is selected by our active selection criteria, our method can obtain much better accuracy
than the baseline methods.

2. RELATED WORK

Active constraint selection for clustering has been attracting growing interest in the machine learning commu-
nity due to the difficulty of selecting good constraints a priori coupled with the computational burden of having
too many constraints and the cost of getting new constraints.

Active k-means clustering. Most preexisting active clustering algorithms are based on k-means and hier-
archical clustering. Basu et al. [Basu et al., 2004a] proposed active k-means clustering using the farthest-first
strategy. Klein et al. [Klein et al., 2002] developed a cluster-level active querying technique for hierarchical
clustering, which works on data sets that exhibit local proximity structure. Mallapragada et al.[Mallapragada
et al., 2008] presented another active k-means method based on a special case of the min-max approach, us-
ing similarity between points in a pair as a confidence value for must-link constraints. Though active, these
methods carry the limitations of the underlying k-means algorithm.

Active spectral clustering. Xu et al.[Xu et al., 2005] propose an active constrained spectral clustering
algorithm that examines the eigenvectors to identify the boundary points (of two clusters) and sparse points;
then, it queries the oracle for constraints based on the these points. It has shown limited applicability because it



requires many queries to the oracle and assumes that errors in the clustering result only occur on the boundary
points (which is only the case if the clusters are already nearly separated). Wang and Davidson[Wang and
Davidson, 2010] present another spectral active clustering technique that identifies informative pairs according
to the entropy of the pair example, requiring the evaluation of n? pairs at each iteration. Both of these prior
spectral active clustering approaches have limited their work to two classes, and direct generalizations to mul-
ticluster cases are not known. In contrast, our proposed method is suitable for multicluster problems and uses
an efficient linear-time method for actively selecting new constraints, as we demonstrate in this paper.

3. THEORETICAL UNDERPINNING AND MOTIVATION

Our ideas are motivated by two independent threads of literature. First, recent results in active learning [Settles,
2010], have demonstrated the potential in actively requesting information on the most uncertain point out of n
available nodes. However, applying these techniques directly to the clustering case is problematic, because the
algorithm must select a pair rather than a single node, requiring the evaluation of n? candidates.

Second, theoretical convergence analyses of spectral clustering have shown that the structure of the k-NN
graph has significant influence on the ultimate clustering results. Maier et al.[Maier et al., 2009] first showed
that the spectral clustering result is not independent of the graph structure, and Ting et al. [Ting et al., 2010]
developed a framework for analyzing the graph with shrinking neighborhoods and demonstrated that changing
the method by which nearest neighbors are determined could yield superior clustering results. Moreover, we
have found empirically that the accuracy of the clustering result increases as the k-NN graph is purified, a
concept that will be defined in Section 3. below; our results further expound this evidence (Section 5.). the rest
of paper.

Given the graph G with the node set X = {x1,xX2, -, X, } that each x; overloaded to be both a node in
the graph and a sample x; € R™; and the edge set E that (e;; = 1 if x; and x; are connected). W = {w;;} is
the associated pairwise similarity matrix, which is non-negative and symmetric, From W, denote the Laplacian
and normalized Laplacian matrix of G as L = D — W and L = D~'/2(D — W)D~!/2, respectively, where
D is degree matrix of graph G: D;; = >, wj; if i = j, else 0.

Spectral graph theory focuses on understanding the properties of the eigenvalues and eigenvectors of the
two Laplacians, L and L. A typical objective function emphasizes the smoothness of the eigenvectors,
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This measurement penalizes large changes between two connected nodes in the graph.It follows that the struc-
ture of the graph G, specifically the k-NN structure from which the sparse W is constructed, determines the
ultimate clustering output, which may differ significantly from the ground truth. Must-link and cannot-link
constraints may be used in semi-supervised clustering methods to impose the ground truth structure on the k-
NN graph, but most existing methods accomplish this by selecting constraints randomly and beforehand. They
are thus less likely to choose constraints that will adequately impact the clustering.

In this paper, our method adopts an active approach to selecting constraints that chooses new constraints
based on current clustering outputs and the k-NN graph. Let us define a new property for the £-NN graph:
Purity. Assume for now we are given a k-NN graph and ground truth knowledge of the cluster structure.
Denote I; to be the clustering membership index of node i in the ground truth clustering (assuming one exists
for this discussion). Purity is the average fraction of the k neighbors for each node that lie within the same
ground truth cluster as that node:

)> =tr(fTLf) (1)
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where n is total number of nodes; IV; is the set of neighbors of the node 7 in the £-NN graph; and # is the set
cardinality operator.

Ideally, all the connected nodes in the k-NN graph are in the same ground truth cluster, yielding a Purity of
1 and a trivially separable connected component graph. But, in practice, because of imperfect distance metrics

Purity(G) = %Z #Hly =l € Nij @)
=1



and complex underlying data distributions, the generated k-NN graph is nearly always impure, with many edges
connecting nodes of different ground truth clusters. Due to these “bad edges,” the spectral clustering result will
likely differ from the ground truth assignment. Therefore, by removing so-called bad edges we are be able to
improve the spectral clustering result (i.e., bring it closer to the ground truth clustering assignments).

We report our findings in Figure 1(b). We find that £-NN graph purification significantly improves the
accuracy of the clustering results; this improvement occurs even with randomly selected constraints but more
so for our proposed selection strategies.We further demonstrate this idea with an experiment—see Section 5.
for details on the data used.

Algorithm 1 Spectral Active Clustering algorithm

Input: data points X = {x1,X2, " ,Xn}, K, trmax

Initialization:

Build the k-NN graph G as the initial purified k-NN graph, set ¢ = 0;
repeat

According to the purified k-NN graph G*, calculate the similarity matrix W and normalized Laplacian
matrix L = D~/2(D — W)D~ /2. And do spectral clustering.
Based on the clustering result, select the most informative node and obtain the corresponding pairs/edges
according to the active selection methods in section 4.2;
Ask the oracle for constraints on the selected pairs/edges, and purify the k-NN graph to obtain graph G***
based on the response of the oracle.
t=t+1

until (¢ > t,,4, || oracle requests stop)

Output the final clustering result.

4. SPECTRAL ACTIVE CLUSTERING VIA k-NN GRAPH PURIFICATION

We now present our innovation for spectral active clustering via k-NN graph purification. Recall the basic flow
of the algorithm depicted earlier in Figure 1(a). We first construct the initial £-NN graph from the input data,
then compute an initial spectral clustering result. Using this result, we actively select new constraints, query
the oracle and use the responses to purify the k-NN graph. We iterate this process until the oracle is satisfied or
a fixed number of constraints have been generated. Note that the trivial clustering—i.e., the oracle has provided
a full set of constraints that lets us fully purify the graph and thus each cluster is represented as a connected
component in the k-NN graph—is not plausible as there are n? possible constraints and we implicitly seek as
few as possible.

In this work, we make the common assumption that values for both k (the number of neighbors in the £-NN
graph) and for k (the number of clusters) have been provided by the user. In our experiments, we use k = 20
and set the number of clusters based on each data set.

4.1 The Spectral Clustering Sub-Routine

At the beginning of the spectral active clustering procedure, an initial £-NN graph is formed by the distance of
each two data points. During each iteration of the method (see Figure 1(a) for an overview and Algorithm 1
for a more precise description of the method), the selection algorithm will generate new constraints, purify the
k-NN graph, and compute a new spectral clustering. At the core of our spectral active clustering method is the
underlying spectral clustering method. Here, we use the NJW algorithm proposed by Ng et al.[Ng et al., 2001].

4.2 Active Selection
After obtaining the clustering results based on NJW, our method will then actively search for new constraints

to further purify the k-NN graph and thus improve the clustering. As we described earlier, the goal in searching
for new constraints is to find the nodes in the graph with the most “bad edges,” which can provide the greatest



increase to the graph’s purity if those bad edges are removed. However, in practice, we cannot directly evaluate
the purity or bad edges because we do not know the ground truth. So, we rely on node uncertainty, which
represents a node’s confidence with its cluster assignment. A node with high uncertainty is likely to have bad
edges in the k-NN graph which can be removed. In this section, we propose two strategies for computing node
uncertainty and thus actively selecting new constraints.

4.2.1 Uncertainty based on the k-NN graph

Recall that when the k-NN graph is pure, the clustering result should match the connectivity in the k-NN
graph. This implies that, in a pure graph, nodes connected in the k-NN graph will be assigned to the same
cluster. On the other hand, in an impure graph the clustering result usually does not match the k-NN graph
connectivity, and the graph will thus contain nodes whose neighbors are assigned to different clusters. As a
result, the connections between these nodes and their neighbors are likely to contain bad edges. Based on this
observation, we define an entropy criterion to measure the uncertainty of a node x;:

Hi(x;) = *ij(i) log P;(i) , 3)

where P;(i) = % is the ratio of neighbors of node j in the graph that are assigned to cluster ¢
during clustering (notatian ¢, denotes the cluster index of neighbor 2), and 0log 0 = 0. If the entropy of a node
is high, the relation between that node and its neighbors is disordered. If the entropy is small or 0, then the
cluster assignments of the node and its neighbors obey the k-NN graph, and querying the node is unlikely to

yield any useful information. So we select the node that has the highest entropy, and thus the most uncertainty:

x; = argmax Hi (z;) . )
We then obtain the edges:

The edge set contains edges that connect X7 to its corresponding neighbors in the £-NN graph and query the
oracle for new constraints along these edges.

High entropy of a node signifies that the node is highly uncertain about the cluster to which it belongs.
Hence, high entropy of a node suggests that it is impure. We therefore select the node whose entropy is highest
and query the oracle about its edges.

4.3 Purifying the k-NN graph

After a node has been selected and its k-NN edges are queried by the oracle, we obtain two sets of constraints
on the edges: the must-link set L,; and the cannot-link set Lo. Note that at any point in the algorithm, the
current sets L and Lo include constraints from the current iteration as well as all prior iterations. Purification
is a two step process. First, we take the current sets Ly, and Lo and augment them based on the k-NN graph
structure: some unknown edge constraints can be inferred from the known ones. For example, we search for
all transitive closure groups of the L, edges. We explain the constraint augmentation process here.

1. First, use transitive closure of the must-link edges to get connected components consisting of all points
connected by must-link constraints. Call these connected components collapsed points.

2. Then, augment the must-link set Lj; by adding the edges that connect two nodes belonging to the same
collapsed point.

3. If there is an edge from cannot-link set Lo that connects two collapsed points, then other edges that
connect the two collapsed point in the £-NN graph are assigned as cannot link and added into the set L.

Second, we apply the constraints to directly purify the graph. When we complete the constraint augmenta-
tion, we apply the constraints to purify the graph by deleting all the edges in the cannot link set Lo from the
k-NN graph to increase the purity of the k-NN graph. We also set the similarity value of edges in the must-link
Ly to 1. Then we repeat the spectral clustering algorithm based on the new purified £-NN graph.



Table 1: UCI Datasets, GENE Datasets and 5-CLASS IMAGE dataset

Name #Classes | #Instances | #Features Name #Classes | #Instances | #Features
Segmentation 7 210 19 Cho’s 5 386 17
Breast 3 683 10 Iyer’s 11 517 12
Balance 3 625 4 Pyramidal HOG 5 485 6300

5. EXPERIMENTS

We test the proposed spectral active clustering (SAC) algorithm on UCI machine learning datasets [Asuncion
and Newman, 2007], two gene datasets (Cho’s[Cho et al., 1998] and Iyer’s[lIyer et al., 1999]) and a five-class
image dataset that is randomly sampled from Caltech-101 [Fei-Fei et al., 2006] with images represented by
codebooked pyramidal dense HOG features [Dalal and Triggs, 2005]. More details are in Table 1.

At the beginning of all experiments, the k-NN graph is built by calculating the distance matrix using Eu-
clidean distance and applying a Gaussian kernel to the distances to generate the similarity weights. We use
k = 20 in all experiments. To evaluate our proposed spectral active clustering algorithm , we use the following
set of methods, including baselines and the state of the art:

e Random: the first baseline algorithm is the proposed spectral active clustering (SAC) algorithm, but the
pairwise constraints are randomly sampled. This baseline lets us evaluate the proposed active constraint
selection systematically within the same clustering paradigm.

e CCSKL: Constrained Spectral Clustering[Li and Liu, 2009] with randomly sampled constraints. This is
the state of the art multiclass semi-supervised spectral clustering method.

e CCSKL+P-Random: the CCSKL method with randomly sampled constraints and our proposed graph
purification with those constraints, which lets us evaluate if the proposed purification method can improve
other spectral clustering methods.

o CCSKL+P-Active: CCSKL using the constraints selected by our active selection method, with the
constraint purifying the graph.

e SAC: This is our proposed algorithm selecting the most uncertain node based on the £-NN graph.

Experiment Setup. To measure the performance, we adopt the well-known two measurement: Rand In-
dex and V-Measure[Rosenberg and Hirschberg, 2007] metric for determining cluster accuracy, which defines
entropy-based measures for the completeness and homogeneity of the clustering results, and computes the
harmonic mean of the two.

Figure 2 shows our comparative results using the V-Measure accuracy. Our active clustering framework
is demonstrably effective at achieving high accuracy with fewer constraints than the state of the art CCSKL
method, and uniformly outperforms it. We note the improvement in accuracy of the CCSKL method when
we incorporate the proposed graph-purification step—implying that graph-purification, in and of itself, may be
important to the broader spectral clustering community.

However, the degree to which active selection methods outperform random selection methods varies greatly
among the different datasets that may be a consequence of the structure of certain datasets.

Figure 3 shows our comparative results using the Rand Index accuracy. Once again, our active methods
show a clear advantage over both the baseline using random constraint selection and CCSKL, though the extent
to which they outperform the baseline is variable. There are a few cases where the V-Measure and Rand Index
disagree—for instance, on the performance of the k-NN purification method on the Caltech data. These likely
stem from the fact that the Rand Index tends to report inflated results for problems with 3 or more classes, due
to the preponderance of cannot-link constraints between the nodes, which will mostly be satisfied regardless of
the actual correctness of the clusters. Despite these few conflicts, the two measures generally agree on which
method achieves the best performance on each dataset.
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Figure 2: V-Measure accuracy (vertical axes) with increasing iteration number (twenty constraints per iteration) on the
datasets. Our active methods generally outperform the baseline approaches, sometimes by a considerable margin. View in
color.

6. CONCLUSION

In this paper, we have considered the problem of active constraint selection for semi-supervised spectral cluster-
ing. Our paper makes two contributions: first, we describe a method for semi-supervised spectral clustering by
purifying the k-NN graph; second, we propose one method for actively sampling constraints by transforming
the pair-uncertainty problem into a node-uncertainty problem. Our comparative results on several benchmarks
demonstrate superior performance to the baseline and state of the art semi-supervised spectral clustering method
using the V-measure and the Rand Index measurement.
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