Clinical Evaluation of GPU-Based Cone Beam
Computed Tomography.

Peter B. Noél"2, Alan M. Walczak?, Kenneth R. Hoffmann!-2, Jinhui Xu!,
Jason J. Corso!, and Sebastian Schafer?

! Department of Computer Science and Engineering, The State University of New
York at Buffalo, USA, pbnoel@buffalo.edu,
2 Toshiba Stroke Research Center, The State University of New York at Buffalo,
USA.

Abstract. The use of cone beam computed tomography (CBCT) is
growing in the clinical arena due to its ability to provide 3-D information
during interventions, its high diagnostic quality (sub-millimeter resolu-
tion), and its short scanning times (60 seconds). In many situations, the
short scanning time of CBCT is followed by a time consuming 3-D re-
construction. The standard reconstruction algorithm for CBCT data is
the filtered backprojection, which for a volume of size 256> takes up to
25 minutes on a standard system. Recent developments in the area of
Graphic Processing Units (GPUs) make it possible to have access to high
performance computing solutions at a low cost, allowing for use in appli-
cations to many scientific problems. We have implemented an algorithm
for 3-D reconstruction of CBCT data using the Compute Unified De-
vice Architecture (CUDA) provided by NVIDIA (NVIDIA Cor., Santa
Clara, California),which was executed on a NVIDIA GeForce 8800GT.
Our implementation results in improved reconstruction times from on
the order of minutes, and perhaps hours, to a matter of seconds, while
also giving the clinician the ability to view 3-D volumetric data at higher
resolutions. We evaluated our implementation on ten clinical data sets
and one phantom data set to observe differences that can occur between
CPU and GPU based reconstructions. By using our approach, the com-
putation time for 256° is reduced from 25 minutes on the CPU to 4.8
seconds on the GPU. The GPU reconstruction time for 5123 is 11.3 sec-
onds, and 10243 is 61.4 seconds.

1 Introduction

Computed Tomography is one of the most popular modalities in the clinical
arena, but reconstruction of cone beam computed tomography (CBCT) data
can be time consuming on a standard system. Solutions that reduce the turn-
around time would provide advantages during both diagnostic and treatment
interventions, e.g., real-time reconstruction and high resolution reconstruction.

The high demand for realism in computer games has pushed the development
of Graphic Processing Units (GPUs). As a result, the performance of these units
themselves are multiple times higher than the supercomputers of only a decade

ago. Therefore, it is practical to apply the power of GPUs to problems that exist
in the field of medical imaging.

We use a NVIDIA GeForce 8800GT which provides high performance for a
relatively low cost (300 US dollars). The advantage of a NVIDIA product is that
a C-like programming environment, called Compute Unified Device Architecture
(CUDA), is provided.

CUDA has several advantages over traditional low-level GPU programming
languages. For example, it uses the standard C language, it allows for access
to arbitrary addresses in the device’s memory, it allows user-managed shared
memory (16KB in size) that can be shared amongst threads, and it utilizes
faster downloads and readbacks to and from the GPU. However, in comparison to
traditional CPU calculations, the GPU computations have some disadvantages.
These include no support for recursive functions, bottlenecks may result due to
bandwidth limitations and latencies between the CPU and the GPU, and the
GPU’s deviations from the IEEE 754 standard !, which includes no support for
denormals and signalling NaNs, support for only two IEEE rounding modes, and
lower precision in floating-point math functions.

Since computed tomographic reconstruction is computational very demand-
ing, several approaches to speed up the process have been developed in recent
years. A comprehensive summary of the different approach is given in [2], where
four different approaches are compared (PC Reference, Field Programmable
Gate Arrays (FPGAs) Platform, Graphic Processing Unit (GPU) Platform and
Cell Platform). The system parameter for all techniques are 512 projections,
with a projection size of 10242 and a volume of 5123. The reconstruction times
are as follows: PC 201 seconds, FPGA 25 seconds, GPU 37 seconds and Cell 17
seconds. A direct comparison between the different approaches is difficult since
the architecture of the hardware used, especially for GPUs, is frequently updated
and may include additional new features.

Several groups have worked on implementing CT reconstructions on the
GPU. Through the last decade, the main contributions in accelerated CT have
been made by Klaus Mueller, et al.[3][4], where different implementations and
programming platforms are used to show the ability of the graphic accelerator.
In [4], a streaming CT framework is presented which pipelines the process; the
convolution is done on the CPU and the backprojection on the GPU. A similar
implementation by using CUDA for parallel beam and cone beam is presented
in Haiquan Yang et. al. [5]. Reconstruction of CBCT data from mobile C-arm
units by using NVIDIA devices is presented in [6][7].

Our approach is distinct from the previous work. We have developed a solu-
tion that takes advantage of the available shared memory, loads all projection
images into the GPU memory, and computes the intensity of each voxel by back-
projecting in parallel. We investigate the limitation and differences between the
reconstruction on GPUs and on CPUs, which most likely occur as a result of the

! The IEEE Standard for Binary Floating-Point Arithmetic (IEEE 754) is the most
widely-used standard for floating-point computation, and is followed by many CPU
implementations.[1]

deviation from the IEEE 754 standard. We monitored the differences by perform-
ing a clinical evaluation of ten animal cases and one phantom case. Due to the
hardware differences between GPUs, e.g. clock speed and memory size, and vari-
ations in the system parameters of different computed tomography modalities,
a direct comparison between implementations is difficult to perform.

The rest of the paper is organized as follows. In sections 2.1, we revisit the
filtered backprojection method, and in Section 2.2, we present our CUDA imple-
mentation. In section 3, we show how the algorithm proposed is evaluated, and
in section 4 the results are shown. Finally, in section 5, a discussion is given.

2 Method

2.1 Cone-Beam Computed Tomography (CBCT)

In this section, we revisit a reconstruction method for CBCT data as introduced
by Feldkamp, et al. [8]. Since we use a rotational angiographic system (Toshiba
Infinix VSI/02) equipped with a flat panel detector, we only discuss the case of
equally spaced planar detectors.

In Figure 1, the schematic drawing of the cone beam system with a planar
detector is presented. During acquisition, the system follows a circular trajectory,
with a radius of D placed at the origin. The detector lies perpendicular to the
central axis of the x-ray beam.

Fig. 1. Systematic drawing of a cone beam system.

The projection image P(-) at angular position © is the line integral along
the x-ray beam. A set of projections are acquired at ¢ discrete source positions
with uniform angular spacing A@. During CBCT, © range is about 210 ° with
angular separations of 2°. A full rotation is not possible due to mechanical
limitations.

The reconstruction method is formulated as a weighted filtered backpro-
jection. As an initial step, the projection data are log converted, individually

weighted and ramp filtered (Py). Next, the 3-D volume is reconstructed by a
backprojection. Let r = [z, vy, z] be the 3-D position in the volume, and let (u,v)
denote the position of the intersection with the detector plane of the ray starting
from the source and passing through point r. Therefore, the backprojection is:

f(T) :pr[u(x7z76)77)(%276)’9]7 (1)
e
where
u=(SIDx*z)/(ISO — z), (2)
v=(SIDxy)/(ISO — 2), (3)

SID is the source-to-image-distance, and ISO is the source-to-isocenter distance,
where the isocenter is the point about which the system rotates. Since u and v
usually do not correspond to a discrete pixel position, we use bilinear interpola-
tion to determine its value in the image. The computational cost of cone-beam
computed tomography for a volume of size N3 is O(N?).

2.2 GPU-Based Implementation

GPU Architecture. The architecture of the GPU is built for high performance
because it is needed for the intensive and highly parallel computations neces-
sary for computer graphics. They are designed with more transistors devoted to
data processing rather than data caching and flow control. More specifically, the
GPU is well suited to address problems that can be expressed as data-parallel
computations, where the same program or kernel is executed on many data el-
ements simultaneously. Data-parallel processing maps data elements to parallel
processing threads.

For the NVIDIA architecture, the kernel is compiled to the instruction set of
the device and the resulting program can be called by multiple threads. A thread
block is a batch of threads that can cooperate with each other by efficiently
sharing data using the fast shared memory and synchronizing their execution
to coordinate memory accesses. There is a maximum number of threads that a
block can contain. However, blocks of same dimensionality and size that execute
the same kernel can be batched together into a grid of blocks, so that the total
number of threads that can be launched to execute a single kernel is much
larger.[9]

GPU-Based 3-D Computed Tomography. The backprojection algorithm is
the most computationally intensive portion of the reconstruction process. There-
fore, we will focus on its implementation. However, the first step in the algoritm
is the logarithmic conversion and filtering of the projection images. Both steps
are implemented as GPU routines by using shared memory. As a separate step,
the time for these operations is reduced from minutes to seconds.

Since the on-board GPU memory is limited, in our case 512Mb, it is not
possible to load both the entire set of projection images and the full volume

into the memory. Therefore, two different possibilities exist: either to load the
full volume and each projection consecutively, or to load all of the projections
and then sub-parts of the volume consecutively. We decided to use the second
approach for two reasons. First, the rotational angiographic system acquires 106
projection of size 10242 with an angular separation of 2 ° which makes it possible
to load all projections at once, and second, experiments have shown that this
approach performs better in terms of the total running time.

We present the pseudo-code for our implementation in Algorithm 1. After
filtering, the projection images are uploaded to the GPU memory as 2-D tex-
tures, allowing us to utilize the efficient bilinear interpolation function provided
by CUDA during the backprojection step. Next, we start a voxel-based backpro-
jection by first splitting the problem up into separate slices of the volume, and
then separating the slice into several sub-rows of length 256 or 512 depending on
the volume size as illustrated in Figure 2. On the GPU, each slice translates to
a grid that represents each sub-row of voxels, and each of these sub-rows creates
a single block of threads (one thread for each voxel) on which our kernel will ex-
ecute. For each block of threads, we use the shared memory to save original xyz
coordinates of the sub-row, the voxel intensities of the sub-row (initially set to
zero), and the translation and rotations matrices, which describe the geometric
relationship between the different projection images (determined previously in
a calibration step). The xyz coordinates are calculated in the following way:

=Ty, *Gp+ T, (4)
y = slice (5)
:=G, (6)

where Ty, is the size of a block of threads (256 or 512), G, and G, are the grid
blocks indices and T, is the thread index. For proper projection of a voxel, the
thread block index and grid index must be translated to the correct position in
the volume. In our case, we use a Right-handed system to determine the direction
of the coordinate axes.

Algorithm 1 Algorithm for GPU-based backprojection

1: copy all projection into GPU memory as textures

2: for each slice in volume do

3 initialize voxel intensities of the current sub-row to zero in shared memory
4 calculate coordinates of voxel in sub-row into shared memory

5: copy all rotation and translation matrices into shared memory

6 for each projection image do

7 apply rotation and translation matrices to voxel coordinates

8 project voxel into the image

9: add pixel intensity in image to voxel intensity
10: end for
11: write sub-row back into volume on host

12: end for

512

B l
512

0o | 255

Fig. 2. Systematic drawing defining a sub-row. Different sub-rows are backprojected
in parallel.

Due to mechanical limitations of the gantry for our cone beam computed
tomography unit, the rotation range is 210 degrees. In a short-scan case like
this, the introduction of a weighting function to handle redundant data is needed.
Parker introduced such a weighting function for a scan over IT plus the opening
angle of the fan. [10] These weighting functions lead to mathematically exact
reconstructions in the continuous case. Therefore, we implemented these weights
and also the original weights defined by Feldkamp to achieve mathematically
correct reconstructions.

3 Evaluations

For all evaluations, we used a standard system (Pentium 4, 3.2 GHz, 4 GB of
RAM) equipped with a NVIDIA Geforce 8800GT. The performance profile of
the GPU is: 112 Stream Processors with 1500 MHz Shader Clock which equals
a peak performance of 366 GFlops?.

To evaluate the speed up over the CPU provided by the GPU, we determine
total time, convolution time, and the backprojection time. The total time is the
sum of convolution and backprojection time. Additionally, we determine frames
per second [fps] and megavoxels per second [Mvps]. Frames per second is the
number of projections divided by the time need for convolution . Megavoxels per
second is the number of voxels within the volume divided by the time needed
for backprojection.

2 In high performance computing, Flops is an acronym meaning Floating point Oper-
ations Per Second, which is a measure of a computer’s performance.

Additionally we evaluate our algorithm on two different types of CBCT data,
head phantom (Figure 3) and animal study data. For both types of data, 106
projections of size 1024% with an angular separation of 2° were acquired. The
gantry has a source-to-image distance of 110 cm, a source-to-isocenter distance
of 75 cm, a pixel size of 0.019 cm, and an angular speed of 50 dps. Distortion
correction of the projections is not necessary since our system is equipped with a
flat panel detector. We compare the intensity profile across the horizontal medial
axes of the center slices from both reconstruction methods. The intensity profile
is compared for one animal case and the head phantom.

Fig. 3. The head phantom

For the ten animal case, we calculate for each one the average difference
between the volumes as:

A=1/Nx)_|lvolopy(z,y,x) = volgpu(z,y,), (7)

where, N is the total number of voxels within the volume. Note, the volumetric
difference is calculated for volumes of dimension 2562 since larger data sets would
be extremely time consuming to reconstruct on the CPU.

4 Results

Table 1 shows the reconstruction time of three different volume sizes (2562,
5123, 10243). The total reconstruction time is substantially reduced compared
to the standard CPU times, while providing reconstructed volumes of a higher
resolution. The overall performance of our approach with existing techniques is

comparable. For a 5123 volume, Mueller, et al., [4] achieves a reconstruction time
of 8.9 seconds for a GPU approach, and Yang, et al., [5] a reconstruction time of
8.7 seconds for their GPU approach. Note these times for these techniques are
reported for reconstructions using 360 projections, where our approach only uses
106 projections. Also it seems Parker weights have not been implemented in both
techniques, and in the second publication bilinear interpolation is not reported
to be used. For these techniques, the reported GPU results are executed on a
GPU with a high performance profile, making it difficult to directly compare the
results of the other approaches with our results.

Table 1. Results for different volume sizes

Volume Size total [s] convolution [s] [fps] backprojection [s] [Mvps]
256° 5.07 3.58 29.6 150 11.22
5123 12.61 3.58 29.6 9.03 14.86
10243 61.29 3.58 29.6 57.71 18.61

Head Phantom. In Figure 4, we present the center slices from the GPU and
CPU reconstructions and the intensity profile across the horizontal central axis.
Visually the intensity profiles for both approaches identically in shape with small
variations.

Animal Study. In Figure 5, we show the centerslices from the GPU and the
CPU reconstruction, and the intensity profile across the horizontal median axis.
Visually, the intensity profiles for both approaches identically in shape with small
variations.

Figure 6 illustrates the differences between the volumetric data as calculated
from Equation 7. The average difference over all cases is 26.7 Hu, which is about
2% considering a Hounsfield range of 1400. The maximal error over all cases is
15.3%. These errors are caused by different factors, which could be as a result of
the varition from the IEEE 754 standard, the bilinear interpolation provided by
CUDA, or implementational differences. Since the differences between the data
are minor, we can assume that the variation is not significant for the computed
tomography problem.

Finally, a 3-D rendering of one rabbit head is presented in Figure 7, showing
that high resolution renderings like this are now achievable in short amount of
time, using a low cost standard system.

5 Discussion

In this paper, we presented an efficient, clinically orientated algorithm to recon-
struct computed tomography data in almost real-time, demonstrating the power
of GPUs in the field of medical imaging. For future work, implementations of
other medical imaging problems using a GPU should be considered. In the field

200 -

-200

Intensityin Hounsfild

-400 -

-600

-800

Position

Fig. 4. Reconstruction from CPU(left), GPU(right), and intensity profiles from the
GPU-CT in gray and for the CPU-CT in black(lower)

of computed tomography, there exists other more efficient reconstruction algo-
rithms whose running time may benefit by using a similar approach.

In our evaluations, we report promising results on two different types of data
sets. The amount of time needed for reconstruction is significantly reduced. For
a three dimensional volume with dimensions 5123, our algorithm completes after
11.3 seconds. Compared to implementations which use a shader (CG, GLSL) our
implementation is slightly slower. This slowdown is caused by the fact that with
CUDA, the graphics subsystem ASIC hardware cannot be exploited for some of
the operations. Nevertheless, CUDA is the latest platform provided by NVIDIA
and therefore it is likely that these issues will be improved in time, allowing us to
make improvements in our implementation, and therefore our results. Another
limitation of programming on a GPU, from which most implementations will
suffer, is the fact there exists a bottleneck between the CPU and GPU mem-
ory when transferring large datasets. Improvements in the hardware bandwidth
between the CPU and GPU will further improve reconstruction times.

In the future, higher resolution volumes could become standard since they
provide more information for diagnostic and treatment purposes. In our imple-
mentation, our kernel function allows reconstruction of all volume sizes which

600

400

200

Intensity in Hounsfild
&

200

400

600

-800

-1000

Fig. 5. Reconstruction from CPU(left), GPU(right), and intensity profiles from the
GPU-CT in grapy and for the CPU-CT in black(lower)

average variation in Hounsfield

case #

Fig. 6. The average gray value variation for the 10 clinical cases.

Fig. 7. A 3-D rendering of the rabbit data reconstructed using GPUs.

are a multiples of 256. The additional weighting functions make the approach a
little slower but results in a mathematically correct reconstruction. The time and
relatively simple implementation by using CUDA makes our approach attractive
compared to other CPU based techniques.

6

Acknowledgements

This work was partly supported by NIH Grant EB002916, NIH Grant HL.52567,
NSF grant 11S-0713489, NSF CAREER Award CCF-0546509, and the Toshiba
Medical Systems Corporation.

References

1.

2.

Hough, D.: Applications of the proposed IEEE-754 standard for floating point
arithmetic. Computer 14(3) (March 1981) 70-74

Bockenbach, O., Schuberth, S., Knaup, M., Kachelriess, M.: High Performance 3D
Image Reconstruction Platforms; State of the Art, Implications and Compromises.
In: 9th International Meeting on Fully Three-Dimensional Image Reconstruction
in Radiology and Nuclear Medicine. Volume 9. (2007) 17-20

Xu, F., Mueller, K.: Real-time 3D computed tomographic reconstruction using
commodity graphics hardware. Phys Med Biol 52 (Jun 2007) 3405-3419

Mueller, K., Xu, F., Neophytou, N.: Why do commodity graphics hardware boards
(GPUs) work so well for acceleration of computed tomography? In: Medical Imag-
ing 2007: Keynote, Computational Imaging V. Edited by Hsieh, Jiang; Flynn,
Michael J.. Proceedings of the SPIE, Volume 6510, (2007). Volume 6510 of Pre-
sented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Confer-
ence. (2007)

10.

Yang, H., Li, M., Koizumi, K., Kudo, H.: Accelerating Backprojections via CUDA
Architecture. In: 9th International Meeting on Fully Three-Dimensional Image
Reconstruction in Radiology and Nuclear Medicine. Volume 9. (2007) 52-55
Churchill, M., Pope, G., Penman, J., Riabkov, D., Xue, X., Cheryauka, A.:
Hardware-accelerated cone-beam reconstruction on a mobile C-arm. In: Medical
Imaging 2007: Physics of Medical Imaging. Edited by Hsieh, Jiang; Flynn, Michael
J.. Proceedings of the SPIE, Volume 6510, pp. 65105S (2007). Volume 6510 of
Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Con-
ference. (March 2007)

Scherl, H., Keck, B., Kowarschik, M., Hornegger, J.: Fast gpu-based ct recon-
struction using the common unified device architecture (cuda). Nuclear Science
Symposium Conference Record, 2007. NSS '07. IEEE 6 (Oct. 26 2007-Nov. 3 2007)
4464-4466

Feldkamp, L.A., Davis, L.C., Kress, J.W.: Practical cone-beam algorithm. J. Opt.
Soc. Am. A 1(6) (1984) 612

NVIDA Corporation, Santa Clara, C.: Nvidia cuda compute unified device archi-
tecture, programming guide (2008) [Online; accessed 26-April-2008].

Parker, D.: Optimal short scan convolution reconstruction for fanbeam CT. Med
Phys 9 (1982) 254-257

