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ABSTRACT
With a steady increase of CT interventions, population dose is increasing. Thus, new approaches must be
developed to reduce the dose. In this paper, we present a means for rapid identification and reconstruction of
objects of interest in reconstructed data. Active shape models are first trained on sets of data obtained from
similar subjects. A reconstruction is performed using a limited number of views. As each view is added, the
reconstruction is evaluated using the active shape models. Once the object of interest is identified, the volume of
interest alone is reconstructed, saving reconstruction time. Note that the data outside of the objects of interest
can be reconstructed using fewer views or lower resolution providing the context of the region of interest data.
An additional feature of our algorithm is that a reliable segmentation of objects of interest is achieved from
a limited set of projections. Evaluations were performed using simulations with Shepp-Logan phantoms and
animal studies. In our evaluations, regions of interest are identified using about 33 projections on average. The
overlap of the identified regions with the true regions of interest is approximately 91%. The identification of the
region of interest requires about 1/5 of the time required for full reconstruction, the time for reconstruction of the
region of interest is currently determined by the fraction of voxels in the region of interest (i.e, voxels in region
of interest/voxels in full volume). The algorithm has several important clinical applications, e.g., rotational
angiography, digital tomosynthesis mammography, and limited view computed tomography.

1. INTRODUCTION
In recent years, cone beam computed tomography (CBCT) has been used more frequently in the clinical arena.
During these interventions, many situations arise where only a sparse segmentation of the object of interest would
be useful within a short timeframe. Therefore, it is of interest to minimize the number of projections which are
necessary to reliably reconstruct objects of interest. This unique situation enables us to focus on objects and
regions of interest.

In other situations, only a limited set of projections is available, but a reliable reconstruction is needed; some
examples include cardiac CT, where the motion of the heart limits the number of views that can be used, and
applications where one cannot traverse completely around the object due to mechanical limitations. Note, a
lower number of views also reduces the radiation dose to the patient.

Several groups have recently worked on the limited view reconstruction problem. State of the art techniques
for limited view reconstruction (backprojection method, simultaneous algebraic reconstruction technique, and
maximum likelihood method) are revisited by Zhang, et al.1 Experimental results showing the tradeoff between
completion and the noise level of reconstruction are in Chen, et al.2 A theoretical framework for reconstruction
from highly incomplete data is given in Candes, et al.3 A new denoising algorithm for limited view reconstructions
is presented in Singh, et al.4

In our case, we make use of prior knowledge. Compared to the approaches when the lower number of
projection is determined independent of the object of interest, we determine the necessary number of projection
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by using prior knowledge of the objection of interest. Our method rapidly identifies a volume of interest using
active shape models5 while reconstructing from a flexible number of projections. The volume of interest can
be subsequently reconstructed by using the full projection set. If necessary the volume of interest can then
be reconstructed more quickly and with improved statistics. An additional feature of our algorithm is that a
segmentation of objects of interest is done from a limited set of projections.

2. METHOD
In our approach, active shape models are trained to identify pre-specified objects in the images. Then, limited
view reconstructions are performed using progressively more views. After each reconstruction, active shape
models are used to identify, if possible, objects of interest. Views continue to be added until the object of
interest is identified. Once identified, the segmentation of the object of interest is returned. Or the object of
interest is reconstructed using all projection data. Regions outside the object of interest can be identified using
limited view or lower resolution techniques.

2.1 Cone-Beam Computed Tomography (CBCT)
In this section, we revisit a reconstruction method for CBCT data as introduced by Feldkamp et al.6 Since we
use a rotational angiographic system equipped with a flat panel detector, we only discuss the case of equally
spaced planar detectors.

In figure 1, the schematic drawing of the cone beam system with a planar detector is presented. During
acquisition the system follows a circular trajectory, with a radius of D placed at the origin. The detector plane
lies perpendicular to the central axis of the x-ray beam.

Figure 1. Systematic drawing of the cone beam system. The gantry rotates about the patient.

The projection image P (·) at angular position Θ is the line integral along the x-ray beam. A set of projections
are acquired at t discrete source positions with uniform angular spacing ∆Θ. During CBCT, Θ range is about
210˚ with angular separations of 1˚. A full rotation is not possible due to mechanical limitations.

The reconstruction method is formulated as a weighted filtered backprojection. As an initial step, the
projection data are log converted, individually weighted and ramp filtered (Pf ). Next, the 3-D volume is
reconstructed by a backprojection. Let r = [x, y, z] be the 3-D position in the volume, and let (u,v) denote the
position of the intersection with the detector plane of the ray starting from the source and passing through point
r. Therefore, the reconstruction of the value f(r) is given by:

f(!r) =
∑

Θ

Pf [u(x, y,Θ), v(x, y,Θ),Θ], (1)



where
u = (SID ∗ x)/(ISO − z), (2)
v = (SID ∗ y)/(ISO − z), (3)

SID is the source-to-image-distance, and ISO is the isocenter distance. The isocenter is the point about which
the system rotates, and the isocenter distance is the source-to-isocenter-distance. Since u and v usually do not
correspond to a discrete pixel position, we use interpolation to determine the corresponding gray value in the
image. The computational cost of cone-beam computed tomography for a volume of size N3 is O(N4).

Additionally to improve our technique, we have implemented the filtered backprojection algorithm for 3-D
reconstruction of CBCT data using the Compute Unified Device Architecture (CUDA) provided by NVIDIA
(NVIDIA Cor., Santa Clara, California),which was executed on a NVIDIA GeForce 280 GTX.7 Our implemen-
tation results in improved reconstruction times from on the order of minutes, and perhaps hours, to a matter of
seconds.

Rather than using the standard reconstruction approach, we monitor the reconstruction progress by using
active shape models. We review next the active shape models before introducing our full approach.

2.2 Active Shape Models (ASMs)
Different types of prior shape models are available, but one of the most popular ones is Active Shape Models
(ASMs), because of its robustness and ability to capture more than one structure in a scene.

In our implementation, we use the ASMs as described by Cootes et al.5 which uses point-distribution models
(PDMs). PDMs are a set of n landmarks, where each training sample is a d-dimensional vector of landmarks. All
training samples are aligned in a least square sense by using the Procrustes algorithm.8 The differences between
the mean shape and the aligned shapes are the vectors which form the columns of the landmark configuration
matrix L. We determine the principle modes of variation in the training data by applying principal component
analysis (PCA) to the configuration matrix L. By using only the first c modes all valid shapes (x) can be
represented by:

x = x + Qb (4)
where x is the mean shape, Q is the matrix of the first c eigenvectors and b is a vector of weights also called the
shape parameters.

To define the limits on valid shapes, the range of each shape parameter bi is:

−3
√

λi ≤ bi ≤ 3
√

λi (5)

where λi is the ith eigenvalue of the configuration matrix. Shapes having all bi within this limits are considered
to be valid. A found shape in the unknown image with dx relative to x can be validated by:

db = QT dx (6)

In figure 2, we show an example for the ASMs where the algorithm is trying to find a C-arm gantry in the
scene (given as a toy example). Note, this takes less than one second on a standard PC.

2.3 Reconstruction by using Priors
We present the basic flow chart of our algorithm in figure 3. As an initial step, we train the ASMs for the objects
of interest that we expect to be reconstructing later (these can be any anatomical shape). The training is done
as described earlier by using PDMs.

Next, we start to reconstruct (section 2.1) using n randomly chosen projections. By picking the projections
randomly, we are able to obtain image information earlier in the volumetric data. This is true since a projection
contains more information relative to a second projection if the angular distances between the projection is larger
than the standard one degree. In the next step, we apply the trained ASM to our approximated volumetric data.
The mean shape is placed at the center of mass of the training data. The landmark points from x move along the
gradient of the volume. The returned dx from this procedure is then validated by equation (6). In the case where
no valid shape was found, a single random projection is added to our reconstruction. Basically, the algorithm
adds new information to the intermediate result until this process converges and a valid shape is found.



Figure 2. Example for ASMs, trying to find the gantry in the scene. Initial pose (left), after several iterations (middle),
and convergence (right). Note, this is only an example to show the ASM results.

Figure 3. Illustration of our combined algorithm of filtered backprojections and ASMs.

2.4 Errors and Limitations
To achieve good results, training points (landmarks) should be placed relatively accurately during training (to
within a few pixels), to optimally capture the shape of the object of interest. The accuracy of the training
points reduces the influence of the terms describing the noise caused by errors in the point locations. Even
if the algorithm does not converge, all projection data will eventually be included in the reconstruction. This
may happen if no instance of the model is found in the scene. Note, this situation never happened during our
evaluation.

3. EVALUATIONS
We evaluated our algorithm on simulated and actual CBCT data.

For the simulations, we use the standard Shepp-Logan phantom which was generated using Matlab. The
phantom data were reprojected into 360 views (SID 123, ISO 82), with an angular separation of 1˚. As a
preprocessing step, we train our ASM on landmark points labeled in the original image. To add variation to
our landmark points, we add random noise to each landmark point (± 4 pixel), to simulate 10 different sample
arrangements for training.



In order to determine the performance of our algorithm on real data, we use data from a rabbit study.
The CBCT system (Toshiba Infinix VSI/02) acquires 106 projections with an angular separation of 2˚ and a
matrix size of 1024x1024. The projections were not distortion corrected since our system is equipped with a
flat panel detector. We evaluated our technique using a cross-validation/leave-one-out procedure by using ten
clinical cases. For each training set, we iteratively leave one example out and compute a reconstruction on the
remaining examples. For the left out data set, the number of necessary projections (t#P ) and the percent error
in overlap between the manually indicated area and the resulting area (Ea) is computed. In this study, we chose
as a anatomic structure (volume of interest) the lower jaw of the rabbit.

4. RESULTS
Figure 4 shows a slice from our reconstruction and segmentation achieved using our algorithm. The objects were
reliably identified in the reconstruction using only 16 random projections

Figure 4. The sparse reconstruction after using 16 projection (left) and the corresponding segmentation (right). Note, the
reliable segmentation after a limited super of projection is an additional feature of our algorithm.

Table 1 presents the results of our cross-validation from an animal study. The number of necessary projections
t#P returned from our algorithm ranges between 25 and 41. These differences may be caused from the variation
of the quality of the projections and of the surrounding area of the object of interest. The error, Ea, (the average
percent difference in overlap between manually indicated and resulting area) is approximately 9%.

Table 1. Results from the cross-validation

t#P Ea (%)
case 1 31 9
case 2 27 11
case 3 41 5
case 4 33 8
case 5 39 13
case 6 35 10
case 7 41 7
case 8 25 9
case 9 32 12
case 10 30 7

In Figure 5, we present the results of the reconstruction. Our algorithm was able to detect the lower jaw after
reconstruction from 31 randomly picked projections. To evaluate our technique, we compared the segmented
area returned after 31 projections with the manually indicated area in the full reconstruction (106 projection).
The average overlap of the two areas was 91%.



The full reconstruction of the volume of interest is illustrated in Figure 6. In this case, we focus on the full
body of the rabbit. Comparing our result with the standard reconstruction, we found no loss of information in
the volume of interest. However, the time needed to reconstruct is reduced by a factor of approximately 2.

Figure 5. The sparse reconstruction returned by our algorithm after 31 projections (left), the full reconstruction of the
corresponding slices (right). The landmark points are shown as black dots. Note, our algorithm was able to detect similar
landmark points by using only a low number of projections.

Figure 6. The standard reconstruction as a reference (right), the reconstruction of the volume of interest including the
outside (middle), and only the volume of interest reconstruction (left).

5. DISCUSSION AND CONCLUSION
In this paper, we have presented an approach which gives any tomographic reconstruction algorithm the capability
of reliable segmentation and identification of a volume of interest from a reduced number of projections. Our
method rapidly identifies a volume of interest using active shape models as reconstructions proceed from a flexible
number of projections. The volume of interest is subsequently reconstructed using the full projection set. By
focusing on the region of interest, the reconstruction can be done more quickly and with improved statistics. An
additional feature of our algorithm is that a segmentation of objects of interest is done after a small number of
projections. Since a segmentation of the object of interest is possible after a small number of projections, the
x-ray dose can be reduct. This is important, since with population dose increasing (in part due to dose imparted
by more frequent recourse to CT), thus, new approaches must be developed to reduce the dose.

In our evaluations, we reported promising results on clinical and simulated data sets. For a two dimensional
slice with dimensions 512 x 512, our algorithm returns after 10 sec. By using the full reconstruction as the “gold
standard”, we performed a leave-one-out cross-validation and reported an average overlap accuracy of 91%.
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