|
Jason J. Corso
|
Snippet Topic: Video Segmentation
Streaming Hierarchical Video Segmentation  | The use of video segmentation as an early processing step in video analysis lags behind the use of image segmentation for image analysis, despite many available video segmentation methods. A major reason for this lag is simply that videos are an order of magnitude bigger than images; yet most methods require all voxels in the video to be loaded into memory, which is clearly prohibitive for even medium length videos. We address this limitation by proposing an approximation framework for streaming hierarchical video segmentation motivated by data stream algorithms: each video frame is processed only once and does not change the segmentation of previous frames. We implement the graph-based hierarchical segmentation method within our streaming framework; our method is the first streaming hierarchical video segmentation method proposed.
|
|
C. Xu, C. Xiong, and J. J. Corso.
Streaming hierarchical video segmentation.
In Proceedings of European Conference on Computer Vision, 2012.
[ bib |
code |
project |
.pdf ]
|
StreamGBH is included as part of LIBSVX |
|
Evaluation of Supervoxels for Early Video Processing  | Supervoxel segmentation has strong potential to be incorporated into early video analysis as superpixel segmentation has in image analysis. However, there are many plausible supervoxel methods and little understanding as to when and where each is most appropriate. Indeed, we are not aware of a single comparative study on supervoxel segmentation. To that end, we study five supervoxel algorithms in the context of what we consider to be a good supervoxel: namely, spatiotemporal uniformity, object/region boundary detection, region compression and parsimony. For the evaluation we propose a comprehensive suite of 3D volumetric quality metrics to measure these desirable supervoxel characteristics. Our findings have led us to conclusive evidence that the hierarchical graph-based and segmentation by weighted aggregation methods perform best and almost equally-well.
|
|
C. Xu and J. J. Corso.
Evaluation of super-voxel methods for early video processing.
In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, 2012.
[ bib |
code |
project |
.pdf ]
|
All supervoxel methods are included as part of LIBSVX |
|
|