Non-parametric Clustering with Dirichlet Processes

Timothy Burns

SUNY at Buffalo

Mar. 31 2009

T. Burns (SUNY at Buffalo) Non-parametric Clustering with Dirichlet Proc

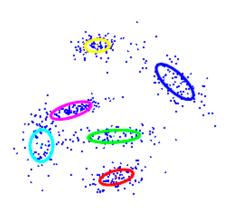
• Question: What should we do if we want to model data using a mixture, but we don't know the number of mixing elements k beforehand?

- **∢ /⊒ ▶ ∢ 글 ▶ ∢**

- Question: What should we do if we want to model data using a mixture, but we don't know the number of mixing elements k beforehand?
- Good candidate for a non-parametric method!

Rational

- e.g. We want to select the number m of Gaussians in a mixture of Gaussians (right) or
- The number of means k in the k-means algorithm
- How can we do this?



• First, we need to address a few things:

< ロ > < 同 > < 三 > < 三

- First, we need to address a few things:
 - What is the Dirichlet distribution?

Image: A match a ma

- First, we need to address a few things:
 - What is the Dirichlet distribution?
 - What is a Dirichlet Process?

- First, we need to address a few things:
 - What is the Dirichlet distribution?
 - What is a Dirichlet Process?
 - I How can it be represented?

- First, we need to address a few things:
 - What is the Dirichlet distribution?
 - What is a Dirichlet Process?
 - I How can it be represented?
- Once we've done covered the basics we'll talk about a few examples!

The Dirichlet Distribution

- The **Dirichlet Distribution** is a distribution over the K-1 probability simplex.
- Let \mathbf{p} be a K-dimensional vector s.t. $\forall j: p_j \geq 0$ and $\sum_{j=1}^{K} p_j = 1$, then

$$P(\mathbf{p}|\alpha) = \mathsf{Dir}(\alpha_1, ..., \alpha_K) = \frac{\Gamma(\sum_j \alpha_j)}{\prod_j \Gamma(\alpha_j)} \prod_{j=1}^K p_j^{\alpha_j - 1}$$
(1)

- The first term in the above equation is just a normalization constant.
- The Dirichlet Distribution is conjugate to the multinomial distribution. i.e if

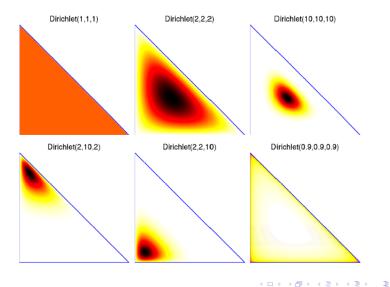
$$c|\mathbf{p} \sim \mathsf{Multinomial}(\cdot|\mathbf{p})$$

then the posterior is dirichlet

$$P(\mathbf{p}|c=j,\alpha) = \frac{P(c=j|\mathbf{p})P(\mathbf{p}|\alpha)}{P(c=j|\alpha)} = \mathsf{Dir}(alpha')$$

where $\alpha_j' = \alpha_j + 1 \text{, and } \forall l \neq j : \alpha_l' = \alpha_l$

The Dirichlet Distribution



Dirichlet Processes

The Dirichlet Process

 Dirichlet Processes define a distribution over distributions (or a measure on measures)

$$G \sim \mathsf{DP}(\cdot|G_0, \alpha)$$

where $\alpha > 0$ is a scaling parameter, and G_0 is the base distribution. Think of DP's as "infinite dimensional" Dirichlet distributions.

• It is important to note that G is an infinite dimensional object.

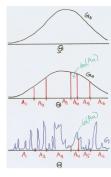
The Dirichlet Process

- Let Θ be a measurable space, G_0 be a probability measure on $\Theta,$ and α_0 be a real number.
- For all $(A_1, ..., A_K)$ finite partitions of Θ ,

 $G \sim \mathsf{DP}(\cdot | G_0, \alpha)$

means that

 $(G(A_1), ..., G(A_K)) \sim \mathsf{Dir}(\alpha_0 G_0(A_1), ..., \alpha_0 G_0(A_K))$



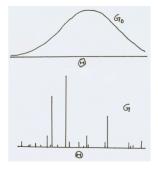
The Dirichlet Process

• Samples from a DP are discrete with probability one:

$$G(\theta) = \sum_{k=1}^{\infty} \pi_k \delta_{\theta_k}(\theta)$$

• Posterior $P(G|\theta)$ is also a DP! i.e. DP's are conjugate to themselves!

$$P(G|\theta) = \mathsf{DP}\left(\frac{\alpha}{\alpha+1}G_0 + \frac{1}{\alpha+1}\delta_{\theta}, \alpha+1\right)$$



Urn Representation

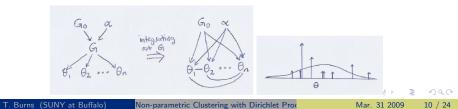
• Given

$$G \sim \mathsf{DP}(\cdot|G_0, lpha)$$
 and $heta|G \sim G(\cdot)$

Then

$$\begin{aligned} \theta_n | \theta_1, \dots, \theta_{n-1}, G_0, \alpha &\sim \quad \frac{\alpha}{n-1+\alpha} G_0(\cdot) + \frac{1}{n-1+\alpha} \sum_{j=1}^{n-1} \delta_{\theta_j}(\cdot) \\ P(\theta_n | \theta_1, \dots, \theta_{n-1}, G_0, \alpha) &\propto \quad \int \prod_{j=1}^n P(\theta_j | G) P(G | G_0, \alpha) dG \end{aligned}$$

• This model exhibits a "clustering" kind of effect



Chinese Restaurant Process (CRP)

The Chinese Restaurant Process is another representation of the DP. It can help us see this clustering effect more explicitly:

- Restaurant has potentially infinitely many tables k = 1, ...
- Customers are indexed by i = 1, ..., with values ϕ_i as they arrive
- Tables have values θ_k drawn from G_0
- K = total number of occupied tables so far
- n = total number of customers arrived thus far
- n_k = number of customers seated at table k.

イロト イポト イヨト イヨト 二日

Chinese Restaurant Process (CRP)

$$\varphi_5 \bigoplus_{i=1}^{\varphi_1} \bigoplus_{j=1}^{\varphi_3} \bigoplus_{i=1}^{\varphi_2} \bigoplus_{j=1}^{\varphi_4} \bigoplus_{j=1}^{\varphi_6} \bigoplus_{i=1}^{\varphi_6} \dots$$

 $\begin{array}{l} \mbox{Generating from a CRP:} \\ \mbox{customer 1 enters the restaurant and sits at table 1.} \\ \phi_1 = \theta_1 \mbox{ where } \theta_1 \sim G_0, \ K = 1, \ n = 1, \ n_1 = 1 \\ \mbox{for } n = 2, \ldots, \\ \\ \mbox{customer } n \mbox{ sits at table } \left\{ \begin{array}{c} k & \mbox{with prob } \frac{n_k}{n-1+\alpha} & \mbox{for } k = 1 \ldots K \\ K+1 & \mbox{with prob } \frac{\alpha}{n-1+\alpha} & \mbox{(new table)} \end{array} \right. \\ \mbox{if new table was chosen then } K \leftarrow K+1, \ \theta_{K+1} \sim G_0 \mbox{ endif} \\ \\ \mbox{set } \phi_n \mbox{ to } \theta_k \mbox{ of the table } k \mbox{ that customer } n \mbox{ sat at; set } n_k \leftarrow n_k+1 \\ \mbox{endfor} \end{array}$

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Relationship between CRPs and DPs

- DP is a distribution over distributions.
- A DP results in discrete distributions, so drawing *n* points will likely result in repeat values.
- A DP induces a **partitioning** of the *n* points
- CRP is the corresponding **distribution over partitions**.

Stick Breaking Construction

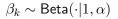
• Samples $G \sim \mathsf{DP}(\cdot|G_0, \alpha)$ can be represented as follows:

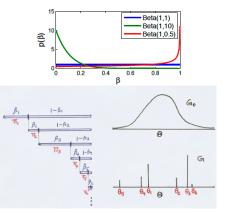
$$G(\cdot) = \sum_{k=1}^{\infty} \pi_k \delta_{\theta_k}(\cdot)$$

where
$$\theta_k \sim G_0(\cdot), \sum_{k=1}^{\infty} \pi_k = 1$$
,

$$\pi_k = \beta_k \prod_{j=1}^{k} k - 1(1 - \beta_j)$$

and





14 / 24

Extensions

• Hierarchical Dirichlet Processes (HDP) - For sharing statistical power between many different groups of clustering data.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

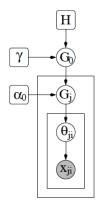
Topic Modeling

• Goal: To model topics (distributions of words) across an entire corpus.

- LDA (Latent Dirichlet Allocation) is an example of parametric solution to problem, but has shortcomings
 - Documents each draw their own mixing proportions (mixture component is a topic) separately
 - 2 Words are then drawn independently from the mixture model.

Topic Modeling

- Not easy to extend like a simple mixture model since each document has essentially it's own mixture (and thus mixing proportions)
- In order to capture this we use a separate DP mixture to model each document where each DP is a draw from another DP. This is an application of HDPs

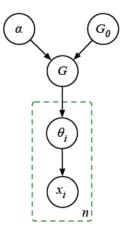


DPs are discrete with prob one, so they are not useful for use as a prior on continuous densities.

• In a DP Mixture, we draw the parameters of a mixture model from a draw from a DP:

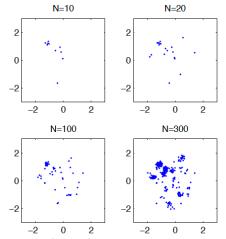
 $\begin{aligned} G &\sim \mathsf{DP}(\cdot|G_0, \alpha) \\ \theta_i &\sim G(\cdot) \\ x_i &\sim p(\cdot|\theta_i) \end{aligned}$

• For example, can be a DP-MoG if $p(\cdot|\theta)=\text{Gaussian.}$ However, $p(\cdot|\theta)$ could be any density.



3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >



Notice that more structure (clusters) appear as you draw more points. (figure inspired by Neal)

Mar. 31 2009 20 / 24

We can think of Infinite DP Mixtures in terms of finite mixtures:

• Consider using a finite mixture of K components to model a data set $D=\{\mathbf{x}^{(1)},...,\mathbf{x}^{(n)}\}$

$$p(x^{(i)}|\theta) = \sum_{j=1}^{K} \pi_j p_j(x^{(i)}|\theta_j)$$

=
$$\sum_{j=1}^{K} P(s^{(i)} = j|\pi) p_j(x^{(i)}|\theta_j, s^{(i)} = j)$$

T. Burns (SUNY at Buffalo)

 The distribution of indicator variables (assignments of data to mixture) $s = (s^{(1)}, ..., s^{(n)})$ given π is multinomial

$$P(s^{(1)}, ..., s^{(n)} | \pi) = \prod_{j=1}^{K} \pi_j^{n_j}, \quad n_j = \sum_{i=1}^{n} \delta(s^{(i)}, j)$$

 Since we know the Dirichlet distribution is conjugate to the multinomial we can assume the mixing proportions π have a **Dirichlet** prior:

$$p(\pi|\alpha) = \frac{\Gamma(\alpha)}{\Gamma(\alpha/K)^K} \prod_{j=1}^K \pi_j^{\alpha/K-1}$$

And integrating out the mixing proportions gives us:

$$P(s^{(1)}, ..., s^{(n)} | \alpha) = \int P(s|\pi) P(\pi|\alpha) d\pi = \frac{\Gamma(\alpha)}{\Gamma(n+\alpha)} \prod_{j=1}^{K} \frac{\Gamma(n_j + \alpha/K)}{\Gamma(\alpha/K)}$$
Burns (SUNY at Buffalo) Non-parametric Clustering with Dirichlet Proc Mar. 31 2009 22 / 24

Mar. 31 2009

22 / 24

• Conditionals: Finite K

$$P(s^{(i)} = j | s_{-i}, \alpha) = \frac{n_{-i,j} + \alpha/K}{n - 1 + \alpha}$$

where s_{-i} denotes all indeces except i, and $n_{-i,j} = \sum_{l \neq i} \delta(s^{(l)}, i)$ • Conditionals: Infinite K

• Limit as
$$K \to \infty$$

$$P(s^{(i)} = j | s_{-i}, \alpha) = \begin{cases} \frac{n_{-i,j}}{n-1+\alpha} & j \text{ represented} \\ \frac{\alpha}{n-1+\alpha} & \text{all } j \text{ not represented} \end{cases}$$

イロト 人間ト イヨト イヨト

Summary

- DPs are essentially infinite dimensional Dirichlet distributions
- DPs can be constructed in a number of different ways (CRP,SB,Urn)
- DPs can be extended via HDPs (didn't talk a lot about this, but you can read yourself)
- Can use DPs to "Cluster" discrete data
- Can apply DPs as non-parametric priors over mixing proportions in non-discrete mixtures as a way to avoid "sticking" with a particular model.
- And that's all folks!

These slides have made extensive use of the following sources.

- Many slides were adapted directly from Zhoubin Ghahramani's Non-parametric Bayesian Methods Tutorial, 2005
- Yee Whye Teh, *Dirichlet Processes*
- Hierarchical Dirichlet Processes, Blei, Jordan, Y. W. Teh, Beal, JASA