Bayesian Decision Theory

 Lecture 2

 Lecture 2}

Jason Corso
SUNY at Buffalo
January 2010

Overview and Plan

- Covering Chapter 2 of DHS.
- Bayesian Decision Theory is a fundamental statistical approach to the problem of pattern classification.
- Quantifies the tradeoffs between various classifications using probability and the costs that accompany such classifications.
- Assumptions:
- Decision problem is posed in probabilistic terms.
- All relevant probability values are known.

Recall the Fish!

- Recall our example from the first lecture on classifying two fish as salmon or sea bass.
- And recall our agreement that any given fish is either a salmon or a sea bass; DHS call this the state of nature
 of the fish.
- Let's define a (probabilistic) variable ω that describes the state of nature.

$$
\begin{array}{ll}
\omega=\omega_{1} & \text { for sea bass } \\
\omega=\omega_{2} & \text { for salmon } \tag{2}
\end{array}
$$

Salmon

Sea Bass

Prior Probability

- The a priori or prior probability reflects our knowledge of how likely we expect a certain state of nature before we can actually observe said state of nature.

Prior Probability

- The a priori or prior probability reflects our knowledge of how likely we expect a certain state of nature before we can actually observe said state of nature.
- In the fish example, it is the probability that we will see either a salmon or a sea bass next on the conveyor belt.
- Note: The prior may vary depending on the situation.
- If we get equal numbers of salmon and sea bass in a catch, then the priors are equal, or uniform.
- Depending on the season, we may get more salmon than sea bass, for example.

Prior Probability

- The a priori or prior probability reflects our knowledge of how likely we expect a certain state of nature before we can actually observe said state of nature.
- In the fish example, it is the probability that we will see either a salmon or a sea bass next on the conveyor belt.
- Note: The prior may vary depending on the situation.
- If we get equal numbers of salmon and sea bass in a catch, then the priors are equal, or uniform.
- Depending on the season, we may get more salmon than sea bass, for example.
- We write $P\left(\omega=\omega_{1}\right)$ or just $P\left(\omega_{1}\right)$ for the prior the next is a sea bass.
- The priors must exclusivity and exhaustivity. For c states of nature, or classes:

$$
\begin{equation*}
1=\sum_{i=1}^{c} P\left(\omega_{i}\right) \tag{3}
\end{equation*}
$$

Decision Rule From Only Priors

- Idea Check: What is a reasonable Decision Rule if
- The only available information is the prior.
- The cost of any incorrect classification is equal.

Decision Rule From Only Priors

- Idea Check: What is a reasonable Decision Rule if
- The only available information is the prior.
- The cost of any incorrect classification is equal.
- Decide ω_{1} if $P\left(\omega_{1}\right)>P\left(\omega_{2}\right)$; otherwise decide ω_{2}.
- What can we say about this decision rule?

Decision Rule From Only Priors

- Idea Check: What is a reasonable Decision Rule if
- The only available information is the prior.
- The cost of any incorrect classification is equal.
- Decide ω_{1} if $P\left(\omega_{1}\right)>P\left(\omega_{2}\right)$; otherwise decide ω_{2}.
- What can we say about this decision rule?
- Seems reasonable, but it will always choose the same fish.
- If the priors are uniform, this rule will behave poorly.
- Under the given assumptions, no other rule can do better! (We will see this later on.)

Features and Feature Spaces

- A feature is an observable variable.
- A feature space is a set from which we can sample or observe values.
- Features:
- Length
- Width
- Lightness
- Location of Dorsal Fin
- For simplicity, let's assume that our features are all continuous values.
- Denote a scalar feature as x and a vector feature as \mathbf{x}. For a d-dimensional feature space, $\mathbf{x} \in \mathbb{R}^{d}$.

Features and Feature Spaces

- A feature is an observable variable.
- A feature space is a set from which we can sample or observe values.
- Features:
- Length
- Width
- Lightness
- Location of Dorsal Fin
- For simplicity, let's assume that our features are all continuous values.
- Denote a scalar feature as x and a vector feature as \mathbf{x}. For a d-dimensional feature space, $\mathbf{x} \in \mathbb{R}^{d}$.
- A note on the use of the term marginals as features (from first lecture): technically, a marginal is a distribution of one or more variables (e.g., $p(x)$). So, during modeling, when we say a "feature" is like a marginal, we are actually saying "the distribution of a type of feature" is like a marginal. This is only for conceptual reasoning.

Class-Conditional Density or Likelihood

- The class-conditional probability density function is the probability density function for \mathbf{x}, our feature, given that the state of nature is ω :

$$
\begin{equation*}
p(\mathbf{x} \mid \omega) \tag{4}
\end{equation*}
$$

- Here is the hypothetical class-conditional density $p(x \mid \omega)$ for lightness values of sea bass and salmon.

Posterior Probability

Bayes Formula

- If we know the prior distribution and the class-conditional density, how does this affect our decision rule?
- Posterior probability is the probability of a certain state of nature given our observables: $P(\omega \mid \mathbf{x})$.
- Use Bayes Formula:

$$
\begin{gather*}
P(\omega, \mathbf{x})=P(\omega \mid \mathbf{x}) p(\mathbf{x})=p(\mathbf{x} \mid \omega) P(\omega) \tag{5}\\
\begin{aligned}
P(\omega \mid \mathbf{x}) & =\frac{p(\mathbf{x} \mid \omega) P(\omega)}{p(\mathbf{x})} \\
& =\frac{p(\mathbf{x} \mid \omega) P(\omega)}{\sum_{i} p\left(\mathbf{x} \mid \omega_{i}\right) P\left(\omega_{i}\right)}
\end{aligned} \tag{6}
\end{gather*}
$$

Posterior Probability

- Notice the likelihood and the prior govern the posterior. The $p(x)$ evidence term is a scale-factor to normalize the density.
- For the case of $P\left(\omega_{1}\right)=2 / 3$ and $P\left(\omega_{2}\right)=1 / 3$ the posterior is

Probability of Error

- For a given observation x, we would be inclined to let the posterior govern our decision:

$$
\begin{equation*}
\omega^{*}=\arg \max _{i} P\left(\omega_{i} \mid \mathbf{x}\right) \tag{8}
\end{equation*}
$$

- What is our probability of error?

Probability of Error

- For a given observation x, we would be inclined to let the posterior govern our decision:

$$
\begin{equation*}
\omega^{*}=\arg \max _{i} P\left(\omega_{i} \mid \mathbf{x}\right) \tag{8}
\end{equation*}
$$

- What is our probability of error?
- For the two class situation, we have

$$
P(\text { error } \mid \mathbf{x})= \begin{cases}P\left(\omega_{1} \mid \mathbf{x}\right) & \text { if we decide } \omega_{2} \tag{9}\\ P\left(\omega_{2} \mid \mathbf{x}\right) & \text { if we decide } \omega_{1}\end{cases}
$$

Probability of Error

- We can minimize the probability of error by following the posterior:

$$
\begin{equation*}
\text { Decide } \omega_{1} \text { if } P\left(\omega_{1} \mid \mathbf{x}\right)>P\left(\omega_{2} \mid \mathbf{x}\right) \tag{10}
\end{equation*}
$$

Probability of Error

- We can minimize the probability of error by following the posterior:

$$
\begin{equation*}
\text { Decide } \omega_{1} \text { if } P\left(\omega_{1} \mid \mathbf{x}\right)>P\left(\omega_{2} \mid \mathbf{x}\right) \tag{10}
\end{equation*}
$$

- And, this minimizes the average probability of error too:

$$
\begin{equation*}
P(\text { error })=\int_{-\infty}^{\infty} P(\text { error } \mid \mathbf{x}) p(\mathbf{x}) d \mathbf{x} \tag{11}
\end{equation*}
$$

(Because the integral will be minimized when we can ensure each $P($ error| $\mathbf{x})$ is as small as possible.)

Bayes Decision Rule (with Equal Costs)

- Decide ω_{1} if $P\left(\omega_{1} \mid \mathbf{x}\right)>P\left(\omega_{2} \mid \mathbf{x}\right)$; otherwise decide ω_{2}
- Probability of error becomes

$$
\begin{equation*}
P(\text { error } \mid \mathbf{x})=\min \left[P\left(\omega_{1} \mid \mathbf{x}\right), P\left(\omega_{2} \mid \mathbf{x}\right)\right] \tag{12}
\end{equation*}
$$

Bayes Decision Rule (with Equal Costs)

- Decide ω_{1} if $P\left(\omega_{1} \mid \mathbf{x}\right)>P\left(\omega_{2} \mid \mathbf{x}\right)$; otherwise decide ω_{2}
- Probability of error becomes

$$
\begin{equation*}
P(\text { error } \mid \mathbf{x})=\min \left[P\left(\omega_{1} \mid \mathbf{x}\right), P\left(\omega_{2} \mid \mathbf{x}\right)\right] \tag{12}
\end{equation*}
$$

- Equivalently, Decide ω_{1} if $p\left(\mathbf{x} \mid \omega_{1}\right) P\left(\omega_{1}\right)>p\left(\mathbf{x} \mid \omega_{2}\right) P\left(\omega_{2}\right)$; otherwise decide ω_{2}
- l.e., the evidence term is not used in decision making.

Bayes Decision Rule (with Equal Costs)

- Decide ω_{1} if $P\left(\omega_{1} \mid \mathbf{x}\right)>P\left(\omega_{2} \mid \mathbf{x}\right)$; otherwise decide ω_{2}
- Probability of error becomes

$$
\begin{equation*}
P(\text { error } \mid \mathbf{x})=\min \left[P\left(\omega_{1} \mid \mathbf{x}\right), P\left(\omega_{2} \mid \mathbf{x}\right)\right] \tag{12}
\end{equation*}
$$

- Equivalently, Decide ω_{1} if $p\left(\mathbf{x} \mid \omega_{1}\right) P\left(\omega_{1}\right)>p\left(\mathbf{x} \mid \omega_{2}\right) P\left(\omega_{2}\right)$; otherwise decide ω_{2}
- l.e., the evidence term is not used in decision making.
- If we have $p\left(\mathbf{x} \mid \omega_{1}\right)=p\left(\mathbf{x} \mid \omega_{2}\right)$, then the decision will rely exclusively on the priors.
- Conversely, if we have uniform priors, then the decision will rely exclusively on the likelihoods.

Bayes Decision Rule (with Equal Costs)

- Decide ω_{1} if $P\left(\omega_{1} \mid \mathbf{x}\right)>P\left(\omega_{2} \mid \mathbf{x}\right)$; otherwise decide ω_{2}
- Probability of error becomes

$$
\begin{equation*}
P(\text { error } \mid \mathbf{x})=\min \left[P\left(\omega_{1} \mid \mathbf{x}\right), P\left(\omega_{2} \mid \mathbf{x}\right)\right] \tag{12}
\end{equation*}
$$

- Equivalently, Decide ω_{1} if $p\left(\mathbf{x} \mid \omega_{1}\right) P\left(\omega_{1}\right)>p\left(\mathbf{x} \mid \omega_{2}\right) P\left(\omega_{2}\right)$; otherwise decide ω_{2}
- l.e., the evidence term is not used in decision making.
- If we have $p\left(\mathbf{x} \mid \omega_{1}\right)=p\left(\mathbf{x} \mid \omega_{2}\right)$, then the decision will rely exclusively on the priors.
- Conversely, if we have uniform priors, then the decision will rely exclusively on the likelihoods.
- Take Home Message: Decision making relies on both the priors and the likelihoods and Bayes Decision Rule combines them to achieve the minimum probability of error.

Loss Functions

- A loss function states exactly how costly each action is.
- As earlier, we have c classes $\left\{\omega_{1}, \ldots, \omega_{c}\right\}$.
- We also have a possible actions $\left\{\alpha_{1}, \ldots, \alpha_{a}\right\}$.
- The loss function $\lambda\left(\alpha_{i} \mid \omega_{j}\right)$ is the loss incurred for taking action α_{i} when the class is ω_{j}.

Loss Functions

- A loss function states exactly how costly each action is.
- As earlier, we have c classes $\left\{\omega_{1}, \ldots, \omega_{c}\right\}$.
- We also have a possible actions $\left\{\alpha_{1}, \ldots, \alpha_{a}\right\}$.
- The loss function $\lambda\left(\alpha_{i} \mid \omega_{j}\right)$ is the loss incurred for taking action α_{i} when the class is ω_{j}.
- The Zero-One Loss Function is a particularly common one:

$$
\lambda\left(\alpha_{i} \mid \omega_{j}\right)=\left\{\begin{array}{ll}
0 & i=j \tag{13}\\
1 & i \neq j
\end{array} \quad i, j=1,2, \ldots, c\right.
$$

It assigns no loss to a correct decision and uniform unit loss to an incorrect decision. (Similar to Dirac delta function...)

Expected Loss

a.k.a. Conditional Risk

- We can consider the loss that would be incurred from taking each possible action in our set.
- The expected loss is by definition

$$
\begin{equation*}
R\left(\alpha_{i} \mid \mathbf{x}\right)=\sum_{j=1}^{c} \lambda\left(\alpha_{i} \mid \omega_{j}\right) P\left(\omega_{j} \mid \mathbf{x}\right) \tag{14}
\end{equation*}
$$

- The zero-one conditional risk is

$$
\begin{align*}
R\left(\alpha_{i} \mid \mathbf{x}\right) & =\sum_{j \neq i} P\left(\omega_{j} \mid \mathbf{x}\right) \tag{15}\\
& =1-P\left(\omega_{i} \mid \mathbf{x}\right) \tag{16}
\end{align*}
$$

- Hence, for an observation x, we can minimize the expected loss by selecting the action that minimizes the conditional risk.

Expected Loss

a.k.a. Conditional Risk

- We can consider the loss that would be incurred from taking each possible action in our set.
- The expected loss is by definition

$$
\begin{equation*}
R\left(\alpha_{i} \mid \mathbf{x}\right)=\sum_{j=1}^{c} \lambda\left(\alpha_{i} \mid \omega_{j}\right) P\left(\omega_{j} \mid \mathbf{x}\right) \tag{14}
\end{equation*}
$$

- The zero-one conditional risk is

$$
\begin{align*}
R\left(\alpha_{i} \mid \mathbf{x}\right) & =\sum_{j \neq i} P\left(\omega_{j} \mid \mathbf{x}\right) \tag{15}\\
& =1-P\left(\omega_{i} \mid \mathbf{x}\right) \tag{16}
\end{align*}
$$

- Hence, for an observation x, we can minimize the expected loss by selecting the action that minimizes the conditional risk.
- (Teaser) You guessed it: this is what Bayes Decision Rule does!

Overall Risk

- Let $\alpha(x)$ denote a decision rule, a mapping from the input feature space to an action, $\mathbb{R}^{d} \mapsto\left\{\alpha_{1}, \ldots, \alpha_{a}\right\}$.
- This is what we want to learn.

Overall Risk

- Let $\alpha(x)$ denote a decision rule, a mapping from the input feature space to an action, $\mathbb{R}^{d} \mapsto\left\{\alpha_{1}, \ldots, \alpha_{a}\right\}$.
- This is what we want to learn.
- The overall risk is the expected loss associated with a given decision rule.

$$
\begin{equation*}
R=\oint R(\alpha(\mathbf{x}) \mid \mathbf{x}) p(\mathbf{x}) d \mathbf{x} \tag{17}
\end{equation*}
$$

Clearly, we want the rule $\alpha(\cdot)$ that minimizes $R(\alpha(\mathbf{x}) \mid \mathbf{x})$ for all \mathbf{x}.

Bayes Risk

The Minimum Overall Risk

- Bayes Decision Rule gives us a method for minimizing the overall risk.
- Select the action that minimizes the conditional risk:

$$
\begin{align*}
\alpha * & =\arg \min _{\alpha_{i}} R\left(\alpha_{i} \mid \mathbf{x}\right) \tag{18}\\
& =\arg \min _{\alpha_{i}} \sum_{j=1}^{c} \lambda\left(\alpha_{i} \mid \omega_{j}\right) P\left(\omega_{j} \mid \mathbf{x}\right) \tag{19}
\end{align*}
$$

- The Bayes Risk is the best we can do.

Two-Category Classification Examples

- Consider two classes and two actions, α_{1} when the true class is ω_{1} and α_{2} for ω_{2}.
- Writing out the conditional risks gives:

$$
\begin{align*}
& R\left(\alpha_{1} \mid \mathbf{x}\right)=\lambda_{11} P\left(\omega_{1} \mid \mathbf{x}\right)+\lambda_{12} P\left(\omega_{2} \mid \mathbf{x}\right) \tag{20}\\
& R\left(\alpha_{2} \mid \mathbf{x}\right)=\lambda_{21} P\left(\omega_{1} \mid \mathbf{x}\right)+\lambda_{22} P\left(\omega_{2} \mid \mathbf{x}\right) . \tag{21}
\end{align*}
$$

- Fundamental rule is decide ω_{1} if

$$
\begin{equation*}
R\left(\alpha_{1} \mid \mathbf{x}\right)<R\left(\alpha_{2} \mid \mathbf{x}\right) \tag{22}
\end{equation*}
$$

- In terms of posteriors, decide ω_{1} if

$$
\begin{equation*}
\left(\lambda_{21}-\lambda_{11}\right) P\left(\omega_{1} \mid \mathbf{x}\right)>\left(\lambda_{12}-\lambda_{22}\right) P\left(\omega_{2} \mid \mathbf{x}\right) \tag{23}
\end{equation*}
$$

The more likely state of nature is scaled by the differences in loss (which are generally positive).

Two-Category Classification Examples

- Or, expanding via Bayes Rule, decide ω_{1} if

$$
\begin{equation*}
\left(\lambda_{21}-\lambda_{11}\right) p\left(\mathbf{x} \mid \omega_{1}\right) P\left(\omega_{1}\right)>\left(\lambda_{12}-\lambda_{22}\right) p\left(\mathbf{x} \mid \omega_{2}\right) P\left(\omega_{2}\right) \tag{24}
\end{equation*}
$$

- Or, assuming $\lambda_{21}>\lambda_{11}$, decide ω_{1} if

$$
\begin{equation*}
\frac{p\left(\mathbf{x} \mid \omega_{1}\right)}{p\left(\mathbf{x} \mid \omega_{2}\right)}=\frac{\lambda_{12}-\lambda_{22}}{\lambda_{21}-\lambda_{11}} \frac{P\left(\omega_{2}\right)}{P\left(\omega_{1}\right)} \tag{25}
\end{equation*}
$$

- LHS is called the likelihood ratio.
- Thus, we can say the Bayes Decision Rule says to decide ω_{1} if the likelihood ratio exceeds a threshold that is independent of the observation \mathbf{x}.

Pattern Classifiers Version 1: Discriminant Functions

- Discriminant Functions are a useful way of representing pattern classifiers.
- Let's say $g_{i}(\mathbf{x})$ is a discriminant function for the i th class.
- This classifier will assign a class ω_{i} to the feature vector \mathbf{x} if

$$
\begin{equation*}
g_{i}(\mathbf{x})>g_{j}(\mathbf{x}) \quad \forall j \neq i \tag{26}
\end{equation*}
$$

or, equivalently

$$
i^{*}=\arg \max _{i} g_{i}(x), \quad \text { decide } \quad \omega_{i^{*}}
$$

Discriminants as a Network

- We can view the discriminant classifier as a network (for c classes and a d-dimensional input vector).

Bayes Discriminants
 Minimum Conditional Risk Discriminant

- General case with risks

$$
\begin{align*}
g_{i}(\mathbf{x}) & =-R\left(\alpha_{i} \mid \mathbf{x}\right) \tag{27}\\
& =-\sum_{j=1}^{c} \lambda\left(\alpha_{i} \mid \omega_{j}\right) P\left(\omega_{j} \mid \mathbf{x}\right) \tag{28}
\end{align*}
$$

- Can we prove that this is correct?

Bayes Discriminants
 Minimum Conditional Risk Discriminant

- General case with risks

$$
\begin{align*}
g_{i}(\mathbf{x}) & =-R\left(\alpha_{i} \mid \mathbf{x}\right) \tag{27}\\
& =-\sum_{j=1}^{c} \lambda\left(\alpha_{i} \mid \omega_{j}\right) P\left(\omega_{j} \mid \mathbf{x}\right) \tag{28}
\end{align*}
$$

- Can we prove that this is correct?
- Yes! The minimum conditional risk corresponds to the maximum discriminant.

Minimum Error-Rate Discriminant

- In the case of zero-one loss function, the Bayes Discriminant can be further simplified:

$$
\begin{equation*}
g_{i}(\mathbf{x})=P\left(\omega_{i} \mid \mathbf{x}\right) \tag{29}
\end{equation*}
$$

Uniqueness Of Discriminants

- Is the choice of discriminant functions unique?

Uniqueness Of Discriminants

- Is the choice of discriminant functions unique?
- No!
- Multiply by some positive constant.
- Shift them by some additive constant.

Uniqueness Of Discriminants

- Is the choice of discriminant functions unique?
- No!
- Multiply by some positive constant.
- Shift them by some additive constant.
- For monotonically increasing function $f(\cdot)$, we can replace each $g_{i}(\mathbf{x})$ by $f\left(g_{i}(\mathbf{x})\right)$ without affecting our classification accuracy.
- These can help for ease of understanding or computability.
- The following all yield the same exact classification results for minimum-error-rate classification.

$$
\begin{align*}
& g_{i}(\mathbf{x})=P\left(\omega_{i} \mid \mathbf{x}\right)=\frac{p\left(\mathbf{x} \mid \omega_{i}\right) P\left(\omega_{i}\right)}{\sum_{j} p\left(\mathbf{x} \mid \omega_{j}\right) P\left(\omega_{j}\right)} \tag{30}\\
& g_{i}(\mathbf{x})=p\left(\mathbf{x} \mid \omega_{i}\right) P\left(\omega_{i}\right) \tag{31}\\
& g_{i}(\mathbf{x})=\ln p\left(\mathbf{x} \mid \omega_{i}\right)+\ln P\left(\omega_{i}\right) \tag{32}
\end{align*}
$$

Visualizing Discriminants

Decision Regions

- The effect of any decision rule is to divide the feature space into decision regions.
- Denote a decision region \mathcal{R}_{i} for ω_{i}.
- One not necessarily connected region is created for each category and assignments is according to:

$$
\begin{equation*}
\text { If } g_{i}(\mathbf{x})>g_{j}(\mathbf{x}) \forall j \neq i \text {, then } \mathbf{x} \text { is in } \mathcal{R}_{i} . \tag{33}
\end{equation*}
$$

- Decision boundaries separate the regions; they are ties among the discriminant functions.

Visualizing Discriminants

Decision Regions

Two-Category Discriminants

Dichotomizers

- In the two-category case, one considers single discriminant

$$
\begin{equation*}
g(\mathbf{x})=g_{1}(\mathbf{x})-g_{2}(\mathbf{x}) \tag{34}
\end{equation*}
$$

- What is a suitable decision rule?

Two-Category Discriminants

Dichotomizers

- In the two-category case, one considers single discriminant

$$
\begin{equation*}
g(\mathbf{x})=g_{1}(\mathbf{x})-g_{2}(\mathbf{x}) . \tag{34}
\end{equation*}
$$

- The following simple rule is then used:

$$
\begin{equation*}
\text { Decide } \omega_{1} \text { if } g(\mathbf{x})>0 ; \text { otherwise decide } \omega_{2} \tag{35}
\end{equation*}
$$

Two-Category Discriminants

Dichotomizers

- In the two-category case, one considers single discriminant

$$
\begin{equation*}
g(\mathbf{x})=g_{1}(\mathbf{x})-g_{2}(\mathbf{x}) . \tag{34}
\end{equation*}
$$

- The following simple rule is then used:

$$
\begin{equation*}
\text { Decide } \omega_{1} \text { if } g(\mathbf{x})>0 ; \text { otherwise decide } \omega_{2} \tag{35}
\end{equation*}
$$

- Various manipulations of the discriminant:

$$
\begin{align*}
g(\mathbf{x}) & =P\left(\omega_{1} \mid \mathbf{x}\right)-P\left(\omega_{2} \mid \mathbf{x}\right) \tag{36}\\
g(\mathbf{x}) & =\ln \frac{p\left(\mathbf{x} \mid \omega_{1}\right)}{p\left(\mathbf{x} \mid \omega_{2}\right)}+\ln \frac{P\left(\omega_{1}\right)}{P\left(\omega_{2}\right)} \tag{37}
\end{align*}
$$

Background on the Normal Density

- This next section is a slight digression to introduce the Normal Density (most of you will have had this already).
- The Normal density is very well studied.
- It easy to work with analytically.
- In many pattern recognition scenarios, an appropriate model seems to be where your data is assumed to be continuous-valued, randomly corrupted versions of a single typical value.
- Central Limit Theorem (Second Fundamental Theorem of Probability).
- The distribution of the sum of n random variables approaches the normal distribution when n is large.
- E.g., http://www.stattucino.com/berrie/dsl/Galton.html

Expectation

- Recall the definition of expected value of any scalar function $f(x)$ in the continuous $p(x)$ and discrete $P(x)$ cases

$$
\begin{align*}
& \mathcal{E}[f(x)]=\int_{-\infty}^{\infty} f(x) p(x) d x \tag{38}\\
& \mathcal{E}[f(x)]=\sum_{x} f(x) P(x) \tag{39}
\end{align*}
$$

where we have a set \mathcal{D} over which the discrete expectation is computed.

Univariate Normal Density

- Continuous univariate normal, or Gaussian, density:

$$
\begin{equation*}
p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right] \tag{40}
\end{equation*}
$$

- The mean is the expected value of x is

$$
\begin{equation*}
\mu \equiv \mathcal{E}[x]=\int_{-\infty}^{\infty} x p(x) d x \tag{41}
\end{equation*}
$$

- The variance is the expected squared deviation

$$
\begin{equation*}
\sigma^{2} \equiv \mathcal{E}\left[(x-\mu)^{2}\right]=\int_{-\infty}^{\infty}(x-\mu)^{2} p(x) d x \tag{42}
\end{equation*}
$$

Univariate Normal Density

Sufficient Statistics

- Samples from the normal density tend to cluster around the mean and be spread-out based on the variance.

Univariate Normal Density

Sufficient Statistics

- Samples from the normal density tend to cluster around the mean and be spread-out based on the variance.

- The normal density is completely specified by the mean and the variance. These two are its sufficient statistics.
- We thus abbreviate the equation for the normal density as

$$
\begin{equation*}
p(x) \sim N\left(\mu, \sigma^{2}\right) \tag{43}
\end{equation*}
$$

Entropy

- Entropy is the uncertainty in the random samples from a distribution.

$$
\begin{equation*}
H(p(x))=-\int p(x) \ln p(x) d x \tag{44}
\end{equation*}
$$

- The normal density has the maximum entropy for all distributions have a given mean and variance.
- What is the entropy of the uniform distribution?

Entropy

- Entropy is the uncertainty in the random samples from a distribution.

$$
\begin{equation*}
H(p(x))=-\int p(x) \ln p(x) d x \tag{44}
\end{equation*}
$$

- The normal density has the maximum entropy for all distributions have a given mean and variance.
- What is the entropy of the uniform distribution?
- The uniform distribution has maximum entropy (on a given interval).

Multivariate Normal Density

And a test to see if your Linear Algebra is up to snuff.

- The multivariate Gaussian in d dimensions is written as

$$
\begin{equation*}
p(\mathbf{x})=\frac{1}{(2 \pi)^{d / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right] . \tag{45}
\end{equation*}
$$

- Again, we abbreviate this as $p(\mathbf{x}) \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.
- The sufficient statistics in d-dimensions:

$$
\begin{gather*}
\boldsymbol{\mu} \equiv \mathcal{E}[\mathbf{x}]=\int \mathbf{x} p(\mathbf{x}) d \mathbf{x} \tag{46}\\
\boldsymbol{\Sigma} \equiv \mathcal{E}\left[(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{\top}\right]=\int(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{\top} p(\mathbf{x}) d \mathbf{x} \tag{47}
\end{gather*}
$$

The Covariance Matrix

$$
\boldsymbol{\Sigma} \equiv \mathcal{E}\left[(\mathrm{x}-\boldsymbol{\mu})(\mathrm{x}-\boldsymbol{\mu})^{\mathrm{T}}\right]=\int(\mathrm{x}-\boldsymbol{\mu})(\mathrm{x}-\boldsymbol{\mu})^{\mathrm{T}} p(\mathrm{x}) d \mathrm{x}
$$

- Symmetric.
- Positive semi-definite (but DHS only considers positive definite so that the determinant is strictly positive).
- The diagonal elements $\sigma_{i i}$ are the variances of the respective coordinate x_{i}.
- The off-diagonal elements $\sigma_{i j}$ are the covariances of x_{i} and x_{j}.
- What does a $\sigma_{i j}=0$ imply?

The Covariance Matrix

$$
\boldsymbol{\Sigma} \equiv \mathcal{E}\left[(\mathrm{x}-\boldsymbol{\mu})(\mathrm{x}-\boldsymbol{\mu})^{\mathrm{T}}\right]=\int(\mathrm{x}-\boldsymbol{\mu})(\mathrm{x}-\boldsymbol{\mu})^{\mathrm{T}} p(\mathrm{x}) d \mathrm{x}
$$

- Symmetric.
- Positive semi-definite (but DHS only considers positive definite so that the determinant is strictly positive).
- The diagonal elements $\sigma_{i i}$ are the variances of the respective coordinate x_{i}.
- The off-diagonal elements $\sigma_{i j}$ are the covariances of x_{i} and x_{j}.
- What does a $\sigma_{i j}=0$ imply?
- That coordinates x_{i} and x_{j} are statistically independent.

The Covariance Matrix

$$
\boldsymbol{\Sigma} \equiv \mathcal{E}\left[(\mathrm{x}-\boldsymbol{\mu})(\mathrm{x}-\boldsymbol{\mu})^{\mathrm{T}}\right]=\int(\mathrm{x}-\boldsymbol{\mu})(\mathrm{x}-\boldsymbol{\mu})^{\mathrm{T}} p(\mathrm{x}) d \mathrm{x}
$$

- Symmetric.
- Positive semi-definite (but DHS only considers positive definite so that the determinant is strictly positive).
- The diagonal elements $\sigma_{i i}$ are the variances of the respective coordinate x_{i}.
- The off-diagonal elements $\sigma_{i j}$ are the covariances of x_{i} and x_{j}.
- What does a $\sigma_{i j}=0$ imply?
- That coordinates x_{i} and x_{j} are statistically independent.
- What does $\boldsymbol{\Sigma}$ reduce to if all off-diagonals are 0 ?

The Covariance Matrix

$$
\boldsymbol{\Sigma} \equiv \mathcal{E}\left[(\mathrm{x}-\boldsymbol{\mu})(\mathrm{x}-\boldsymbol{\mu})^{\mathrm{T}}\right]=\int(\mathrm{x}-\boldsymbol{\mu})(\mathrm{x}-\boldsymbol{\mu})^{\mathrm{T}} p(\mathrm{x}) d \mathrm{x}
$$

- Symmetric.
- Positive semi-definite (but DHS only considers positive definite so that the determinant is strictly positive).
- The diagonal elements $\sigma_{i i}$ are the variances of the respective coordinate x_{i}.
- The off-diagonal elements $\sigma_{i j}$ are the covariances of x_{i} and x_{j}.
- What does a $\sigma_{i j}=0$ imply?
- That coordinates x_{i} and x_{j} are statistically independent.
- What does $\boldsymbol{\Sigma}$ reduce to if all off-diagonals are 0 ?
- The product of the d univariate densities.

Linear Combinations of Normals

- Linear combinations of jointly normally distributed random variables, independent or not, are normally distributed.
- For $p(\mathbf{x}) \sim N((\mu), \boldsymbol{\Sigma})$ and \mathbf{A}, a d-by- k matrix, define $\mathbf{y}=\mathbf{A}^{\top} \mathbf{x}$. Then:

$$
p(\mathbf{y}) \sim N\left(\mathbf{A}^{\top} \boldsymbol{\mu}, \mathbf{A}^{\top} \boldsymbol{\Sigma} \mathbf{A}\right)
$$

- With the covariance matrix, we can calculate the dispersion of
 the data in any direction or in any subspace.

Mahalanobis Distance

- The shape of the density is determined by the covariance $\boldsymbol{\Sigma}$.
- Specifically, the eigenvectors of $\boldsymbol{\Sigma}$ give the principal axes of the hyperellipsoids and the eigenvalues determine the lengths of these axes.
- The loci of points of constant density are hyperellipsoids with constant Mahalonobis distance:

$$
\begin{equation*}
(\mathrm{x}-\mu)^{\top} \Sigma^{-1}(\mathrm{x}-\mu) \tag{49}
\end{equation*}
$$

General Discriminant for Normal Densities

- Recall the minimum error rate discriminant, $g_{i}(\mathbf{x})=\ln p\left(\mathbf{x} \mid \omega_{i}\right)+\ln P\left(\omega_{i}\right)$.
- If we assume normal densities, i.e., if $p\left(\mathbf{x} \mid \omega_{i}\right) \sim N\left(\boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}\right)$, then the general discriminant is of the form

$$
\begin{equation*}
g_{i}(\mathbf{x})=-\frac{1}{2}\left(\mathbf{x}-\boldsymbol{\mu}_{i}\right)^{\top} \boldsymbol{\Sigma}_{i}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{i}\right)-\frac{d}{2} \ln 2 \pi-\frac{1}{2} \ln \left|\boldsymbol{\Sigma}_{i}\right|+\ln P\left(\omega_{i}\right) \tag{50}
\end{equation*}
$$

Simple Case: Statistically Independent Features with Same Variance

- What do the decision boundaries look like if we assume $\boldsymbol{\Sigma}_{i}=\sigma^{2} \mathbf{I}$?

Simple Case: Statistically Independent Features with Same Variance

- What do the decision boundaries look like if we assume $\boldsymbol{\Sigma}_{i}=\sigma^{2} \mathbf{I}$?
- They are hyperplanes.

- Let's see why...

Simple Case: $\Sigma_{i}=\sigma^{2} \mathbf{I}$

- The discriminant functions take on a simple form:

$$
\begin{equation*}
g_{i}(\mathbf{x})=-\frac{\left\|\mathbf{x}-\boldsymbol{\mu}_{i}\right\|^{2}}{2 \sigma^{2}}+\ln P\left(\omega_{i}\right) \tag{51}
\end{equation*}
$$

- Think of this discriminant as a combination of two things
(1) The distance of the sample to the mean vector (for each i).
(2) A normalization by the variance and offset by the prior.

Simple Case: $\Sigma_{i}=\sigma^{2} \mathbf{I}$

- But, we don't need to actually compute the distances.
- Expanding the quadratic form $(\mathbf{x}-\boldsymbol{\mu})^{\top}(\mathbf{x}-\boldsymbol{\mu})$ yields

$$
\begin{equation*}
g_{i}(\mathbf{x})=-\frac{1}{2 \sigma^{2}}\left[\mathbf{x}^{\top} \mathbf{x}-2 \boldsymbol{\mu}_{i}^{\top} \mathbf{x}+\boldsymbol{\mu}_{i}^{\top} \boldsymbol{\mu}_{i}\right]+\ln P\left(\omega_{i}\right) . \tag{52}
\end{equation*}
$$

- The quadratic term $\mathbf{x}^{\top} \mathbf{x}$ is the same for all i and can thus be ignored.
- This yields the equivalent linear discriminant functions

$$
\begin{align*}
g_{i}(\mathbf{x}) & =\mathbf{w}_{i}^{\top} \mathbf{x}+w_{i 0} \tag{53}\\
\mathbf{w}_{i} & =\frac{1}{\sigma^{2}} \boldsymbol{\mu}_{i} \tag{54}\\
w_{i 0} & =-\frac{1}{2 \sigma^{2}} \boldsymbol{\mu}_{i}^{\top} \boldsymbol{\mu}_{i}+\ln P\left(\omega_{i}\right) \tag{55}
\end{align*}
$$

- $w_{i 0}$ is called the bias.

Simple Case: $\boldsymbol{\Sigma}_{i}=\sigma^{2} \mathbf{I}$

Decision Boundary Equation

- The decision surfaces for a linear discriminant classifiers are hyperplanes defined by the linear equations $g_{i}(\mathbf{x})=g_{j}(\mathbf{x})$.
- The equation can be written as

$$
\begin{align*}
\mathbf{w}^{\mathrm{\top}}\left(\mathbf{x}-\mathbf{x}_{0}\right) & =0 \tag{56}\\
\mathbf{w} & =\boldsymbol{\mu}_{i}-\boldsymbol{\mu}_{j} \tag{57}\\
\mathbf{x}_{0} & =\frac{1}{2}\left(\boldsymbol{\mu}_{i}+\boldsymbol{\mu}_{j}\right)-\frac{\sigma^{2}}{\left\|\boldsymbol{\mu}_{i}-\boldsymbol{\mu}_{j}\right\|^{2}} \ln \frac{P\left(\omega_{i}\right)}{P\left(\omega_{j}\right)}\left(\boldsymbol{\mu}_{i}-\boldsymbol{\mu}_{j}\right) \tag{58}
\end{align*}
$$

- These equations define a hyperplane through point x_{0} with a normal vector w.

Simple Case: $\boldsymbol{\Sigma}_{i}=\sigma^{2} \mathbf{I}$

Decision Boundary Equation

- The decision boundary changes with the prior.

General Case: Arbitrary Σ_{i}

- The discriminant functions are quadratic (the only term we can drop is the $\ln 2 \pi$ term):

$$
\begin{align*}
g_{i}(\mathbf{x}) & =\mathbf{x}^{\top} \mathbf{W}_{i} \mathbf{x}+\mathbf{w}_{i}^{\top} \mathbf{x}+w_{i 0} \tag{59}\\
\mathbf{W}_{i} & =-\frac{1}{2} \boldsymbol{\Sigma}_{i}^{-1} \tag{60}\\
\mathbf{w}_{i} & =\boldsymbol{\Sigma}_{i}^{-1} \boldsymbol{\mu}_{i} \tag{61}\\
w_{i 0} & =-\frac{1}{2} \boldsymbol{\mu}_{i}^{\top} \boldsymbol{\Sigma}_{i}^{-1} \boldsymbol{\mu}_{i}-\frac{1}{2} \ln \left|\boldsymbol{\Sigma}_{i}\right|+\ln P\left(\omega_{i}\right) \tag{62}
\end{align*}
$$

- The decision surface between two categories are hyperquadrics.

General Case: Arbitrary Σ_{i}

General Case: Arbitrary Σ_{i}

General Case for Multiple Categories

Quite A Complicated Decision Surface!

Signal Detection Theory

- A fundamental way of analyzing a classifier.
- Consider the following experimental setup:

- Suppose we are interested in detecting a single pulse.
- We can read an internal signal x.
- The signal is distributed about mean μ_{2} when an external signal is present and around mean μ_{1} when no external signal is present.
- Assume the distributions have the same variances, $p\left(x \mid \omega_{i}\right) \sim N\left(\mu_{i}, \sigma^{2}\right)$.

Signal Detection Theory

- The detector uses x^{*} to decide if the external signal is present.
- Discriminability characterizes how difficult it will be to decide if the external signal is present without knowing x^{*}.

$$
\begin{equation*}
d^{\prime}=\frac{\left|\mu_{2}-\mu_{1}\right|}{\sigma} \tag{63}
\end{equation*}
$$

- Even if we do not know μ_{1}, μ_{2}, σ, or x^{*}, we can find d^{\prime} by using a receiver operating characteristic or ROC curve.

Receiver Operating Characteristics

Definitions

- A Hit is the probability that the internal signal is above x^{*} given that the external signal is present

$$
\begin{equation*}
P\left(x>x^{*} \mid x \in \omega_{2}\right) \tag{64}
\end{equation*}
$$

Receiver Operating Characteristics

Definitions

- A Hit is the probability that the internal signal is above x^{*} given that the external signal is present

$$
\begin{equation*}
P\left(x>x^{*} \mid x \in \omega_{2}\right) \tag{64}
\end{equation*}
$$

- A Correct Rejection is the probability that the internal signal is below x^{*} given that the external signal is not present.

$$
\begin{equation*}
P\left(x<x^{*} \mid x \in \omega_{1}\right) \tag{65}
\end{equation*}
$$

Receiver Operating Characteristics

Definitions

- A Hit is the probability that the internal signal is above x^{*} given that the external signal is present

$$
\begin{equation*}
P\left(x>x^{*} \mid x \in \omega_{2}\right) \tag{64}
\end{equation*}
$$

- A Correct Rejection is the probability that the internal signal is below x^{*} given that the external signal is not present.

$$
\begin{equation*}
P\left(x<x^{*} \mid x \in \omega_{1}\right) \tag{65}
\end{equation*}
$$

- A False Alarm is the probability that the internal signal is above x^{*} despite there being no external signal present.

$$
\begin{equation*}
P\left(x>x^{*} \mid x \in \omega_{1}\right) \tag{66}
\end{equation*}
$$

Receiver Operating Characteristics

Definitions

- A Hit is the probability that the internal signal is above x^{*} given that the external signal is present

$$
\begin{equation*}
P\left(x>x^{*} \mid x \in \omega_{2}\right) \tag{64}
\end{equation*}
$$

- A Correct Rejection is the probability that the internal signal is below x^{*} given that the external signal is not present.

$$
\begin{equation*}
P\left(x<x^{*} \mid x \in \omega_{1}\right) \tag{65}
\end{equation*}
$$

- A False Alarm is the probability that the internal signal is above x^{*} despite there being no external signal present.

$$
\begin{equation*}
P\left(x>x^{*} \mid x \in \omega_{1}\right) \tag{66}
\end{equation*}
$$

- A Miss is the probability that the internal signal is below x^{*} given that the external signal is present.

$$
\begin{equation*}
P\left(x<x^{*} \mid x \in \omega_{2}\right) \tag{67}
\end{equation*}
$$

Receiver Operating Characteristics

- We can experimentally determine the rates, in particular the Hit-Rate and the False-Alarm-Rate.
- Basic idea is to assume our densities are fixed (reasonable) but vary our threshold x^{*}, which will thus change the rates.
- The receiver operating characteristic plots the hit rate against the false alarm rate.

- What shape curve do we want?

Missing Features

- Suppose we have built a classifier on multiple features, for example the lightness and width.
- What do we do if one of the features is not measurable for a particular case? For example the lightness can be measured but the width cannot because of occlusion.

Missing Features

- Suppose we have built a classifier on multiple features, for example the lightness and width.
- What do we do if one of the features is not measurable for a particular case? For example the lightness can be measured but the width cannot because of occlusion.
- Marginalize!
- Let \mathbf{x} be our full feature feature and \mathbf{x}_{g} be the subset that are measurable (or good) and let \mathbf{x}_{b} be the subset that are missing (or bad/noisy).
- We seek an estimate of the posterior given just the good features x_{g}.

Missing Features

$$
\begin{align*}
P\left(\omega_{i} \mid \mathbf{x}_{g}\right) & =\frac{p\left(\omega_{i}, \mathbf{x}_{g}\right)}{p\left(\mathbf{x}_{g}\right)} \tag{68}\\
& =\frac{\int p\left(\omega_{i}, \mathbf{x}_{g}, \mathbf{x}_{b}\right) d \mathbf{x}_{b}}{p\left(\mathbf{x}_{g}\right)} \tag{69}\\
& =\frac{\int p\left(\omega_{i} \mid \mathbf{x}\right) p(\mathbf{x}) d \mathbf{x}_{b}}{p\left(\mathbf{x}_{g}\right)} \tag{70}\\
& =\frac{\int g_{i}(\mathbf{x}) p(\mathbf{x}) d \mathbf{x}_{b}}{\int p(\mathbf{x}) d \mathbf{x}_{b}} \tag{71}
\end{align*}
$$

- We will cover the Expectation-Maximization algorithm later.
- This is normally quite expensive to evaluate unless the densities are special (like Gaussians).

Statistical Independence

- Two variables x_{i} and x_{j} are independent if

$$
\begin{equation*}
p\left(x_{i}, x_{j}\right)=p\left(x_{i}\right) p\left(x_{j}\right) \tag{72}
\end{equation*}
$$

FIGURE 2.23. A three-dimensional distribution which obeys $p\left(x_{1}, x_{3}\right)=p\left(x_{1}\right) p\left(x_{3}\right)$; thus here x_{1} and x_{3} are statistically independent but the other feature pairs are not. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley \& Sons, Inc.

Simple Example of Conditional Independence

From Russell and Norvig

- Consider a simple example consisting of four variables: the weather, the presence of a cavity, the presence of a toothache, and the presence of other mouth-related variables such as dry mouth.
- The weather is clearly independent of the other three variables.
- And the toothache and catch are conditionally independent given the cavity (one as no effect on the other given the information about the cavity).

Naïve Bayes Rule

- If we assume that all of our individual features $x_{i}, i=1, \ldots, d$ are conditionally independent given the class, then we have

$$
\begin{equation*}
p\left(\omega_{k} \mid \mathbf{x}\right) \propto \prod_{i=1}^{d} p\left(x_{i} \mid \omega_{k}\right) \tag{73}
\end{equation*}
$$

- Circumvents issues of dimensionality.
- Performs with surprising accuracy even in cases violating the underlying independence assumption.

An Early Graphical Model

- We represent these statistical dependencies graphically.
- Bayesian Belief Networks, or Bayes Nets, are directed acyclic graphs.
- Each link is directional.
- No loops.
- The Bayes Net factorizes the distribution into independent parts (making for more easily learned and computed terms).

Bayes Nets Components

- Each node represents one variable (assume discrete for simplicity).
- A link joining two nodes is directional and it represents conditional probabilities.
- The intuitive meaning of a link is that the source has a direct influence on the sink.
- Since we typically work with discrete distributions, we evaluate the conditional probability at each node given its parents and store it in a lookup table called a conditional probability table.

A More Complex Example

From Russell and Norvig

- Key: given knowledge of the values of some nodes in the network, we can apply Bayesian inference to determine the maximum posterior values of the unknown variables!

Full Joint Distribution on a Bayes Net

- Consider a Bayes network with n variables x_{1}, \ldots, x_{n}.
- Denote the parents of a node x_{i} as $\mathcal{P}\left(x_{i}\right)$.
- Then, we can decompose the joint distribution into the product of conditionals

$$
\begin{equation*}
P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \mathcal{P}\left(x_{i}\right)\right) \tag{74}
\end{equation*}
$$

Belief at a Single Node

- What is the distribution at a single node, given the rest of the network and the evidence \mathbf{e} ?
- Parents of \mathbf{X}, the set \mathcal{P} are the nodes on which \mathbf{X} is conditioned.
- Children of \mathbf{X}, the set \mathcal{C} are the nodes
 conditioned on \mathbf{X}.
- Use the Bayes Rule, for the case on the right:

$$
\begin{align*}
P(a, b, x, c, d) & =P(a, b, x \mid c, d) P(c, d) \tag{75}\\
& =P(a, b \mid x) P(x \mid c, d) P(c, d) \tag{76}
\end{align*}
$$

or more generally,

$$
\begin{equation*}
P(\mathcal{C}(x), x, \mathcal{P}(x) \mid \mathbf{e})=P(\mathcal{C}(x) \mid x, \mathbf{e}) P(x \mid \mathcal{P}(x), \mathbf{e}) P(\mathcal{P}(x) \mid, \mathbf{e}) \tag{77}
\end{equation*}
$$

