
Parametric Techniques

Lecture 3

Jason Corso

SUNY at Buffalo

25 January 2010

J. Corso (SUNY at Buffalo) Parametric Techniques Lecture 3 25 January 2010 1 / 39



Introduction

In Lecture 2, we learned how to form optimal decision boundaries
when the full probabilistic structure of the problem is known.

However, this is rarely the case in practice.

Instead, we have some knowledge of the problem and some example
data and we must estimate the probabilities.

Focus of this lecture is to study a pair of techniques for estimating
the parameters of the likelihood models (given a particular form of
the density, such as a Gaussian).

Parametric Models – For a particular class ωi, we consider a set of
parameters θi to fully define the likelihood model.

For the Guassian, θi = (µi,Σi).

Supervised Learning – we are working in a supervised situation
where we have an set of training data:

D = {(x, ω)1, (x, ω)2, . . . (x, ω)N} (1)
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Overview of the Methods

Intuitive Problem: Given a set of training data, D, containing labels
for c classes, train the likelihood models p(x|ωi, θi) by estimating the
parameters θi for i = 1, . . . , c.

Maximum Likelihood Parameter Estimation

Views the parameters as quantities that are fixed by unknown.
The best estimate of their value is the one that maximizes the
probability of obtaining the samples in D.

Bayesian Parameter Estimation

Views the parameters as random variables having some known prior
distribution.
The samples converts this prior into a posterior and revises our
estimate of the distribution over the parameters.
We shall typically see that the posterior is increasingly peaked for larger
D — Bayesian Learning.
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Maximum Likelihood Estimation

Maximum Likelihood Intuition
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FIGURE 3.1. The top graph shows several training points in one dimension, known or
assumed to be drawn from a Gaussian of a particular variance, but unknown mean.
Four of the infinite number of candidate source distributions are shown in dashed
lines. The middle figure shows the likelihood p(D|θ) as a function of the mean. If we
had a very large number of training points, this likelihood would be very narrow. The
value that maximizes the likelihood is marked θ̂ ; it also maximizes the logarithm of
the likelihood—that is, the log-likelihood l(θ), shown at the bottom. Note that even
though they look similar, the likelihood p(D|θ) is shown as a function of θ whereas the
conditional density p(x|θ) is shown as a function of x. Furthermore, as a function of θ ,
the likelihood p(D|θ) is not a probability density function and its area has no signifi-
cance. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c© 2001 by John Wiley & Sons, Inc.

Underlying model is assumed to be a Gaussian of particular variance
but unknown mean.
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Maximum Likelihood Estimation

Preliminaries

Separate our training data according to class; i.e., we have c data sets
D1, . . . ,Dc.

Assume that samples in Di give no information for θj for all i 6= j.

Assume the samples in Dj have been drawn independently according
to the (unknown but) fixed density p(x|ωj).

We say these samples are i.i.d. — independent and identically
distributed.

Assume p(x|ωj) has some fixed parametric form and is fully described
by θj ; hence we write p(x|ωj ,θj).

We thus have c separate problems of the form:

Definition

Use a set D = {x1, . . . ,xn} of training samples drawn independently from
the density p(x|θ) to estimate the unknown parameter vector θ.
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Maximum Likelihood Estimation

(Log-)Likelihood

Because we assume i.i.d. we have

p(D|θ) =
n∏

k=1

p(xk|θ) . (2)

The log-likelihood is typically easier to work with both analytically
and numerically.

lD(θ) ≡ l(θ)
.
= ln p(D|θ) (3)

=
n∑

k=1

ln p(xk|θ) (4)

J. Corso (SUNY at Buffalo) Parametric Techniques Lecture 3 25 January 2010 6 / 39



Maximum Likelihood Estimation

Maximum (Log-)Likelihood

The maximum likelihood estimate of θ if the value θ̂ that
maximizes p(D|θ) or equivalently maximizes lD(θ).

θ̂ = arg max
θ

lD(θ) (5)
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Copyright c© 2001 by John Wiley & Sons, Inc.
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Maximum Likelihood Estimation

Necessary Conditions for MLE

For p parameters, θ
.
=
[
θ1 θ2 . . . θp

]T
.

Let ∇θ be the gradient operator, then ∇θ
.
=
[

∂
∂θ1

. . . ∂
∂θp

]T
.

The set of necessary conditions for the maximum likelihood
estimate of θ are obtained from the following system of p equations:

∇θl =
n∑

k=1

∇θ ln p(xk|θ) = 0 (6)

A solution θ̂ to (6) can be a true global maximum, a local maximum
or minimum or an inflection point of l(θ).

Keep in mind that θ̂ is only an estimate. Only in the limit of an
infinitely large number of training samples can we expect it to be the
true parameters of the underlying density.
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Maximum Likelihood Estimation

Gaussian Case with Known Σ and Unknown µ

For a single sample point xk:

ln p(xk|µ) = −1

2
ln
[
(2π)d|Σ|

]
− 1

2
(xk − µ)TΣ−1(xk − µ) (7)

∇µ ln p(xk|µ) = Σ−1(xk − µ) (8)

We see that the ML-estimate must satisfy

n∑
k=1

Σ−1(xk − µ̂) = 0 (9)

And we get the sample mean!

µ̂ =
1

n

n∑
k=1

xk (10)
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Maximum Likelihood Estimation

Univariate Gaussian Case with Unknown µ and σ2

The Log-Likelihood

Let θ = (µ, σ2). The log-likelihood of xk is

ln p(xk|θ) = −1

2
ln
[
2πσ2

]
− 1

2σ2
(xk − µ)2 (11)

∇θ ln p(xk|θ) =

[
1
σ2 (xk − µ)

− 1
2σ2 + (xk−µ)2

2σ2

]
(12)
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Maximum Likelihood Estimation

Univariate Gaussian Case with Unknown µ and σ2

Necessary Conditions

The following conditions are defined:

n∑
k=1

1

σ̂2
(xk − µ̂) = 0 (13)

−
n∑

k=1

1

σ̂2
+

n∑
k=1

(xk − µ̂)2

σ̂2
= 0 (14)
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Maximum Likelihood Estimation

Univariate Gaussian Case with Unknown µ and σ2

ML-Estimates

After some manipulation we have the following:

µ̂ =
1

n

n∑
k=1

xk (15)

σ̂2 =
1

n

n∑
k=1

(xk − µ̂)2 (16)

These are encouraging results – even in the case of unknown µ and
σ2 the ML-estimate of µ corresponds to the sample mean.
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Maximum Likelihood Estimation

Bias

The maximum likelihood estimate for the variance σ2 is biased.

The expected value over datasets of size n of the sample variance is
not equal to the true variance

E

[
1

n

n∑
i=1

(xi − µ̂)2

]
=

n− 1

n
σ2 6= σ2 (17)

In other words, the ML-estimate of the variance systematically
underestimates the variance of the distribution.

As n →∞ the problem of bias is reduced or removed, but bias
remains a problem of the ML-estimator.

An unbiased ML-estimator of the variance is

σ̂2
unbiased =

1

n− 1

n∑
k=1

(xk − µ̂)2 (18)
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Bayesian Parameter Estimation

Bayesian Parameter Estimation Intuition
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FIGURE 3.2. Bayesian learning of the mean of normal distributions in one and two dimensions. The posterior
distribution estimates are labeled by the number of training samples used in the estimation. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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Bayesian Parameter Estimation

General Assumptions
Bayesian Parameter Estimation

The form of the density p(x|θ) is assumed to be known (e.g., it is a
Gaussian).

The values of the parameter vector θ are not exactly known.

Our initial knowledge about the parameters is summarized in a prior
distribution p(θ).

The rest of our knowledge about θ is contained in a set D of n i.i.d.
samples x1, . . . ,xn drawn according to fixed p(x).

Goal

Our ultimate goal is to estimate p(x|D), which is as close as we can come
to estimating the unknown p(x).
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Bayesian Parameter Estimation

Linking Likelihood and the Parameter Distribution

How do we relate the prior distribution on the parameters to the
samples?

Missing Data! The samples will convert our prior p(θ) to a posterior
p(θ|D), by integrating the joint density over θ:

p(x|D) =

∫
p(x,θ|D)dθ (19)

=

∫
p(x|θ,D)p(θ|D)dθ (20)

And, because the distribution of x is known given the parameters θ,
we simplify to

p(x|D) =

∫
p(x|θ)p(θ|D)dθ (21)
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Bayesian Parameter Estimation

Linking Likelihood and the Parameter Distribution

p(x|D) =

∫
p(x|θ)p(θ|D)dθ

We can see the link between the likelihood p(x|θ) and the posterior
for the unknown parameters p(θ|D).

If the posterior p(θ|D) peaks very sharply for sample point θ̂, then we
obtain

p(x|D) ' p(x|θ̂) . (22)

And, we will see that during Bayesian parameter estimation, the
distribution over the parameters will get increasingly “peaky” as the
number of samples increases.

What if the integral is not readily analytically computed?
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Bayesian Parameter Estimation

The Posterior Density on the Parameters

The primary task in Bayesian Parameter Estimation is the
computation of the posterior density p(θ|D).

By Bayes formula

p(θ|D) =
1

Z
p(D|θ)p(θ) (23)

Z is a normalizing constant:

Z =

∫
p(D|θ)p(θ)dθ (24)

And, by the independence assumption on D:

p(D|θ) =
n∏

k=1

p(xk|θ) (25)

Let’s see some examples before we return to this general formulation.
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Bayesian Parameter Estimation

Univariate Gaussian Case with Known σ2

Assume p(x|µ) ∼ N(µ, σ2) with known σ2.

Whatever prior knowledge we know about µ is expressed in p(µ),
which is known.

Indeed, we assume it took is a Gaussian

p(µ) ∼ N(µ0, σ
2
0) . (26)

µ0 represents our best guess of the value of the mean and σ2
0

represents our uncertainty about this guess.

Note: the choice of the prior as a Gaussian is not so crucial. Rather,
the assumption that we know the prior is crucial.
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Bayesian Parameter Estimation

Univariate Gaussian Case with Known σ2

Training samples

We assume that we are given samples D = {x1, . . . , xn} from p(x, µ).

Take some time to think through this point—unlike in MLE, we
cannot assume that we have a single value of the parameter in the
underlying distribution.
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Bayesian Parameter Estimation

Univariate Gaussian Case with Known σ2

Bayes Rule

p(µ|D) =
1

Z
p(D|µ)p(µ) (27)

=
1

Z

∏
k

p(xk|µ)p(µ) (28)

See how the training samples modulate our prior knowledge of the
parameters in the posterior?

J. Corso (SUNY at Buffalo) Parametric Techniques Lecture 3 25 January 2010 21 / 39



Bayesian Parameter Estimation

Univariate Gaussian Case with Known σ2

Expanding...

p(µ|D) =
1

Z

∏
k

1√
2πσ2

exp

[
−1

2

(
xk − µ

σ

)2
]

1√
2πσ2

0

exp

[
−1

2

(
µ− µ0

σ0

)2
] (29)

After some manipulation, we can see that p(µ|D) is an exponential
function of a quadratic of µ, which is another way of saying a normal
density.

p(µ|D) =
1

Z ′
exp

[
−1

2

[(
n

σ2
+

1

σ2
0

)
µ2 − 2

(
1

σ2

∑
k

xk +
µ0

σ2
0

)
µ

]]
(30)
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Bayesian Parameter Estimation

Univariate Gaussian Case with Known σ2

Names of these convenient distributions...

And, this will be true regardless of the number of training samples.

In other words, p(µ|D) remains a normal as the number of samples
increases.

Hence, p(µ|D) is said to be a reproducing density.

p(µ) is said to be a conjugate prior.
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Bayesian Parameter Estimation

Univariate Gaussian Case with Known σ2

Rewriting...

We can write p(µ|D) ∼ N(µn, σ2
n). Then, we have

p(µ|D) =
1√

2πσ2
n

exp

[
−1

2

(
µ− µn

σn

)2
]

(31)

The new coefficients are

1

σ2
n

=
n

σ2
+

1

σ2
0

(32)

µn

σ2
n

=
n

σ2
µn +

µ0

σ2
0

(33)

µn is the sample mean over the n samples.
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Bayesian Parameter Estimation

Univariate Gaussian Case with Known σ2

Rewriting...

Solving explicitly for µn and σ2
n

µn =

(
nσ2

0

nσ2
0 + σ2

)
µn +

σ2

nσ2
0 + σ2

µ0 (34)

σ2
n =

σ2
0σ

2

nσ2
0 + σ2

(35)

shows explicitly how the prior information is combined with the
training samples to estimate the parameters of the posterior
distribution.

After n samples, µn is our best guess for the mean of the posterior
and σ2

n is our uncertainty about it.
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Bayesian Parameter Estimation

Univariate Gaussian Case with Known σ2

Uncertainty...

What can we say about this uncertainty as n increases?

σ2
n =

σ2
0σ

2

nσ2
0 + σ2

That each observation monotonically decreases our uncertainty
about the distribution.

lim
n→∞

σ2
n = 0 (36)

In other terms, as n increases, p(µ|D) becomes more and more
sharply peaked approaching a Dirac delta function.
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Bayesian Parameter Estimation

Univariate Gaussian Case with Known σ2

What can we say about the parameter µn as n increases?

µn =

(
nσ2

0

nσ2
0 + σ2

)
µn +

σ2

nσ2
0 + σ2

µ0

It is a convex combination between the sample mean µn (from the
observed data) and the prior µ0.

Thus, it always lives somewhere betweens µn and µ0.

And, it approaches the sample mean as n approaches ∞:

lim
n→∞

µn = µn ≡
1

n

n∑
k=1

xk (37)
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Bayesian Parameter Estimation

Univariate Gaussian Case with Known σ2

Putting it all together to obtain p(x|D).

Our goal has been to obtain an estimate of how likely a novel sample
x is given the entire training set D: p(x|D).

p(x|D) =

∫
p(x|µ)p(µ|D)dµ (38)

=

∫
1√

2πσ2
exp

[
−1

2

(
x− µ

σ

)2
]

∫
1√

2πσ2
n

exp

[
−1

2

(
µ− µn

σn

)2
] (39)

=
1

2πσσn
exp

[
1

2

(x− µn)2

σ2 + σ2
n

]
f(σ, σn) (40)

Essentially, p(x|D) ∼ N(µn, σ2 + σ2
n).
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Bayesian Parameter Estimation

Some Comparisons

Maximum Likelihood

Point Estimator

p(x|D) = p(x|θ̂)

Parameter Estimate

θ̂ = arg max
θ

ln p(D|θ)

Bayesian

Distribution Estimator

p(x|D) =

∫
p(x|θ)p(θ|D)dθ

Distribution Estimate

p(θ|D) =
1

Z
p(D|θ)p(θ)
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Bayesian Parameter Estimation

Some Comparisons

So, is the Bayesian approach like Maximum Likelihood with a prior?

NO!

Maximum Posterior

Point Estimator

p(x|D) = p(x|θ̂)

Parameter Estimate

θ̂ = arg max
θ

ln p(D|θ)p(θ)

Bayesian

Distribution Estimator

p(x|D) =

∫
p(x|θ)p(θ|D)dθ

Distribution Estimate

p(θ|D) =
1

Z
p(D|θ)p(θ)
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Bayesian Parameter Estimation

Some Comparisons
Comments on the two methods

For reasonable priors, MLE and BPE are equivalent in the asymptotic
limit of infinite training data.

Computationally – MLE methods are preferred for computational
reasons because they are comparatively simpler (differential calculus
versus multidimensional integration).

Interpretability – MLE methods are often more readily interpretted
because they give a single point answer whereas BPE methods give a
distribution over answers which can be more complicated.

Confidence In Priors – But, the Bayesian methods bring more
information to the table. If the underlying distribution is of a different
parametric form than originally assumed, Bayesian methods will do
better.

Bias-Variance – Bayesian methods make the bias-variance tradeoff
more explicit by directly incorporating the uncertainty in the
estimates.
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Bayesian Parameter Estimation

Some Comparisons
Comments on the two methods

Take Home Message

There are strong theoretical and methodological arguments supporting
Bayesian estimation, though in practice maximum-likelihood estimation is
simpler, and when used for designing classifiers, can lead to classifiers that
are nearly as accurate.
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Recursive Bayesian Learning

Recursive Bayesian Estimation

Another reason to prefer Bayesian estimation is that it provides a
natural way to incorporate additional training data as it becomes
available.

Let a training set with n samples be denoted Dn.

Then, due to our independence assumption:

p(D|θ) =
n∏

k=1

p(xk|θ) (41)

we have

p(Dn|θ) = p(xn|θ)p(Dn−1|θ) (42)
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Recursive Bayesian Learning

Recursive Bayesian Estimation

And, with Bayes Formula, we see that the posterior satisfies the
recursion

p(θ|Dn) =
1

Z
p(xn|θ)p(θ|Dn−1) . (43)

This is an instance of on-line learning.

In principle, this derivation requires that we retain the entire training
set in Dn−1 to calculate p(θ|Dn). But, for some distributions, we can
simply retain the sufficient statistics, which contain all the
information needed.
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Recursive Bayesian Learning

Recursive Bayesian Estimation
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FIGURE 3.2. Bayesian learning of the mean of normal distributions in one and two dimensions. The posterior
distribution estimates are labeled by the number of training samples used in the estimation. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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Recursive Bayesian Learning

Example of Recursive Bayes

Suppose we believe our samples come from a uniform distribution:

p(x|θ) ∼ U(0, θ) =

{
1/θ 0 ≤ x ≤ θ

0 otherwise
(44)

Initially, we know only that our parameter θ is bounded by 10, i.e.,
0 ≤ θ ≤ 10.

Before any data arrive, we have

p(θ|D0) = p(θ) = U(0, 10) . (45)

We get a training data set D = {4, 7, 2, 8}.
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Recursive Bayesian Learning

Example of Recursive Bayes

When the first data point arrives, x1 = 4, we get an improved
estimate of θ:

p(θ|D1) ∝ p(x|θ)p(θ|D0) =

{
1/θ 4 ≤ θ ≤ 10

0 otherwise
(46)

When the next data point arrives, x2 = 7, we have

p(θ|D2) ∝ p(x|θ)p(θ|D1) =

{
1/θ2 7 ≤ θ ≤ 10

0 otherwise
(47)

And so on....
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Recursive Bayesian Learning

Example of Recursive Bayes

Notice that each successive data sample introduces a factor of 1/θ
into p(x|θ).
The distribution of samples is nonzero only for x values above the
max, p(θ|Dn) ∝ 1/θn for maxx[Dn] ≤ θ ≤ 10.

Our distribution is
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Recursive Bayesian Learning

Example of Recursive Bayes

The maximum likelihood solution is θ̂ = 8, implying
p(x|D) ∼ U(0, 8).
But, the Bayesian solution shows a different character:

Starts out flat.
As more points are added, it becomes increasingly peaked at the value
of the highest data point.
And, the Bayesian estimate has a tail for points above 8 reflecting our
prior distribution.
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