
Nonparametric Methods

Lecture 6

Jason Corso

SUNY at Buffalo

15 Mar. 2010

J. Corso (SUNY at Buffalo) Nonparametric Methods Lecture 6 15 Mar. 2010 1 / 49



Nonparametric Methods Lecture 6 Overview

Previously, we’ve assumed that the forms of the underlying densities
were of some particular known parametric form.

But, what if this is not the case?

Indeed, for most real-world pattern recognition scenarios this
assumption is suspect.

For example, most real-world entities have multimodal distributions
whereas all classical parametric densities are unimodal.

We will examine nonparametric procedures that can be used with
arbitrary distributions and without the assumption that the underlying
form of the densities are known.

Histograms.
Kernel Density Estimation / Parzen Windows.
k-Nearest Neighbor Density Estimation.
Real Example in Figure-Ground Segmentation
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Histograms

Histogram Density Representation

Consider a single continuous variable x and let’s say we have a set D
of N of them {x1, . . . , xN}. Our goal is to model p(x) from D.

Standard histograms simply partition x into distinct bins of width ∆i

and then count the number ni of observations x falling into bin i.

To turn this count into a normalized probability density, we simply
divide by the total number of observations N and by the width ∆i of
the bins.

This gives us:

pi =
ni

N∆i
(1)

Hence the model for the density p(x) is constant over the width of
each bin. (And often the bins are chosen to have the same width
∆i = ∆.)
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Histograms

Bin Number 0 1 2
Δ

Bin Count 3 6 7
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Histograms

Histogram Density as a Function of Bin Width
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Histograms

Histogram Density as a Function of Bin Width

The green curve is the underlying true
density from which the samples were
drawn. It is a mixture of two Gaussians.

When ∆ is very small (top), the
resulting density is quite spiky and
hallucinates a lot of structure not
present in p(x).
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When ∆ is very big (bottom), the resulting density is quite smooth
and consequently fails to capture the bimodality of p(x).

It appears that the best results are obtained for some intermediate
value of ∆, which is given in the middle figure.

In principle, a histogram density model is also dependent on the
choice of the edge location of each bin.
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Histograms

Analyzing the Histogram Density

What are the advantages and disadvantages of the histogram density
estimator?

Advantages:

Simple to evaluate and simple to use.
One can throw away D once the histogram is computed.
Can be computed sequentially if data continues to come in.

Disadvantages:

The estimated density has discontinuities due to the bin edges rather
than any property of the underlying density.
Scales poorly (curse of dimensionality): we would have MD bins if we
divided each variable in a D-dimensional space into M bins.
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Histograms

What can we learn from Histogram Density
Estimation?

Lesson 1: To estimate the probability density at a particular location,
we should consider the data points that lie within some local
neighborhood of that point.

This requires we define some distance measure.
There is a natural smoothness parameter describing the spatial extent
of the regions (this was the bin width for the histograms).

Lesson 2: The value of the smoothing parameter should neither be
too large or too small in order to obtain good results.

With these two lessons in mind, we proceed to kernel density
estimation and nearest neighbor density estimation, two closely
related methods for density estimation.
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Kernel Density Estimation

The Space-Averaged / Smoothed Density

Consider again samples x from underlying density p(x).

Let R denote a small region containing x.

The probability mass associated with R is given by

P =

∫
R

p(x′)dx′ (2)

Suppose we have n samples x ∈ D. The probability of each sample
falling into R is P .

How will the total number of k points falling into R be distributed?

This will be a binomial distribution:

Pk =

(
n
k

)
P k(1− P )n−k (3)
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Kernel Density Estimation

The Space-Averaged / Smoothed Density

The expected value for k is thus

E [k] = nP (4)

The binomial for k peaks very sharply about the mean. So, we expect
k/n to be a very good estimate for the probability P (and thus for
the space-averaged density).
This estimate is increasingly accurate as n increases.

1
k/n

0.5

1

relative
probability

0

100
5020

P = 0.7

FIGURE 4.1. The relative probability an estimate given by Eq. 4 will yield a particular
value for the probability density, here where the true probability was chosen to be 0.7.
Each curve is labeled by the total number of patterns n sampled, and is scaled to give
the same maximum (at the true probability). The form of each curve is binomial, as
given by Eq. 2. For large n, such binomials peak strongly at the true probability. In the
limit n → ∞, the curve approaches a delta function, and we are guaranteed that our
estimate will give the true probability. From: Richard O. Duda, Peter E. Hart, and David
G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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Kernel Density Estimation

The Space-Averaged / Smoothed Density

Assuming continuous p(x) and that R is so small that p(x) does not
appreciably vary within it, we can write:∫

R
p(x′)dx′ ' p(x)V (5)

where x is a point within R and V is the volume enclosed by R.

After some rearranging, we get the following estimate for p(x)

p(x) ' k

nV
(6)

J. Corso (SUNY at Buffalo) Nonparametric Methods Lecture 6 15 Mar. 2010 12 / 49



Kernel Density Estimation

The Space-Averaged / Smoothed Density

Assuming continuous p(x) and that R is so small that p(x) does not
appreciably vary within it, we can write:∫

R
p(x′)dx′ ' p(x)V (5)

where x is a point within R and V is the volume enclosed by R.

After some rearranging, we get the following estimate for p(x)

p(x) ' k

nV
(6)

J. Corso (SUNY at Buffalo) Nonparametric Methods Lecture 6 15 Mar. 2010 12 / 49



Kernel Density Estimation

Example

Simulated an example of example the density at 0.5 for an underlying
zero-mean, unit variance Gaussian.

Varied the volume used to estimate the density.

Red=1000, Green=2000, Blue=3000, Yellow=4000, Black=5000.
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Kernel Density Estimation Practical Concerns

Practical Concerns

The validity of our estimate depends on two contradictory
assumptions:

1 The region R must be sufficiently small the the density is
approximately constant over the region.

2 The region R must be sufficiently large that the number k of points
falling inside it is sufficient to yield a sharply peaked binomial.

Another way of looking it is to fix the volume V and increase the
number of training samples. Then, the ratio k/n will converge as
desired. But, this will only yield an estimate of the space-averaged
density (P/V ).

We want p(x), so we need to let V approach 0. However, with a
fixed n, R will become so small, that no points will fall into it and
our estimate would be useless: p(x) ' 0.

Note that in practice, we cannot let V to become arbitrarily small
because the number of samples is always limited.
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Kernel Density Estimation Practical Concerns

How can we skirt these limitations when an unlimited number of samples
if available?

To estimate the density at x, form a sequence of regions R1,R2, . . .
containing x with the R1 having 1 sample, R2 having 2 samples and
so on.

Let Vn be the volume of Rn, kn be the number of samples falling in
Rn, and pn(x) be the nth estimate for p(x):

pn(x) =
kn

nVn
(7)

If pn(x) is to converge to p(x) we need the following three conditions

lim
n→∞

Vn = 0 (8)

lim
n→∞

kn = ∞ (9)

lim
n→∞

kn/n = 0 (10)
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Kernel Density Estimation Practical Concerns

limn→∞ Vn = 0 ensures that our space-averaged density will converge
to p(x).

limn→∞ kn = ∞ basically ensures that the frequency ratio will
converge to the probability P (the binomial will be sufficiently
peaked).

limn→∞ kn/n = 0 is required for pn(x) to converge at all. It also says
that although a huge number of samples will fall within the region
Rn, they will form a negligibly small fraction of the total number of
samples.

There are two common ways of obtaining regions that satisfy these
conditions:

1 Shrink an initial region by specifying the volume Vn as some function
of n such as Vn = 1/

√
n. Then, we need to show that pn(x) converges

to p(x). (This is like the Parzen window we’ll talk about next.)
2 Specify kn as some function of n such as kn =

√
n. Then, we grow the

volume Vn until it encloses kn neighbors of x. (This is the
k-nearest-neighbor).

Both of these methods converge...
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Kernel Density Estimation Practical Concerns

n = 1 n = 4 n = 9 n = 16 n = 100

...

...

...

...

Vn =1/ √n

kn = √n

FIGURE 4.2. There are two leading methods for estimating the density at a point, here
at the center of each square. The one shown in the top row is to start with a large volume
centered on the test point and shrink it according to a function such as Vn = 1/

√
n. The

other method, shown in the bottom row, is to decrease the volume in a data-dependent
way, for instance letting the volume enclose some number kn = √

n of sample points.
The sequences in both cases represent random variables that generally converge and
allow the true density at the test point to be calculated. From: Richard O. Duda, Peter
E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley &
Sons, Inc.
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Kernel Density Estimation Parzen Windows

Parzen Windows

Let’s temporarily assume the region R is a d-dimensional hypercube
with hn being the length of an edge.

The volume of the hypercube is given by

Vn = hd
n . (11)

We can derive an analytic expression for kn:

Define a windowing function:

ϕ(u) =

{
1 |uj | ≤ 1/2 j = 1, . . . , d

0 otherwise
(12)

This windowing function ϕ defines a unit hypercube centered at the
origin.
Hence, ϕ((x− xi)/hn) is equal to unity if xi falls within the hypercube
of volume Vn centered at x, and is zero otherwise.
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Kernel Density Estimation Parzen Windows

The number of samples in this hypercube is therefore given by

kn =
n∑

i=1

ϕ

(
x− xi

hn

)
. (13)

Substituting in equation (7), pn(x) = kn/(nVn) yields the estimate

pn(x) =
1

n

n∑
i=1

1

Vn
ϕ

(
x− xi

hn

)
. (14)

Hence, the windowing function ϕ, in this context called a Parzen
window, tells us how to weight all of the samples in D to determine
p(x) at a particular x.
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Kernel Density Estimation Parzen Windows

Example

∆ = 0.04

0 0.5 1
0

5

∆ = 0.08

0 0.5 1
0

5

∆ = 0.25

0 0.5 1
0

5

h = 0.005

0 0.5 1
0

5

h = 0.07

0 0.5 1
0

5

h = 0.2

0 0.5 1
0

5

But, what undesirable trait from histograms are inherited by Parzen
window density estimates of the form we’ve just defined?

Discontinuities...
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Kernel Density Estimation Parzen Windows

Generalizing the Kernel Function

What if we allow a more general class of windowing functions rather
than the hypercube?

If we think of the windowing function as an interpolator, rather than
considering the window function about x only, we can visualize it as a
kernel sitting on each data sample xi in D.

And, if we require the following two conditions on the kernel function
ϕ, then we can be assured that the resulting density pn(x) will be
proper: non-negative and integrate to 1.

ϕ(x) ≥ 0 (15)∫
ϕ(u)du = 1 (16)

For our previous case of Vn = hd
n, then it follows pn(x) will also

satisfy these conditions.
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Kernel Density Estimation Parzen Windows

Example: A Univariate Guassian Kernel

A popular choice of the kernel is the Gaussian kernel:

ϕh(u) =
1√
2π

exp

[
−1

2
u2

]
(17)

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7
-100

-60

-40

-20

θ 

l(θ )

θ  

θ  
0.4 x 10-7

0.8 x 10-7

1.2 x 10-7

θ 

p(D|θ )

x

-80

ˆ

ˆ

FIGURE 3.1. The top graph shows several training points in one dimension, known or
assumed to be drawn from a Gaussian of a particular variance, but unknown mean.
Four of the infinite number of candidate source distributions are shown in dashed
lines. The middle figure shows the likelihood p(D|θ) as a function of the mean. If we
had a very large number of training points, this likelihood would be very narrow. The
value that maximizes the likelihood is marked θ̂ ; it also maximizes the logarithm of
the likelihood—that is, the log-likelihood l(θ), shown at the bottom. Note that even
though they look similar, the likelihood p(D|θ) is shown as a function of θ whereas the
conditional density p(x|θ) is shown as a function of x. Furthermore, as a function of θ ,
the likelihood p(D|θ) is not a probability density function and its area has no signifi-
cance. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c© 2001 by John Wiley & Sons, Inc.

The resulting density is given by:

p(x) =
1

n

n∑
i=1

1

hn

√
2π

exp

[
− 1

2h2
n

(x− xi)
2

]
(18)

It will give us smoother estimates without the discontinuites from the
hypercube kernel.
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Kernel Density Estimation Parzen Windows

Effect of the Window Width
Slide I

An important question is what effect does the window width hn have
on pn(x)?

Define δn(x) as

δn(x) =
1

Vn
ϕ

(
x
hn

)
(19)

and rewrite pn(x) as the average

pn(x) =
1

n

n∑
i=1

δn(x− xi) (20)
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Kernel Density Estimation Parzen Windows

Effect of the Window Width
Slide II

hn clearly affects both the amplitude and the width of δn(x).
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FIGURE 4.3. Examples of two-dimensional circularly symmetric normal Parzen win-
dows for three different values of h. Note that because the δ(x) are normalized, different
vertical scales must be used to show their structure. From: Richard O. Duda, Peter E.
Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley &
Sons, Inc.
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FIGURE 4.4. Three Parzen-window density estimates based on the same set of five samples, using the window
functions in Fig. 4.3. As before, the vertical axes have been scaled to show the structure of each distribution.
From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John
Wiley & Sons, Inc.
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From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John
Wiley & Sons, Inc.
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Kernel Density Estimation Parzen Windows

Effect of Window Width (And, hence, Volume Vn)

But, for any value of hn, the distribution is normalized:∫
δ(x− xi)dx =

∫
1

Vn
ϕ

(
x− xi

hn

)
dx =

∫
ϕ(u)du = 1 (21)

If Vn is too large, the estimate will suffer from too little resolution.

If Vn is too small, the estimte will suffer from too much variability.

In theory (with an unlimited number of samples), we can let Vn slowly
approach zero as n increases and then pn(x) will converge to the
unknown p(x). But, in practice, we can, at best, seek some
compromise.
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Kernel Density Estimation Parzen Windows

Example: Revisiting the Univariate Guassian Kernel

-2 0 2 -2 0 2 -2 0 2

h1 = 1 h1 = 0.5 h1 = 0.1
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n = 1

n = 10

-2 0 2 -2 0 2 -2 0 2

-2 0 2 -2 0 2 -2 0 2

n = 100

n = ∞

FIGURE 4.5. Parzen-window estimates of a univariate normal density using different
window widths and numbers of samples. The vertical axes have been scaled to best
show the structure in each graph. Note particularly that the n = ∞ estimates are the
same (and match the true density function), regardless of window width. From: Richard
O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001
by John Wiley & Sons, Inc.
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Kernel Density Estimation Parzen Windows

Example: A Bimodal Distribution
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FIGURE 4.7. Parzen-window estimates of a bimodal distribution using different window
widths and numbers of samples. Note particularly that the n = ∞ estimates are the same
(and match the true distribution), regardless of window width. From: Richard O. Duda,
Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John
Wiley & Sons, Inc.
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Kernel Density Estimation Parzen Windows

Parzen Window-Based Classifiers

Estimate the densities for each category.

Classify a query point by the label corresponding to the maximum
posterior (i.e., one can include priors).

As you guessed it, the decision regions for a Parzen window-based
classifier depend upon the kernel function.

x1

x2

x1

x2

FIGURE 4.8. The decision boundaries in a two-dimensional Parzen-window di-
chotomizer depend on the window width h. At the left a small h leads to boundaries
that are more complicated than for large h on same data set, shown at the right. Appar-
ently, for these data a small h would be appropriate for the upper region, while a large
h would be appropriate for the lower region; no single window width is ideal over-
all. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c© 2001 by John Wiley & Sons, Inc.
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Kernel Density Estimation Parzen Windows

Parzen Window-Based Classifiers

During training, we can made the error arbitrarily low by making the
window sufficiently small, but this will have an ill-effect during testing
(which is our ultimate need).

Think of any possibilities for system rules of choosing the kernel?

One possibility is to use cross-validation. Break up the data into a
training set and a validation set. Then, perform training on the
training set with varying bandwidths. Select the bandwidth that
minimizes the error on the validation set.

There is little theoretical justification for choosing one window width
over another.
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Kernel Density Estimation k Nearest Neighbors

kn Nearest Neighbor Methods

Selecting the best window / bandwidth is a severe limiting factor for
Parzen window estimators.

kn-NN methods circumvent this problem by making the window size a
function of the actual training data.

The basic idea here is to center our window around x and let it grow
until it capture kn samples, where kn is a function of n.

These samples are the kn nearest neighbors of x.
If the density is high near x then the window will be relatively small
leading to good resolution.
If the density is low near x, the window will grow large, but it will stop
soon after it enters regions of higher density.

In either case, we estimate pn(x) according to

pn(x) =
kn

nVn
(22)
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Kernel Density Estimation k Nearest Neighbors

pn(x) =
kn

nVn

We want kn to go to infinity as n goes to infinity thereby assuring us
that kn/n will be a good estimate of the probability that a point will
fall in the window of volume Vn.

But, we also want kn to grow sufficiently slowly so that the size of
our window will go to zero.

Thus, we want kn/n to go to zero.

Recall these conditions from the earlier discussion; these will ensure
that pn(x) converges to p(x) as n approaches infinity.
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Kernel Density Estimation k Nearest Neighbors

Examples of kn-NN Estimation

Notice the discontinuities in the slopes of the estimate.

x

p(x)

3 5

FIGURE 4.10. Eight points in one dimension and the k-nearest-neighbor density esti-
mates, for k = 3 and 5. Note especially that the discontinuities in the slopes in the
estimates generally lie away from the positions of the prototype points. From: Richard
O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001
by John Wiley & Sons, Inc.

0

p(x)

x1

x2

FIGURE 4.11. The k-nearest-neighbor estimate of a two-dimensional density for k = 5.
Notice how such a finite n estimate can be quite “jagged,” and notice that disconti-
nuities in the slopes generally occur along lines away from the positions of the points
themselves. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classifi-
cation. Copyright c© 2001 by John Wiley & Sons, Inc.
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Kernel Density Estimation k Nearest Neighbors

k-NN Estimation From 1 Sample

We don’t expect the density estimate from 1 sample to be very good,
but in the case of k-NN it will diverge!

With n = 1 and kn =
√

n = 1, the estimate for pn(x) is

pn(x) =
1

2|x− x1|
(23)
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Kernel Density Estimation k Nearest Neighbors

But, as we increase the number of samples, the estimate will improve.

0 1 2 3 4

1

0 1 2 3 4

1

0 1 2 3 4

1

0 1 2 3 4

1

0 1 2 3 4

1

0 1 2 3 4

1

0 1 2 3 4

1

0 1 2 3 4

1

n=1

kn=1

n=16

kn=4

n=256

kn=16

n= ∞
kn= ∞

FIGURE 4.12. Several k-nearest-neighbor estimates of two unidimensional densities:
a Gaussian and a bimodal distribution. Notice how the finite n estimates can be quite
“spiky.” From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c© 2001 by John Wiley & Sons, Inc.
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Kernel Density Estimation k Nearest Neighbors

Limitations

The kn-NN Estimator suffers from an analogous flaw from which the
Parzen window methods suffer. What is it?

How do we specify the kn?

We saw earlier that the specification of kn can lead to radically
different density estimates (in practical situations where the number
of training samples is limited).

One could obtain a sequence of estimates by taking kn = k1
√

n and
choose different values of k1.

But, like the Parzen window size, one choice is as good as another
absent any additional information.

Similarly, in classification scenarios, we can base our judgement on
classification error.

J. Corso (SUNY at Buffalo) Nonparametric Methods Lecture 6 15 Mar. 2010 35 / 49



Kernel Density Estimation k Nearest Neighbors

Limitations

The kn-NN Estimator suffers from an analogous flaw from which the
Parzen window methods suffer. What is it?

How do we specify the kn?

We saw earlier that the specification of kn can lead to radically
different density estimates (in practical situations where the number
of training samples is limited).

One could obtain a sequence of estimates by taking kn = k1
√

n and
choose different values of k1.

But, like the Parzen window size, one choice is as good as another
absent any additional information.

Similarly, in classification scenarios, we can base our judgement on
classification error.

J. Corso (SUNY at Buffalo) Nonparametric Methods Lecture 6 15 Mar. 2010 35 / 49



Kernel Density Estimation k Nearest Neighbors

Limitations

The kn-NN Estimator suffers from an analogous flaw from which the
Parzen window methods suffer. What is it?

How do we specify the kn?

We saw earlier that the specification of kn can lead to radically
different density estimates (in practical situations where the number
of training samples is limited).

One could obtain a sequence of estimates by taking kn = k1
√

n and
choose different values of k1.

But, like the Parzen window size, one choice is as good as another
absent any additional information.

Similarly, in classification scenarios, we can base our judgement on
classification error.

J. Corso (SUNY at Buffalo) Nonparametric Methods Lecture 6 15 Mar. 2010 35 / 49



Kernel Density Estimation k Nearest Neighbors

Limitations

The kn-NN Estimator suffers from an analogous flaw from which the
Parzen window methods suffer. What is it?

How do we specify the kn?

We saw earlier that the specification of kn can lead to radically
different density estimates (in practical situations where the number
of training samples is limited).

One could obtain a sequence of estimates by taking kn = k1
√

n and
choose different values of k1.

But, like the Parzen window size, one choice is as good as another
absent any additional information.

Similarly, in classification scenarios, we can base our judgement on
classification error.

J. Corso (SUNY at Buffalo) Nonparametric Methods Lecture 6 15 Mar. 2010 35 / 49



Kernel Density Estimation k Nearest Neighbors

Limitations

The kn-NN Estimator suffers from an analogous flaw from which the
Parzen window methods suffer. What is it?

How do we specify the kn?

We saw earlier that the specification of kn can lead to radically
different density estimates (in practical situations where the number
of training samples is limited).

One could obtain a sequence of estimates by taking kn = k1
√

n and
choose different values of k1.

But, like the Parzen window size, one choice is as good as another
absent any additional information.

Similarly, in classification scenarios, we can base our judgement on
classification error.

J. Corso (SUNY at Buffalo) Nonparametric Methods Lecture 6 15 Mar. 2010 35 / 49



Kernel Density Estimation Kernel Density-Based Classification

k-NN Posterior Estimation for Classification

We can directly apply the k-NN methods to estimate the posterior
probabilities P (ωi|x) from a set of n labeled samples.

Place a window of volume V around x and capture k samples, with
ki turning out to be of label ωi.

The estimate for the joint probability is thus

pn(x, ωi) =
ki

nV
(24)

A reasonable estimate for the posterior is thus

Pn(ωi|x) =
pn(x, ωi)∑
c pn(x, ωc)

=
ki

k
(25)

Hence, the posterior probability for ωi is simply the fraction of
samples within the window that are labeled ωi. This is a simple and
intuitive result.
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Example: Figure-Ground Discrimination

Example: Figure-Ground Discrimination
Source: Zhao and Davis. Iterative Figure-Ground Discrimination. ICPR 2004.

Figure-ground discrimination is an important low-level vision task.

Want to separate the pixels that contain some foreground object
(specified in some meaningful way) from the background.

Iterative Figure-Ground Discrimination

Liang Zhao and Larry S. Davis
UMIACS

University of Maryland
College Park, MD, USA

Abstract

Figure-ground discrimination is an important problem
in computer vision. Previous work usually assumes that the
color distribution of the figure can be described by a low
dimensional parametric model such as a mixture of Gaus-
sians. However, such approach has difficulty selecting the
number of mixture components and is sensitive to the ini-
tialization of the model parameters. In this paper, we em-
ploy non-parametric kernel estimation for color distribu-
tions of both the figure and background. We derive an iter-
ative Sampling-Expectation (SE) algorithm for estimating
the color distribution and segmentation. There are several
advantages of kernel-density estimation. First, it enables
automatic selection of weights of different cues based on
the bandwidth calculation from the image itself. Second, it
does not require model parameter initialization and estima-
tion. The experimental results on images of cluttered scenes
demonstrate the effectiveness of the proposed algorithm.

1. Introduction

Figure-ground discrimination is an important low-level
computer vision process. It separates the foreground fig-
ure from the background. In this way, the amount of data
to be processed is reduced and the signal to noise ratio is
improved.

Previous work on figure-ground discrimination can be
classified into two categories. One is pairwise grouping ap-
proach; the other is central grouping approach. The pair-
wise grouping approach represents the perceptual informa-
tion and grouping evidence by graphs, in which the vertices
are the image features (edges, pixels, etc) and the arcs carry
the grouping information. The grouping is based on mea-
sures of similarity between pairs of image features. Early
work in this category [1, 2] focused on performing figure-
ground discrimination on sparse features such as edges or
line segments and did not make good use of region and
color information. Later, Shi and Malik [3] developed

Figure 1. An example of iterative figure-
ground discrimination

a normalized-cut mechanism for partitioning a graph into
groups. They perform grouping directly at the pixel-level,
which is computationally expensive for dense graphs. If the
number of pairs is restricted, then a foreground object may
be segmented into multiple pieces.

In contrast, the central grouping approach works by com-
paring all pixels to a small number of cluster centers; exam-
ples include k-means [6], and EM clustering [4, 5] with a
mixture of Gaussians. Central grouping methods tend to
be computationally more efficient, but are sensitive to ini-
tialization and require appropriate selection of the number
of mixture components. The Minimum Description Length
Principle [4] is a common way for selecting the number of
mixture components. Our experiments however have shown
that finding a good initialization for the traditional EM al-
gorithm remains a difficult problem.

To avoid the drawback of traditional EM algorithm, we
propose a non-parametric kernel estimation method which
represents the feature distribution of each cluster with a set
of sampled pixels. An iterative sampling-expectation (SE)
algorithm is developed for segmenting the figure from back-
ground. The input of the algorithm is the region of interest
of an image provided by the user or another algorithm. We
assume the figure is in the center of the region and initialize
its shape with a Gaussian distribution. Then the segmenta-
tion is refined through the competition between the figure
and ground. This is an adaptive soft labeling procedure (see

0-7695-2128-2/04 $20.00 (C) 2004 IEEE
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Example: Figure-Ground Discrimination

Example: Figure-Ground Discrimination
Source: Zhao and Davis. Iterative Figure-Ground Discrimination. ICPR 2004.

This paper presents a method for figure-ground discrimination based
on non-parametric densities for the foreground and background.

They use a subset of the pixels from each of the two regions.

They propose an algorithm called iterative sampling-expectation
for performing the actual segmentation.

The required input is simply a region of interest (mostly) containing
the object.
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Example: Figure-Ground Discrimination

Example: Figure-Ground Discrimination
Source: Zhao and Davis. Iterative Figure-Ground Discrimination. ICPR 2004.

Given a set of n samples S = {xi} where each xi is a d-dimensional
vector.

We know the kernel density estimate is defined as

p̂(y) =
1

nσ1 . . . σd

n∑
i=1

d∏
j=1

ϕ

(
yj − xij

σj

)
(26)

where the same kernel ϕ with different bandwidth σj is used in each
dimension.
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Example: Figure-Ground Discrimination

The Representation
Source: Zhao and Davis. Iterative Figure-Ground Discrimination. ICPR 2004.

The representation used here is a function of RGB:

r = R/(R + G + B) (27)

g = G/(R + G + B) (28)

s = (R + G + B)/3 (29)

Separating the chromaticity from the brightness allows them to us a
wider bandwidth in the brightness dimension to account for variability
due to shading effects.

And, much narrower kernels can be used on the r and g chromaticity
channels to enable better discrimination.
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Example: Figure-Ground Discrimination

The Color Density
Source: Zhao and Davis. Iterative Figure-Ground Discrimination. ICPR 2004.

Given a sample of pixels S = {xi = (ri, gi, si)}, the color density
estimate is given by

P̂ (x = (r, g, s)) =
1

n

n∑
i=1

Kσr(r − ri)Kσg(g − gi)Kσs(s− si) (30)

where we have simplified the kernel definition:

Kσ(t) =
1

σ
ϕ

(
t

σ

)
(31)

They use Gaussian kernels

Kσ(t) =
1√
2πσ

exp

[
−1

2

(
t

σ

)2
]

(32)

with a different bandwidth in each dimension.
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Example: Figure-Ground Discrimination

Data-Driven Bandwidth
Source: Zhao and Davis. Iterative Figure-Ground Discrimination. ICPR 2004.

The bandwidth for each channel is calculated directly from the image
based on sample statistics.

σ ≈ 1.06σ̂n−1/5 (33)

where σ̂2 is the sample variance.
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Example: Figure-Ground Discrimination

Initialization: Choosing the Initial Scale
Source: Zhao and Davis. Iterative Figure-Ground Discrimination. ICPR 2004.

For initialization, they compute a distance between the foreground
and background distribution by varying the scale of a single Gaussian
kernel (on the foreground).

To evaluate the “significance” of a particular scale, they compute the
normalized KL-divergence:

nKL(P̂fg||P̂bg) =
−

∑n
i=1 P̂fg(xi) log

P̂fg(xi)

P̂bg(xi)∑n
i=1 P̂fg(xi)

(34)

where P̂fg and P̂bg are the density estimates for the foreground and
background regions respectively. To compute each, they use about
6% of the pixels (using all of the pixels would lead to quite slow
performance).

J. Corso (SUNY at Buffalo) Nonparametric Methods Lecture 6 15 Mar. 2010 43 / 49



Example: Figure-Ground Discrimination

Figure 2. Segmentation results at different
scales

where ���� and ��	� are the PDFs of the figure and ground
respectively, and �� is a sampled pixel in � � ����.

3. The Iterative Sampling - Expectation algo-
rithm

We assume that the pixels in an image were generated
by two processes — the figure and ground processes. Then
the figure-ground discrimination problem involves assign-
ing each pixel to the process that generated it. If we knew
the probability density functions of the two processes, then
we could assign each pixel to the process with the maximum
likelihood. Likewise, if we knew the assignment of each
pixel, then we could estimate the probability density func-
tions of the two processes. This chicken-and-egg problem
suggests an iterative framework for computing the segmen-
tation. Unlike the traditional EM algorithm which assumes
mixtured Gaussian models, we employ the kernel density
estimation to approximate the color density distribution of
each process. A set of pixels are sampled from the image for
kernel density estimation. Thus, the maximization step in
the EM algorithm is replaced with the sampling step. This
gives the basic structure of an iterative sampling- expecta-
tion (SE) algorithm:

1. Start with a Gaussian spatial distribution for all pix-
els in the image. We select the scale of the initial
Gaussian distribution which maximizes the normalized
KL-divergence given in Eq. (3). Fig. 2 demonstrates
that we can obtain the correct segmentation at the right
scale.

2. S step: uniformly sample a set of pixels from the image
for kernel density estimation.

Figure 3. Sensitivity to the initial location of
the center of the distribution

Figure 4. Compare the sensitivity of the SE
and EM methods to initialization

3. E step: re-assign pixels to the two processes based on
maximum likelihood estimation.

4. Repeat steps 2 and 3 until the segmentation becomes
stable.

Since the assignments of pixels are soft, we cannot use
the kernel density estimation in Eq. (1) directly. Instead we
design a weighted kernel density estimation and make use
of the samples from both the foreground and background.
Given a set of samples � � ���� from the whole image, we
estimate the probabilities of a pixel belonging to the fore-
ground and background by first calculating the following
two values

������ �

��

���

��������

��

���

	�
�� � ���

��
�� (4)

�	���� �

��

���

��	�����

��

���

	�
�� � ���

��
�� (5)

where� is the number of samples ( we use �� of the pixels
in the image) and � is the dimension of the feature space.
Through normalization we get the soft assignments of each
pixel to the foreground and background:

���� � �������� � �	��� (6)

��	� � �	������ � �	��� (7)
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Example: Figure-Ground Discrimination

Iterative Sampling-Expectation Algorithm
Source: Zhao and Davis. Iterative Figure-Ground Discrimination. ICPR 2004.

Given the initial segmentation, they need to refine the models and
labels to adapt better to the image.

However, this is a chicken-and-egg problem. If we know the labels, we
could compute the models, and if we knew the models, we could
compute the best labels.

They propose an EM algorithm for this. The basic idea is to alternate
between estimating the probability that each pixel is of the two
classes, and then given this probability to refine the underlying
models.

EM is guaranteed to converge (but only to a local minimum).
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Example: Figure-Ground Discrimination

1 Initialize using the normalized KL-divergence.

2 Uniformly sample a set of pixel from the image to use in the kernel
density estimation. This is essentially the ‘M’ step (because we have
a non-parametric density).

3 Update the pixel assignment based on maximum likelihood (the ‘E’
step).

4 Repeat until stable.

One can use a hard assignment of the pixels and the kernel density
estimator we’ve discussed, or a soft assignment of the pixels and then
a weighted kernel density estimate (the weight is between the
different classes).

The overall probability of a pixel belonging to the foreground class

P̂fg(y) =
1

Z

n∑
i=1

P̂fg(xi)
d∏

j=1

K

(
yj − xij

σj

)
(35)
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Example: Figure-Ground Discrimination

Results: Stability
Source: Zhao and Davis. Iterative Figure-Ground Discrimination. ICPR 2004.

Figure 2. Segmentation results at different
scales

where ���� and ��	� are the PDFs of the figure and ground
respectively, and �� is a sampled pixel in � � ����.

3. The Iterative Sampling - Expectation algo-
rithm

We assume that the pixels in an image were generated
by two processes — the figure and ground processes. Then
the figure-ground discrimination problem involves assign-
ing each pixel to the process that generated it. If we knew
the probability density functions of the two processes, then
we could assign each pixel to the process with the maximum
likelihood. Likewise, if we knew the assignment of each
pixel, then we could estimate the probability density func-
tions of the two processes. This chicken-and-egg problem
suggests an iterative framework for computing the segmen-
tation. Unlike the traditional EM algorithm which assumes
mixtured Gaussian models, we employ the kernel density
estimation to approximate the color density distribution of
each process. A set of pixels are sampled from the image for
kernel density estimation. Thus, the maximization step in
the EM algorithm is replaced with the sampling step. This
gives the basic structure of an iterative sampling- expecta-
tion (SE) algorithm:

1. Start with a Gaussian spatial distribution for all pix-
els in the image. We select the scale of the initial
Gaussian distribution which maximizes the normalized
KL-divergence given in Eq. (3). Fig. 2 demonstrates
that we can obtain the correct segmentation at the right
scale.

2. S step: uniformly sample a set of pixels from the image
for kernel density estimation.

Figure 3. Sensitivity to the initial location of
the center of the distribution

Figure 4. Compare the sensitivity of the SE
and EM methods to initialization

3. E step: re-assign pixels to the two processes based on
maximum likelihood estimation.

4. Repeat steps 2 and 3 until the segmentation becomes
stable.

Since the assignments of pixels are soft, we cannot use
the kernel density estimation in Eq. (1) directly. Instead we
design a weighted kernel density estimation and make use
of the samples from both the foreground and background.
Given a set of samples � � ���� from the whole image, we
estimate the probabilities of a pixel belonging to the fore-
ground and background by first calculating the following
two values

������ �

��

���

��������

��

���

	�
�� � ���

��
�� (4)

�	���� �

��

���

��	�����

��

���

	�
�� � ���

��
�� (5)

where� is the number of samples ( we use �� of the pixels
in the image) and � is the dimension of the feature space.
Through normalization we get the soft assignments of each
pixel to the foreground and background:

���� � �������� � �	��� (6)

��	� � �	������ � �	��� (7)
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Example: Figure-Ground Discrimination

Results
Source: Zhao and Davis. Iterative Figure-Ground Discrimination. ICPR 2004.

Figure 5. Examples of figure-ground discrim-
ination results: SE vs. EM

The above equations update the assignments of a pixel by
integrating evidence from the samples in its neighborhood.
To obtain the final segmentation, we assign a pixel to the
foreground if ���� � ��	� , otherwise to the background. In
this way, we let the figure and ground processes “compete”
to explain the pixel data.

4. Experiments

We did experiments to test the sensitivity of the SE al-
gorithm to the initial distribution. We shift the center of the
initial Gaussian distribution off the center of the image and
compare the results with the one obtained by locating the
distribution at the image center. Fig. 3 indicates that the av-
erage assignment error at each pixel is less than ��� when
the shift is less than 10 pixels or 12% of the figure size.

To test how sensitive the SE algorithm is to the initial
sampling, we ran the SE algorithm over the same image
several times. Fig. 4 illustrates that the results are very
stable. In comparison, we ran the traditional EM algorithm
over the same image with three mixtured Gaussians for the
figure and three for the background. When initializing the
cluster centers at different places, we obtained very different
segmentation results as shown in Fig. 4.

We further compared the SE algorithm with a more so-
phisticated EM algorithm proposed by Carson et. al. [4]. In
[4], the Minimum Description Length principle is used to
select the number of mixture models. Fig. 5 demonstrates
that the EM algorithm tends to merge the figure with part of
the background, while our algorithm gives better segmenta-
tion results.

5. Conclusion

In this paper, we present a novel segmentation method
for figure-ground discrimination. The use of kernel density
estimation for color distribution enables automatic selection
of weights of different cues based on the bandwidth calcu-
lation from the image itself. The size and shape of the fig-
ure are determined adaptively by the competition between
the figure and background using the iterative sampling-
expectation algorithm. Consequently, the combination of
kernel density estimation for color distribution and the it-
erative sampling-expectation algorithm have resulted in en-
couraging segmentation results.
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