Pattern Recognition in Mobile Robotics
CSE 455/555 Introduction to Pattern Recognition

Dr. Julian Ryde

SUNY at Buffalo

January 21, 2011
A more realistic set of motivating application examples based in Mobile Robotics

- Motivations for mobile robotics
- Challenges of mobile robotics
- Examples involving pattern recognition
- Not going to talk about Industrial/static robotics
 - Even thought there are many applications of pattern recognition in this area of robotics
What is Robotics?

- Definitions
 - Intelligent connection of perception to action
- Perception - Acquisition and interpretation of sensor data
- Intelligence?
 - Decision making
 - Learning
- Actuation - Effecting changes in the physical world
 - Locomotion
 - Manipulation
- Roles of pattern recognition in robotics
 - Pattern recognition also has a role to play in intelligence
 - Pattern recognition forms part of the interpretation
Robotics Areas

- **Static**
 - Industrial robotics
 - Controlled environments
 - More commercially successful

- **Mobile**

- **Indoor Robotics**
 - Personal robotics
 - Office robots
 - Remote telepresence
 - Domestic robots
 - Roomba - most successful consumer mobile robot?

- **Field Robotics**
 - Mining
 - Military

- **Health care**
 - Home care for the elderly (Especially Japan)

- Wherever it is Dirty, Dull or Dangerous
Willow Garage

- Long term funded company that does not need to make a profit
- Adheres to the open source development model
- Robot Operating System (ROS)
- OpenCV
 - Computer Vision
 - Machine Learning algorithms
- PR2 Robot
 - PR2 Beta Overview Video
Sensors

- Internal sensors
 - Global position system - GPS
 - Inertial Measurement Unit - IMU

- Vision based
 - Standard Cameras
 - Omnidirectional

- Range sensors
 - Time of flight
 - Triangulation based
 - Structured light
 - Stereo vision
 - Ultrasonic

- Kinect
 - Structured light 3D depth sensor
 - Returns RGBD - Red, Green, Blue and Depth
 - Inexpensive at 150$
Pattern Recognition in 3D Data versus Pictures

- More difficult for humans
- More suitable for computers?
 - 3D data is more independent of observer position
 - Many objects are rigid or articulated so 3D shape is important and invariant
 - For features invariant is good
 - implies reliable/repeatable extraction
- Camera images susceptible to
 - illumination changes
 - loss of information in conversion from 3D to 2D
Considerations specific to mobile robotics

- **Autonomy**
 - There can be no guarantee of continuous connection. Therefore a certain level of autonomy is required for reliable continuous operation.

- **Power consumption**
 - Restricted processing power
 - Especially for indoor and smaller robots that run on batteries

- **Real-time constraints**
 - Pedestrian recognition has to be fast and reliable for automotive applications
 - Batch algorithms not really suitable
 - For long term operation robot ultimately has to process data as fast as it receives it.
Localisation and Mapping

- Localisation
 - For most applications need to have an awareness of location
 - Augment the robots workspace with features
 - Possible but expensive for factories and other controlled environments

- Mapping
 - Learning a model of the operating workspace/environment
 - Aids localisation
 - Aids path planning

- Simultaneous Localisation and Mapping (SLAM)
 - The process of both inferring location from a map whilst simultaneously updating the map with new observed information.
Simultaneous Localisation and Mapping (SLAM)

- SLAM is vital for indoor robots
 - Interestingly not used for the iRobot Roomba
- Outside not as necessary where GPS coverage is available
- Various flavours of SLAM
 - Metric
 - Topological
- Matching
 - 2D/3D scan matching
 - Image
Loop Closing

- Closing of an open loop in a large (80m by 25m) cyclic environment from Konolige and Gutmann (1999)
- Improving map accuracy through loop closing
 - Have I been here before?
 - Recognising previously visited locations
Scan matching

- Two scans taken from different poses
- Find features present in each scan
- Determine the correspondence between features
- Use this information to align the scans
- This gives the pose change between scans
- Much research done with 2D range scans
- Example with 3D scans or an indoor environment
 - Scan matching Illustration
3D mapping indoors

- 3D map fly around video
Probabilistic robotics

- Return not only an answer but some idea of the probability distribution
 - For example, the pose distribution can be multimodal
 - Many ways of representing these probability density functions
 - Thus you have some idea of how likely the result is to be correct

- Algorithms in robotics need to be robust
 - Robust statistics e.g. median
 - contrast with sufficient statistics
 - Insensitive to outliers
 - Sufficient statistics e.g. mean
 - Mathematically analytic
 - Computational convenient
 - Sensitive to outliers
DARPA Grand and Urban Challenges

- **Grand Challenge**
 - $2 million Prize awarded to Stanford Racing Team
 - 132 mile desert course in just under 7 hours

- **Urban challenge**
 - Follow on from the easier grand challenge
 - Autonomous vehicle drive through an urban environment
 - Drive in traffic
 - Maneuvers merging, passing, parking, negotiating intersections
 - Featured the first autonomous car crash
 - Reliable perception and interpretation vital
 - Final highlights
 - DARPA Urban challenge highlights video

- **Key Enablers**
 - Velodyne 3D laser scanner
 - Near to far learning
Learning for mobile autonomous systems

- Pattern recognition enables systems to learn and generalise from new data.
- Interaction with humans provides plenty of opportunity for supervised learning.
- Amazon’s mechanical turk
 - Humans working for the robots!
- DARPA urban challenge videos
 - near to far learning in images e.g. using laser data and corresponding vision results to train and so classify far image pixels.
- Self supervised learning
 - Training data might arrives at a later time for some cases
 - Training data provided by others sensors
 - e.g. Near to far learning
Near to Far Learning

- Image and research from Raia Hadsell
- Online machine learning
 - Either laser or stereo provides reliable near range 5m classification (driveable or not based on smoothness)
 - Then used as training data for appearance based classifier for pixels beyond 5m
Solutions in Perception Challenge

- **Goal**
 - Rigid objects recognized and their 6DOF pose determined with the Kinect sensor

- **Kinect sensor**
- Best solutions likely to combine conventional image information with depth information
- Ideal opportunity to put into practice what you learn in this course
Field robotics

- Work undertaken at the Australian Commonwealth Scientific and Industrial Research Organisation (CSIRO)

- Autonomous earth moving
Autonomous Skid Steer loader (Bobcat)

- Earth moving task
 - Move soil material from one location to another
- Ultimate goal is the design the terrain you want in a CAD package and have it replicated in the physical world by autonomous excavation and earth moving machines
Reliable Human/Novelty Detection

- Learn the operational environment
- Highlight those areas that have changed
- Essential for safety reasons
 - If unknown objects detected or the environment has been tampered with need to potentially stop operation
- Handle noise, how much variation constitutes change?
Some active research questions related to Pattern Recognition

- **SLAM**
 - Monocular camera based visual SLAM
 - SLAM with RGBD sensors
- **Correspondence problem**
 - Finding corresponding points in multiple images
 - For stereo vision
- **Object recognition in 3D data**
 - 3D shape based retrieve and lookup
 - View and occlusion invariant hashing
 - Locality sensitive hashing
- **Object recognition from a moving camera sensor**
 - Different to object recognition in random images
 - Background subtraction for moving cameras
Recap

- What is (mobile) robotics?
- Example applications involving pattern recognition
 - Localisation
 - Mapping
 - Scan matching
 - Loop closing
 - Terrain classification for path planning
 - Near to far learning
 - Self supervised machine learning
- Field robotics
 - Autonomous Earth moving
- Current work in the research community
- Solutions in Perception Challenge
What is holding back mobile robotics?

- Was the lack of low cost depth sensors, but now with the Kinect?
- Low cost manipulator platforms? The PR2 is $400,000

Motivated by the recent debut of the Kinect how can existing computer vision pattern recognition algorithms be applied to RGBD data?