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Figure-ground discrimination is an important problem E m
in computer vision. Previous work usually assumes that the P — p— —

color distribution of the figure can be described by a low
dimensional parametric model such as a mixture of Gaus-
sians. However, such approach has difficulty selecting the
number of mixture components and is sensitive to the ini-
tialization of the model parameters. In this paper, we em-
ploy non-parametric kernel estimation for color distribu-
tions of both the figure and background. We derive an iter-
ative Sampling-Expectation (SE) algorithm for estimating
the color distribution and segmentation. There are several
advantages of kernel-density estimation. First, it enables
automatic selection of weights of different cues based on
the bandwidth calculation from the image itself. Second, it
does not require model parameter initialization and estima-
tion. The experimental results on images of cluttered scenes
demonstrate the effectiveness of the proposed algorithm.

1. Introduction

Figure-ground discrimination is an important low-level
computer vision process. It separates the foreground fig-
ure from the background. In this way, the amount of data
to be processed is reduced and the signal to noise ratio is
improved.

Previous work on figure-ground discrimination can be
classified into two categories. One is pairwise grouping ap-
proach; the other is central grouping approach. The pair-
wise grouping approach represents the perceptual informa-
tion and grouping evidence by graphs, in which the vertices
are the image features (edges, pixels, etc) and the arcs carry
the grouping information. The grouping is based on mea-
sures of similarity between pairs of image features. Early
work in this category [1, 2] focused on performing figure-
ground discrimination on sparse features such as edges or
line segments and did not make good use of region and
color information. Later, Shi and Malik [3] developed
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Figure 1. An example of iterative figure-
ground discrimination

a normalized-cut mechanism for partitioning a graph into
groups. They perform grouping directly at the pixel-level,
which is computationally expensive for dense graphs. If the
number of pairs is restricted, then a foreground object may
be segmented into multiple pieces.

In contrast, the central grouping approach works by com-
paring all pixels to a small number of cluster centers; exam-
ples include k-means [6], and EM clustering [4, 5] with a
mixture of Gaussians. Central grouping methods tend to
be computationally more efficient, but are sensitive to ini-
tialization and require appropriate selection of the number
of mixture components. The Minimum Description Length
Principle [4] is a common way for selecting the number of
mixture components. Our experiments however have shown
that finding a good initialization for the traditional EM al-
gorithm remains a difficult problem.

To avoid the drawback of traditional EM algorithm, we
propose a non-parametric kernel estimation method which
represents the feature distribution of each cluster with a set
of sampled pixels. An iterative sampling-expectation (SE)
algorithm is developed for segmenting the figure from back-
ground. The input of the algorithm is the region of interest
of an image provided by the user or another algorithm. We
assume the figure is in the center of the region and initialize
its shape with a Gaussian distribution. Then the segmenta-
tion is refined through the competition between the figure
and ground. This is an adaptive soft labeling procedure (see
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Fig. 1 for an example).

Our algorithm overcomes the disadvantages of both pair-
wise and central grouping methods. Since both the figure
and background are encoded with non-parametric models,
our algorithm avoids the parameter initialization and updat-
ing steps in the EM algorithm. And since all pixels are com-
pared to a small number of sampled pixels instead of pair-
wise comparison, our algorithm is computationally more ef-
ficient than pairwise grouping methods. The experiments
on real images of natural scenes demonstrate that the SE
algorithm is robust to initialization and gives better results
than the traditional EM algorithm.

2. Kernel Density Estimation of Color Distri-
bution

2.1. Parametric vs. Non-parametric Estimation

There are two ways for estimating the probability den-
sity function of a stochastic process — the parametric and
non-parametric approaches. The parametric density estima-
tor assumes a parametric model for the underlying process,
specifying a particular form for the underlying density such
as Gaussian or a mixture of Gaussians. This approach is ef-
ficient but makes strong assumption about the structure of
the data. On the other hand, the purely non-parametric ap-
proach such as histogram estimators, makes no assumptions
about the underlying process, and imposes no formal struc-
ture on the data. Although the non-parametric approach is
informative and flexible, it suffers from two serious draw-
backs: it is not smooth, and it does not provide an adequate
description of local properties of a density function. Both
of these problems can be solved using a kernel density esti-
mator.

2.2. Kernel Density Estimation

Given a set of samples S = {z;} where i = 1..N
and z; is a d-dimensional vector, kernel density estima-
tion [8] can be used to estimate the probability that a data
y = (y1,...,yq) is from the same distribution as S
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where the same kernel function is used in each dimension
with different bandwidth o;. The additive form of Eq. (1)
implies that the estimate retains the continuity and differ-
entiability properties of the kernel function. Theoretically,
kernel density estimators can converge to any density shape
with enough samples [8].

The kernel density estimator provides a bridge between
making no assumptions on formal structure (a purely non-
parametric approach) and making very strong assumptions
(a parametric approach). By making the relative weak as-
sumption about what the true density of the data might be, it
is possible to extract more information from the data than is
possible using purely non-parametric methods, and it avoids
rigid distributional assumptions, thereby providing density
estimation that is both flexible and robust.

2.3. Color Density Estimation

In the figure-ground discrimination case, we represent
the color of each pixel as a three-dimensional vector (7, g, s)
wherer = R/(R+ G+ B), g = G/(R+ G + B) are two
chromaticity variables and s = (R + G + B)/3 is a bright-
ness variable. The separation of chromaticity from bright-
ness in the rgs space allows the use of a much wider kernel
with the s variable to cope with the variability in this vari-
able due to shading effects. On the other hand, the chro-
maticity variables r, g are invariant to shading effects and
therefore much narrower kernels can be used in these di-
mensions, which enables more powerful chromaticity dis-
crimination.

Given a sample of pixels S = {z; = (r;, gi, s;)} from
figure F, an estimate P(z; € F) for the color density can
be calculated as

N
1
P(;l;Z €F) =N 2_: r=ri) Ky, (9—9i)Kq, (5= 5:),

2
where K, (t) = 1/0K (t/o). We use Gaussian kernels, i.e.,
K,(t) = ﬁe”ﬂ%ﬁ with different bandwidth in each
dimension. Theoretically, for Gaussian case the bandwidth
can be estimated as h ~ 1.066n 1/ [8] where & is the
estimated standard deviation and n is the sample size. The
use of kernel density estimation for color distribution en-
ables automatic selection of weights of different cues based
on the bandwidth calculation from the image itself.

2.4. Normalized KL-Divergence

We evaluate the significance of a figure by comparing the
color distributions between the figure and ground. The more
dissimilar they are and the larger the figure is, the more sig-
nificant the figure is. Accordingly, we design the following
normalized KL-divergence measure for evaluating the sig-
nificance of a figure at a certain scale, and use this measure
to select the proper scale for figure-ground discrimination.

N B . Pbg(ﬂvi)
=2 i1 Prg(@i)log Pfg(xi))
N =
22:1 Pfg(xi)

nKL(Py,||Byy) = SE)
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scale

Figure 2. Segmentation results at different
scales

where P, and Py, are the PDFs of the figure and ground
respectively, and x; is a sampled pixel in S = {x;}.

3. The Iterative Sampling - Expectation algo-

rithm

We assume that the pixels in an image were generated
by two processes — the figure and ground processes. Then
the figure-ground discrimination problem involves assign-
ing each pixel to the process that generated it. If we knew
the probability density functions of the two processes, then
we could assign each pixel to the process with the maximum
likelihood. Likewise, if we knew the assignment of each
pixel, then we could estimate the probability density func-
tions of the two processes. This chicken-and-egg problem
suggests an iterative framework for computing the segmen-
tation. Unlike the traditional EM algorithm which assumes
mixtured Gaussian models, we employ the kernel density
estimation to approximate the color density distribution of
each process. A set of pixels are sampled from the image for
kernel density estimation. Thus, the maximization step in
the EM algorithm is replaced with the sampling step. This
gives the basic structure of an iterative sampling- expecta-
tion (SE) algorithm:

1. Start with a Gaussian spatial distribution for all pix-
els in the image. We select the scale of the initial
Gaussian distribution which maximizes the normalized
KL-divergence given in Eq. (3). Fig. 2 demonstrates
that we can obtain the correct segmentation at the right
scale.

2. S step: uniformly sample a set of pixels from the image
for kernel density estimation.
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Figure 3. Sensitivity to the initial location of
the center of the distribution
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Figure 4. Compare the sensitivity of the SE
and EM methods to initialization

3. E step: re-assign pixels to the two processes based on
maximum likelihood estimation.

4. Repeat steps 2 and 3 until the segmentation becomes
stable.

Since the assignments of pixels are soft, we cannot use
the kernel density estimation in Eq. (1) directly. Instead we
design a weighted kernel density estimation and make use
of the samples from both the foreground and background.
Given a set of samples S = {z;} from the whole image, we
estimate the probabilities of a pixel belonging to the fore-
ground and background by first calculating the following
two values

wyg(y prg

d
H e B C)
- -

d
wbg Zpbg €T H :U” (5)

where N is the number of samples ( we use 6% of the pixels
in the image) and d is the dimension of the feature space.
Through normalization we get the soft assignments of each
pixel to the foreground and background:

pfg:wfg/(wfg_'_wbg), (6)
Pog = wig[(wrg + whg). @)
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Figure 5. Examples of figure-ground discrim-
ination results: SE vs. EM

The above equations update the assignments of a pixel by
integrating evidence from the samples in its neighborhood.
To obtain the final segmentation, we assign a pixel to the
foreground if ﬁfg > Pbg, otherwise to the background. In
this way, we let the figure and ground processes “compete”
to explain the pixel data.

4. Experiments

We did experiments to test the sensitivity of the SE al-
gorithm to the initial distribution. We shift the center of the
initial Gaussian distribution off the center of the image and
compare the results with the one obtained by locating the
distribution at the image center. Fig. 3 indicates that the av-
erage assignment error at each pixel is less than 0.05 when
the shift is less than 10 pixels or 12% of the figure size.

To test how sensitive the SE algorithm is to the initial
sampling, we ran the SE algorithm over the same image
several times. Fig. 4 illustrates that the results are very
stable. In comparison, we ran the traditional EM algorithm
over the same image with three mixtured Gaussians for the
figure and three for the background. When initializing the
cluster centers at different places, we obtained very different
segmentation results as shown in Fig. 4.

We further compared the SE algorithm with a more so-
phisticated EM algorithm proposed by Carson et. al. [4]. In
[4], the Minimum Description Length principle is used to
select the number of mixture models. Fig. 5 demonstrates
that the EM algorithm tends to merge the figure with part of
the background, while our algorithm gives better segmenta-
tion results.

5. Conclusion

In this paper, we present a novel segmentation method
for figure-ground discrimination. The use of kernel density
estimation for color distribution enables automatic selection
of weights of different cues based on the bandwidth calcu-
lation from the image itself. The size and shape of the fig-
ure are determined adaptively by the competition between
the figure and background using the iterative sampling-
expectation algorithm. Consequently, the combination of
kernel density estimation for color distribution and the it-
erative sampling-expectation algorithm have resulted in en-
couraging segmentation results.
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