Introduction to Hidden Markov Models

Slides Borrowed From Venu Govindaraju
Markov Models

- Set of states: \(\{s_1, s_2, \ldots, s_N\} \)
- Process moves from one state to another generating a sequence of states: \(s_{i1}, s_{i2}, \ldots, s_{ik}, \ldots \)
- Markov chain property: probability of each subsequent state depends only on what was the previous state:
 \[
P(s_{ik} \mid s_{i1}, s_{i2}, \ldots, s_{ik-1}) = P(s_{ik} \mid s_{ik-1})
 \]
- To define Markov model, the following probabilities have to be specified: transition probabilities \(a_{ij} = P(s_i \mid s_j) \) and initial probabilities \(\pi_i = P(s_i) \)
• Two states: ‘Rain’ and ‘Dry’.
• Transition probabilities: $P($‘Rain’|‘Rain’$)=0.3$, $P($‘Dry’|‘Rain’$)=0.7$, $P($‘Rain’|‘Dry’$)=0.2$, $P($‘Dry’|‘Dry’$)=0.8$
• Initial probabilities: say $P($‘Rain’$)=0.4$, $P($‘Dry’$)=0.6$.
Calculation of sequence probability

• By Markov chain property, probability of state sequence can be found by the formula:

\[
P(s_{i_1}, s_{i_2}, \ldots, s_{i_k}) = P(s_{i_k} | s_{i_1}, s_{i_2}, \ldots, s_{i_{k-1}})P(s_{i_1}, s_{i_2}, \ldots, s_{i_{k-1}})
\]

\[
= P(s_{i_k} | s_{i_{k-1}})P(s_{i_{k-1}}, s_{i_{k-2}}, \ldots, s_{i_1}) = \ldots
\]

\[
= P(s_{i_k} | s_{i_{k-1}})P(s_{i_{k-1}} | s_{i_{k-2}}) \ldots P(s_{i_2} | s_{i_1})P(s_{i_1})
\]

• Suppose we want to calculate a probability of a sequence of states in our example, \{‘Dry’, ’Dry’, ’Rain’, ’Rain’\}.

\[
P(\{‘Dry’, ’Dry’, ’Rain’, ’Rain’\}) = P(‘Rain’ | ’Rain’) \ P(‘Rain’ | ’Dry’) \ P(‘Dry’ | ’Dry’) \ P(‘Dry’)
\]

\[
= 0.3 \times 0.2 \times 0.8 \times 0.6
\]
Hidden Markov models.

• Set of states: \(\{s_1, s_2, \ldots, s_N\} \)

• Process moves from one state to another generating a sequence of states: \(s_{i1}, s_{i2}, \ldots, s_{ik}, \ldots \)

• Markov chain property: probability of each subsequent state depends only on what was the previous state:
 \[
 P(s_{ik} | s_{i1}, s_{i2}, \ldots, s_{ik-1}) = P(s_{ik} | s_{ik-1})
 \]

• States are not visible, but each state randomly generates one of \(M \) observations (or visible states) \(\{v_1, v_2, \ldots, v_M\} \)

• To define hidden Markov model, the following probabilities have to be specified: matrix of transition probabilities \(A=(a_{ij}) \), \(a_{ij}=P(s_i | s_j) \), matrix of observation probabilities \(B=(b_i(v_m)) \), \(b_i(v_m)=P(v_m | s_i) \) and a vector of initial probabilities \(\pi=(\pi_i) \), \(\pi_i = P(s_i) \). Model is represented by \(M=(A, B, \pi) \).
Example of Hidden Markov Model
Example of Hidden Markov Model

- Two states: ‘Low’ and ‘High’ atmospheric pressure.
- Two observations: ‘Rain’ and ‘Dry’.
- Transition probabilities: \(P(\text{‘Low’}|\text{‘Low’}) = 0.3 \),
 \(P(\text{‘High’}|\text{‘Low’}) = 0.7 \),
 \(P(\text{‘Low’}|\text{‘High’}) = 0.2 \),
 \(P(\text{‘High’}|\text{‘High’}) = 0.8 \).
- Observation probabilities: \(P(\text{‘Rain’}|\text{‘Low’}) = 0.6 \),
 \(P(\text{‘Dry’}|\text{‘Low’}) = 0.4 \),
 \(P(\text{‘Rain’}|\text{‘High’}) = 0.4 \),
 \(P(\text{‘Dry’}|\text{‘High’}) = 0.3 \).
- Initial probabilities: say \(P(\text{‘Low’}) = 0.4 \), \(P(\text{‘High’}) = 0.6 \).
Calculation of observation sequence probability

• Suppose we want to calculate a probability of a sequence of observations in our example, \{‘Dry’,’Rain’\}.
• Consider all possible hidden state sequences:

\[
P(\{‘Dry’,’Rain’\}) = P(\{‘Dry’,’Rain’\}, \{‘Low’,’Low’\}) + P(\{‘Dry’,’Rain’\}, \{‘Low’,’High’\}) + P(\{‘Dry’,’Rain’\}, \{‘High’,’Low’\}) + P(\{‘Dry’,’Rain’\}, \{‘High’,’High’\})
\]

where first term is :

\[
P(\{‘Dry’,’Rain’\}, \{‘Low’,’Low’\}) = P(\{‘Dry’,’Rain’\} | \{‘Low’,’Low’\}) P(\{‘Low’,’Low’\}) = P(‘Dry’|’Low’)P(‘Rain’|’Low’) P(‘Low’)P(‘Low’|’Low’)
\]

\[
= 0.4*0.4*0.6*0.4*0.3
\]
Main issues using HMMs:

Evaluation problem. Given the HMM $M=(A, B, \pi)$ and the observation sequence $O=o_1 o_2 \ldots o_K$, calculate the probability that model M has generated sequence O.

Decoding problem. Given the HMM $M=(A, B, \pi)$ and the observation sequence $O=o_1 o_2 \ldots o_K$, calculate the most likely sequence of hidden states S_i that produced this observation sequence O.

Learning problem. Given some training observation sequences $O=o_1 o_2 \ldots o_K$ and general structure of HMM (numbers of hidden and visible states), determine HMM parameters $M=(A, B, \pi)$ that best fit training data.

$O=o_1 \ldots o_K$ denotes a sequence of observations $o_k \in \{v_1, \ldots, v_M\}$.
Word recognition example(1).

- Typed word recognition, assume all characters are separated.

- Character recognizer outputs probability of the image being particular character, $P(\text{image}|\text{character})$.

```
Hidden state                   Observation

<table>
<thead>
<tr>
<th></th>
<th>0.5</th>
<th>0.03</th>
<th>0.005</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td>0.03</td>
<td>0.005</td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>0.31</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Amherst
Word recognition example (2).

- Hidden states of HMM = characters.

- Observations = typed images of characters segmented from the image \(v_\alpha \). Note that there is an infinite number of observations.

- Observation probabilities = character recognizer scores.
 \[
 B = \left(b_i(v_\alpha) \right) = \left(P(v_\alpha | s_i) \right)
 \]

- Transition probabilities will be defined differently in two subsequent models.
Word recognition example (3).

- If lexicon is given, we can construct separate HMM models for each lexicon word.

- Here recognition of word image is equivalent to the problem of evaluating few HMM models.
- This is an application of Evaluation problem.
Word recognition example (4).

- We can construct a single HMM for all words.
- Hidden states = all characters in the alphabet.
- Transition probabilities and initial probabilities are calculated from language model.
- Observations and observation probabilities are as before.

Here we have to determine the best sequence of hidden states, the one that most likely produced word image.
- This is an application of **Decoding problem.**
Character recognition with HMM example.

- The structure of hidden states is chosen.

- Observations are feature vectors extracted from vertical slices.

- Probabilistic mapping from hidden state to feature vectors:
 1. use mixture of Gaussian models
 2. Quantize feature vector space.
Exercise: character recognition with HMM(1)

• The structure of hidden states:

• Observation = number of islands in the vertical slice.

• HMM for character ‘A’:

Transition probabilities: \(\{a_{ij}\} = \begin{pmatrix} .8 & .2 & 0 \\ 0 & .8 & .2 \\ 0 & 0 & 1 \end{pmatrix} \)

Observation probabilities: \(\{b_{jk}\} = \begin{pmatrix} .9 & .1 & 0 \\ .1 & .8 & .1 \\ .9 & .1 & 0 \end{pmatrix} \)

• HMM for character ‘B’:

Transition probabilities: \(\{a_{ij}\} = \begin{pmatrix} .8 & .2 & 0 \\ 0 & .8 & .2 \\ 0 & 0 & 1 \end{pmatrix} \)

Observation probabilities: \(\{b_{jk}\} = \begin{pmatrix} .9 & .1 & 0 \\ .6 & .4 & 0 \\ 0 & .2 & .8 \end{pmatrix} \)
Exercise: character recognition with HMM(2)

• Suppose that after character image segmentation the following sequence of island numbers in 4 slices was observed:
 \{ 1, 3, 2, 1 \}

• What HMM is more likely to generate this observation sequence, HMM for ‘A’ or HMM for ‘B’?
Exercise: character recognition with HMM(3)

Consider likelihood of generating given observation for each possible sequence of hidden states:

- **HMM for character ‘A’**:

<table>
<thead>
<tr>
<th>Hidden state sequence</th>
<th>Transition probabilities</th>
<th>Observation probabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>s₁ → s₁ → s₂ → s₃</td>
<td>.8 * .2 * .2</td>
<td>* .9 * 0 * .8 * .9 = 0</td>
</tr>
<tr>
<td>s₁ → s₂ → s₂ → s₃</td>
<td>.2 * .8 * .2</td>
<td>* .9 * 1 * .8 * .9 = 0.0020736</td>
</tr>
<tr>
<td>s₁ → s₂ → s₃ → s₃</td>
<td>.2 * .2 * 1</td>
<td>* .9 * 1 * .1 * .9 = 0.000324</td>
</tr>
</tbody>
</table>

 Total = 0.0023976

- **HMM for character ‘B’**:

<table>
<thead>
<tr>
<th>Hidden state sequence</th>
<th>Transition probabilities</th>
<th>Observation probabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>s₁ → s₁ → s₂ → s₃</td>
<td>.8 * .2 * .2</td>
<td>* .9 * 0 * .2 * .6 = 0</td>
</tr>
<tr>
<td>s₁ → s₂ → s₂ → s₃</td>
<td>.2 * .8 * .2</td>
<td>* .9 * .8 * 2 * .6 = 0.0027648</td>
</tr>
<tr>
<td>s₁ → s₂ → s₃ → s₃</td>
<td>.2 * .2 * 1</td>
<td>* .9 * .8 * .4 * .6 = 0.006912</td>
</tr>
</tbody>
</table>

 Total = 0.0096768
Evaluation Problem.

- **Evaluation problem.** Given the HMM $\mathcal{M}=(A, B, \pi)$ and the observation sequence $O=o_1 o_2 \ldots o_K$, calculate the probability that model \mathcal{M} has generated sequence O.

- Trying to find probability of observations $O=o_1 o_2 \ldots o_K$ by means of considering all hidden state sequences (as was done in example) is impractical: N^K hidden state sequences - exponential complexity.

- Use **Forward-Backward HMM algorithms** for efficient calculations.

- Define the forward variable $\alpha_k(i)$ as the joint probability of the partial observation sequence $O_1 O_2 \ldots O_k$ and that the hidden state at time k is s_i: $\alpha_k(i) = \mathbb{P}(o_1 o_2 \ldots o_k, q_k = s_i)$
Trellis representation of an HMM

Time = 1 \quad k \quad k+1 \quad K
Forward recursion for HMM

- **Initialization:**
 \[\alpha_1(i) = P(o_1, q_1 = s_i) = \pi_i \ b_i(o_1), \ 1 \leq i \leq N. \]

- **Forward recursion:**
 \[\alpha_{k+1}(i) = P(o_1 o_2 \ldots o_{k+1}, q_{k+1} = s_j) = \sum_i P(o_1 o_2 \ldots o_k, q_k = s_i, q_{k+1} = s_j) = \sum_i P(o_1 o_2 \ldots o_k, q_k = s_i) \ a_{ij} \ b_j(o_{k+1}) = \left[\sum_i \alpha_k(i) \ a_{ij} \right] \ b_j(o_{k+1}), \ \ 1 \leq j \leq N, \ 1 \leq k \leq K-1. \]

- **Termination:**
 \[P(o_1 o_2 \ldots o_K) = \sum_i P(o_1 o_2 \ldots o_K, q_K = s_i) = \sum_i \alpha_K(i) \]

- **Complexity:**
 \[N^2K \text{ operations}. \]
Backward recursion for HMM

• Define the forward variable $\beta_k(i)$ as the joint probability of the partial observation sequence $o_{k+1} o_{k+2} \ldots o_K$ given that the hidden state at time k is s_i: $\beta_k(i) = P(o_{k+1} o_{k+2} \ldots o_K | q_k = s_i)$

• Initialization:
 $$\beta_K(i) = 1, \quad 1 \leq i \leq N.$$

• Backward recursion:
 $$\beta_k(j) = P(o_{k+1} o_{k+2} \ldots o_K | q_k = s_j) = \sum_i P(o_{k+1} o_{k+2} \ldots o_K, q_{k+1} = s_i | q_k = s_j) = \sum_i P(o_{k+2} o_{k+3} \ldots o_K | q_{k+1} = s_i) a_{ji} b_i(o_{k+1}) = \sum_i \beta_{k+1}(i) a_{ji} b_i(o_{k+1}), \quad 1 \leq j \leq N, \quad 1 \leq k \leq K-1.$$

• Termination:
 $$P(o_1 o_2 \ldots o_K) = \sum_i P(o_1 o_2 \ldots o_K, q_1 = s_i) = \sum_i P(o_1 o_2 \ldots o_K | q_1 = s_i) P(q_1 = s_i) = \sum_i \beta_1(i) b_i(o_1) \pi_i$$
Decoding problem

• Decoding problem. Given the HMM $M = (A, B, \pi)$ and the observation sequence $O = o_1 o_2 \ldots o_K$, calculate the most likely sequence of hidden states S_i that produced this observation sequence.

• We want to find the state sequence $Q = q_1 \ldots q_K$ which maximizes $P(Q \mid o_1 o_2 \ldots o_K)$, or equivalently $P(Q, o_1 o_2 \ldots o_K)$.

• Brute force consideration of all paths takes exponential time. Use efficient Viterbi algorithm instead.

• Define variable $\delta_k(i)$ as the maximum probability of producing observation sequence $o_1 o_2 \ldots o_k$ when moving along any hidden state sequence $q_1 \ldots q_{k-1}$ and getting into $q_k = S_i$.

$$
\delta_k(i) = \max P(q_1 \ldots q_{k-1}, q_k = S_i, o_1 o_2 \ldots o_k)
$$

where \max is taken over all possible paths $q_1 \ldots q_{k-1}$.

Viterbi algorithm (1)

• General idea:

if best path ending in $q_k = s_j$ goes through $q_{k-1} = s_i$ then it should coincide with best path ending in $q_{k-1} = s_i$.

• $\delta_k(i) = \max P(q_1 \ldots q_{k-1}, q_k = s_j, o_1 o_2 \ldots o_k) = \max_i [a_{ij} b_j(o_k) \max P(q_1 \ldots q_{k-1} = s_i, o_1 o_2 \ldots o_{k-1})]$

• To backtrack best path keep info that predecessor of s_j was s_i.
Viterbi algorithm (2)

• **Initialization:**
 \[\delta_1(i) = \max P(q_1 = s_i , o_1) = \pi_i b_i(o_1) , \ 1 \leq i \leq N. \]

• **Forward recursion:**
 \[\delta_k(j) = \max P(q_1 \ldots q_{k-1} , q_k = s_j , o_1 o_2 \ldots o_k) = \]
 \[\max_i [a_{ij} b_j(o_k) \max P(q_1 \ldots q_{k-1} = s_i , o_1 o_2 \ldots o_{k-1})] = \]
 \[\max_i [a_{ij} b_j(o_k) \delta_{k-1}(i)] , \ 1 \leq j \leq N , 2 \leq k \leq K. \]

• **Termination:** choose best path ending at time K
 \[\max_i [\delta_K(i)] \]

• Backtrack best path.

This algorithm is similar to the forward recursion of evaluation problem, with \(\Sigma \) replaced by max and additional backtracking.
• Learning problem. Given some training observation sequences $O = o_1 o_2 \ldots o_K$ and general structure of HMM (numbers of hidden and visible states), determine HMM parameters $M = (A, B, \pi)$ that best fit training data, that is maximizes $P(O \mid M)$.

• There is no algorithm producing optimal parameter values.

• Use iterative expectation-maximization algorithm to find local maximum of $P(O \mid M)$ - Baum-Welch algorithm.
• If training data has information about sequence of hidden states (as in word recognition example), then use maximum likelihood estimation of parameters:

\[
a_{ij} = P(s_i | s_j) = \frac{\text{Number of transitions from state } S_j \text{ to state } S_i}{\text{Number of transitions out of state } S_j}
\]

\[
b_i(v_m) = P(v_m | s_i) = \frac{\text{Number of times observation } V_m \text{ occurs in state } S_i}{\text{Number of times in state } S_i}
\]
Baum-Welch algorithm

General idea:

\[a_{ij} = P(s_i \mid s_j) = \frac{\text{Expected number of transitions from state } S_j \text{ to state } S_i}{\text{Expected number of transitions out of state } S_j} \]

\[b_i(v_m) = P(v_m \mid s_i) = \frac{\text{Expected number of times observation } V_m \text{ occurs in state } S_i}{\text{Expected number of times in state } S_i} \]

\[\pi_i = P(s_i) = \text{Expected frequency in state } S_i \text{ at time } k=1. \]
Baum-Welch algorithm: expectation step (1)

- Define variable $\xi_k(i,j)$ as the probability of being in state S_i at time k and in state S_j at time $k+1$, given the observation sequence $O_1 O_2 \ldots O_K$.

$$\xi_k(i,j) = P(q_k = s_i, q_{k+1} = s_j | o_1 o_2 \ldots o_K)$$

$$\xi_k(i,j) = \frac{P(q_k = s_i, q_{k+1} = s_j, o_1 o_2 \ldots o_k)}{P(o_1 o_2 \ldots o_k)} = \frac{P(q_k = s_i, o_1 o_2 \ldots o_k) a_{ij} b_j(o_{k+1}) P(o_{k+2} \ldots o_K | q_{k+1} = s_j)}{P(o_1 o_2 \ldots o_k)} = \frac{\alpha_k(i) a_{ij} b_j(o_{k+1}) \beta_{k+1}(j)}{\sum_i \sum_j \alpha_k(i) a_{ij} b_j(o_{k+1}) \beta_{k+1}(j)}$$
Baum-Welch algorithm: expectation step(2)

• Define variable $\gamma_k(i)$ as the probability of being in state S_i at time k, given the observation sequence $O_1 O_2 ... O_K$.

$$\gamma_k(i) = P(q_k = s_i \mid o_1 o_2 ... o_k)$$

$$\gamma_k(i) = \frac{P(q_k = s_i, o_1 o_2 ... o_k)}{P(o_1 o_2 ... o_k)} = \frac{\alpha_k(i) \beta_k(i)}{\sum_i \alpha_k(i) \beta_k(i)}$$
Baum-Welch algorithm: expectation step (3)

• We calculated \(\xi_k(i,j) = P(q_k = s_i, q_{k+1} = s_j \mid o_1 o_2 \ldots o_K) \) and \(\gamma_k(i) = P(q_k = s_i \mid o_1 o_2 \ldots o_K) \)

• Expected number of transitions from state \(s_i \) to state \(s_j \) = \(\sum_k \xi_k(i,j) \)

• Expected number of transitions out of state \(s_i \) = \(\sum_k \gamma_k(i) \)

• Expected number of times observation \(v_m \) occurs in state \(s_i \) = \(\sum_k \gamma_k(i) \), \(k \) is such that \(o_k = v_m \)

• Expected frequency in state \(s_i \) at time \(k=1 \) : \(\gamma_1(i) \).
Baum-Welch algorithm: maximization step

\[a_{ij} = \frac{\text{Expected number of transitions from state } S_j \text{ to state } S_i}{\text{Expected number of transitions out of state } S_j} = \frac{\sum_k \xi_k(i,j)}{\sum_k \gamma_k(i)} \]

\[b_i(v_m) = \frac{\text{Expected number of times observation } v_m \text{ occurs in state } S_i}{\text{Expected number of times in state } S_i} = \frac{\sum_k \xi_k(i,j)}{\sum_{k,o_k=v_m} \gamma_k(i)} \]

\[\pi_i = (\text{Expected frequency in state } S_i \text{ at time } k=1) = \gamma_1(i). \]