Solutions

Problem 1: Recall (2pts) (Answer in one sentence only.)

Given an unbiased linear discriminant defined by the augmented weight vector a, with modified input vector y, write the equation for the discriminant's decision boundary.
$a^{T} y=0$

Problem 2: Work (8 pts) (Show all derivations/work and explain.)

You are given a 4-sample data set of points in the 2D Cartesian plane. The samples, given in the form $\left(\left[\begin{array}{l}x_{i 1} \\ x_{i 2}\end{array}\right], \omega_{i}\right)$, are

$$
\left\{\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right],+1\right),\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right],+1\right),\left(\left[\begin{array}{c}
0 \\
-1
\end{array}\right],-1\right),\left(\left[\begin{array}{c}
1 \\
-1
\end{array}\right],-1\right)\right\} .
$$

Using the unbiased Batch-Perceptron algorithm, compute the discriminant weight vector a. Assume a fixed increment $\eta=1$ and an initial vector of $\left[\begin{array}{ll}1 & 0\end{array}\right]$. Do not normalize the discriminant vector (this will result in messy calculation). Plot a.

Begin by normalizing the training data, replacing the labeled sample pairs with unlabeled vectors $y_{i}=x_{i} \omega_{i}$. This gives us 4 modified data samples:

$$
\left\{\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right\} .
$$

We then apply our initial weight vector to these samples, and collect all the samples that are not currently satisfied (i.e. those samples y such that $a^{T} y \leq 0$). Given our initial a of $\left[\begin{array}{ll}1 & 0\end{array}\right]$, this means the first, third and fourth samples are unsatisfied. We then collect these samples in a batch by summing their vectors and multiplying the result by η. This gives us a δ_{a} of $\left[\begin{array}{ll}-1 & 3\end{array}\right]$. We then compute the new a via $a=a+\delta_{a}$, thus obtaining a new weight vector $\left[\begin{array}{ll}0 & 3\end{array}\right]$.
From here, we can continue on to the next iteration. Once again, we begin by collecting all unsatisfied samples, but this time $a^{T} y>0$ for all 4 samples. We have thus successfully computed a weight vector describing a linear discriminant that correctly classifies all training points, and can stop here.
Note: some students converted the problem to a homogeneous coordinates system by adding an additional 1 to the beginning of every sample vector, likely because the algorithm was described as unbiased. This conversion is not necessary simply because the classifier is unbiased. It is a technique for converting a classifier that does have a bias parameter into an unbiased form. That was not called for in this problem (and, indeed, a bias parameter is not needed to find a solution that fully seperates the two classes in this data set).

