Solutions

Problem 1: Recall (2pts) (Answer in one sentence only.)

What is a support vector?
A support vector is a point that lies (approximately) on the margin of an SVM solution. Support vectors are characterized by having α values greater than 0, and essentially define the SVM problem because they determine the margin and are the most difficult points to classify correctly.

Problem 2: Work (8 pts) (Show all derivations/work and explain.) Consider the standard unbiased SVM objective formulation:

$$
\min _{a} \frac{1}{2}\|a\|^{2} \quad \text { s.t. } \frac{z_{k} a^{T} y_{k}}{\|a\|} \geq b, \forall k
$$

A. What do the variables $a,\|a\|, b, z$ and y represent?
$a=$ the weight vector
$\|a\|^{2}=$ the L 2 norm of the weight vector, used to measure its magnitude
$b=$ the margin constraint
$z_{k}=$ the class label (+1 or -1) of point k
$y_{k}=$ the data vector of point k

SEE NEXT PAGE

B. Show and explain mathematically why the goal of the SVM is to minimize $\frac{1}{2}\|a\|^{2}$.
(Hint 1: The a that satisfies the constraints and yields the minimum value for $\|a\|^{2}$ also yields the minimum value for $\|a\|$.
(Hint 2: Remember that a can be scaled arbitrarily.)
(Hint 3: The margin to either side of the decision hyperplane can be represented by a pair of parallel hyperplanes defined by the equation $a^{T} y= \pm b$. How would you compute the distance between them along the axis defined by a ?)

The two margin hyperplanes defined by $a^{T} y= \pm b$ are separated by exactly $2 b$ on the axis defined by a. However, the goal of the SVM is to maximize the margin-in other words, to maximize the distance between these two margin hyperplanes in the original input space. Recalling that a (and thus the axis defined by a) can be rescaled arbitrarily, we can see that the true distance between these two planes in the original space is not $2 b$, but $\frac{2 b}{\|a\|}$ (i.e. $2 b$ normalized by the magnitude of a, as measured via the standard L 2 norm).
Our goal, then, is to maximize $\frac{2 b}{\|a\|}$ (subject to the constraints defined by our data), and since b is just an arbitrary input value, this means our optimization problem reduces to minimizing $\frac{1}{2}\|a\|$. This could be computationally expensive, however, because of the square root needed to compute $\|a\|$, so we simply substitute $\|a\|^{2}$, which will yield the same optimal value of a.

Alternately

If we take b itself to be the margin in the original input space, rather than an arbitrary input, then we must impose a constraint $\|a\| b=1$, in order to define the scaling of a (which could still be scaled arbitrarily, otherwise). In this case, it is clear that $b=\frac{1}{\|a\|}$, so maximizing b is equivalent to minimizing $\|a\|$, so long as this constraint is enforced.

