Classification Lecture 3: Advanced Topics

Jing Gao SUNY Buffalo

Outline

Basics

- Problem, goal, evaluation
- Methods
 - Decision Tree
 - Naïve Bayes
 - Nearest Neighbor
 - Rule-based Classification
 - Logistic Regression
 - Support Vector Machines
 - Ensemble methods

Advanced topics

.......

- Semi-supervised Learning
- Multi-view Learning
- Transfer Learning

—

Multi-view Learning

Problem

- The same set of objects can be described in multiple different views
- Features are naturally separated into K sets:

$$X = (X^1, X^2, ..., X^K)$$

- Both labeled and unlabeled data are available
- Learning on multiple views:
 - Search for labeling on the unlabeled set and target functions on X: {f₁,f₂,...,f_k} so that the target functions agree on labeling of unlabeled data

Learning from Two Views

Input

- Features can be split into two sets: $X = X_1 \times X_2$
- The two views are redundant but not completely correlated
- Few labeled examples and relatively large amounts of unlabeled examples are available from the two views

Conditions

- Compatible --- all examples are labeled identically by the target concepts in each view
- Uncorrelated --- given the label of any example, its descriptions in each view are independent

How It Works?

Conditions

- Compatible --- Reduce the search space to where the two classifiers agree on unlabeled data
- Uncorrelated --- If two classifiers always make the same predictions on the unlabeled data, we cannot benefit much from multi-view learning

Algorithms

- Searching for compatible hypotheses
- Canonical correlation analysis
- Co-regularization

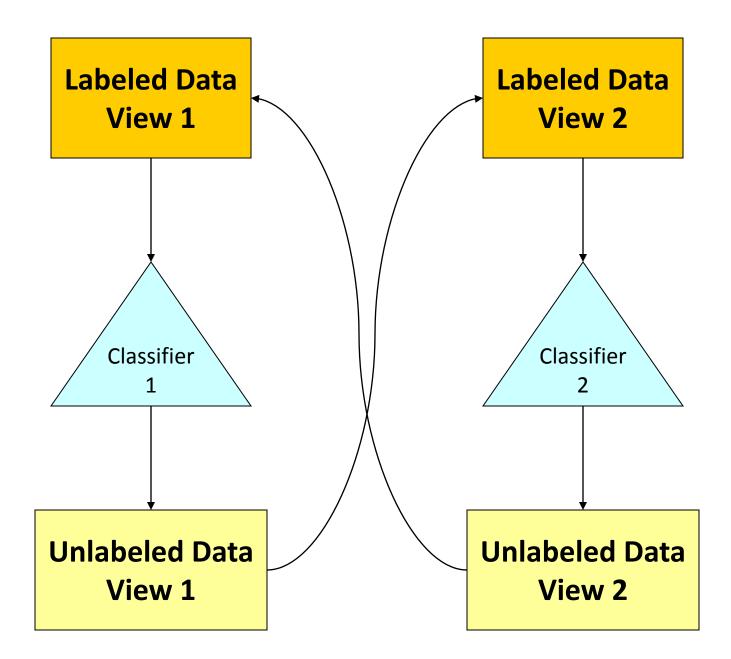
Searching for Compatible Hypotheses

Intuitions

- Two individual classifiers are learnt from the labeled examples of the two views
- The two classifiers' predictions on unlabeled examples are used to enlarge the size of training set
- The algorithm searches for "compatible" target functions

Algorithms

- Co-training [BIMi98]
- Co-EM [NiGh00]
- Variants of Co-training [GoZh00]



Co-Training*

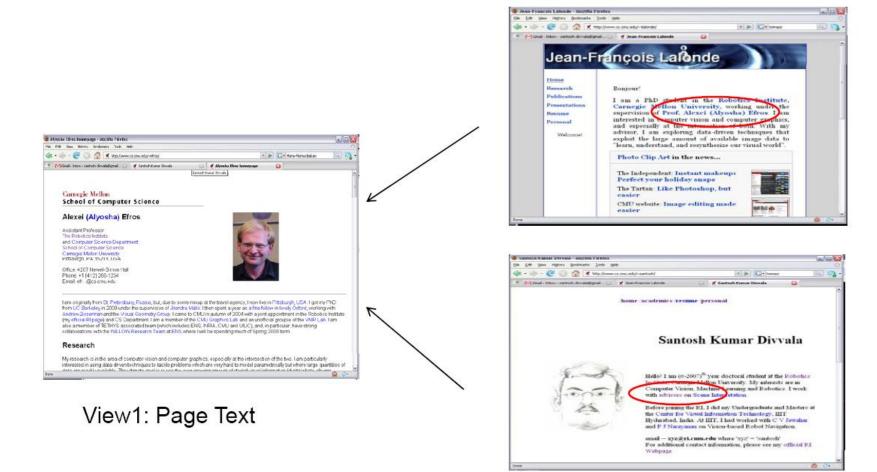
Given:

- a set L of labeled training examples
- a set U of unlabeled examples Train two classifiers from two views

Create a pool U' of Select the top unlabeled examples with the most confident Loop for k iteration predictions from the other classifier

Use L to train a classifier h_1 that considers only the x_1 portion of x Use L to train a classifier h_2 that considers only the x_2 portion of x Allow h_1 to label p positive and n negative examples from U' Allow h_2 to label p positive and n negative examples from U' Add these self-labeled examples to L Randomly choose 2p + 2n examples from U to replenish U'

Applications: Faculty Webpages Classification



View2: Hyperlink Text

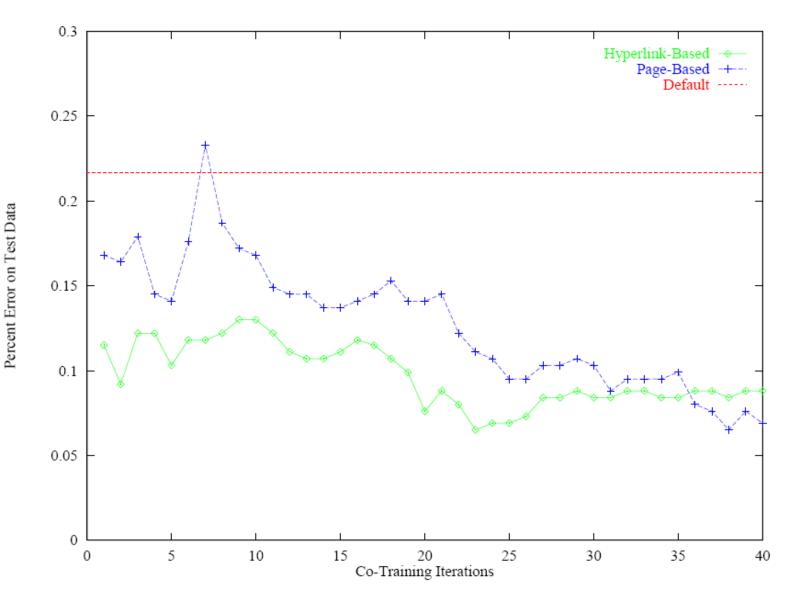


Figure 2: Error versus number of iterations for one run of co-training experiment.

Co-EM*

Algorithm

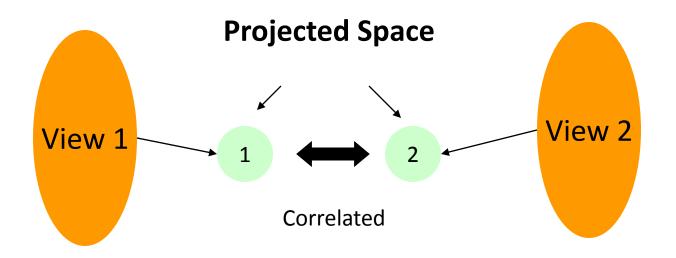
- Labeled data set L, Unlabeled data set U, Let U_1 be empty, Let $U_2=U$
- Iterate the following
 - Train a classifier h_1 from the feature set X_1 of L and U_1
 - Probabilistically label all the unlabeled data in U_2 using h_1
 - Train a classifier h_2 from the feature set X_2 of L and U_2
 - Let $U_1 = U$, probabilistically label all the unlabeled data in U_1 using h_2
- Combine h_1 and h_2
- Co-EM vs. Co-Training
 - Labeling unlabeled data: soft vs. hard
 - Selecting unlabeled data into training set: all vs. the top confident ones

*[NiGh00]

Canonical Correlation Analysis

Intuitions

- Reduce the feature space to low-dimensional space containing discriminative information
- With compatible assumption, the discriminative information is contained in the directions that correlate between the two views
- The goal is to maximize the correlation between the data in the two projected spaces



Algorithms

• Co-training in the reduced spaces [ZZY07]

- Project the data into the low-dimensional spaces by maximizing correlations between two views
- Compute probability of unlabeled data belonging to positive or negative classes using the distance between unlabeled data and labeled data in the new feature spaces
- Select the top-confident ones to enhance the training set and iterate

• SVM+Canonical Correlation Analysis [FHM+05]

- First reduce dimensions, then train SVM classifiers
- Combine the two steps together

Co-Regularization Framework

Intuitions

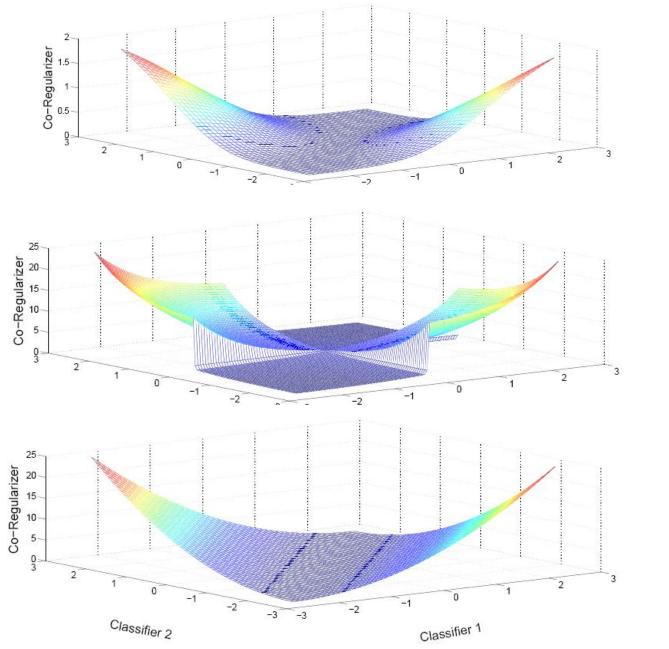
- Train two classifiers from the two views simultaneously
- Add a regularization term to enforce that the two classifiers agree on the predictions of unlabeled data

Risk of classifier 2 on view 2 of labeled data $\begin{array}{c} \min \quad R(f_1;L_1) + R(f_2;L_2) + R(f_1,f_2;U_1,U_2) \\ \swarrow \\ \text{Risk of classifier 1 on view 1 of labeled data} \end{array}$

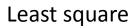
Disagreement between two classifiers on unlabeled data

Algorithms •

- Co-boosting [CoSi99]
- Co-regularized least squares and SVM [SNB05]
- Bhattacharyya distance regularization [GGB+08]



Bhattacharyya distance



Comparison of Loss Functions

- Loss functions
 - Exponential:

$$\sum_{x \in U} \exp\left(-\widetilde{y}_2 f_1(x)\right) + \exp\left(-\widetilde{y}_1 f_2(x)\right)$$

– Least Square:

$$\sum_{x \in U} (f_1(x) - f_2(x))^2$$

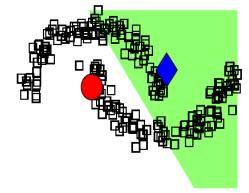
Bhattacharyya distance:

 $E_U(B(p_1, p_2))$

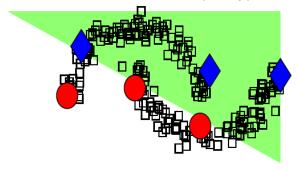
$$B(p_1, p_2) = -\log \sum_{y} \sqrt{p_1(y)p_2(y)}$$

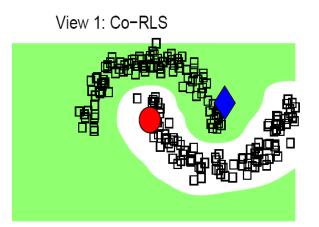
- When two classifiers don't agree
 - Loss grows exponentially, quadratically, linearly
- When two classifiers agree
 - Little penalty Penalize the margin

View 1: RLS (2 labeled examples)



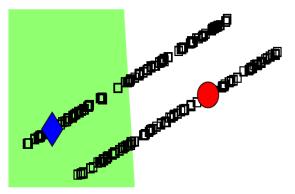
View 1: Co-trained RLS (1 step)



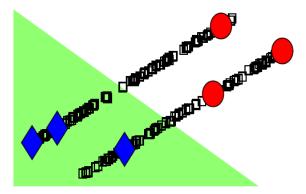


[SNB05]

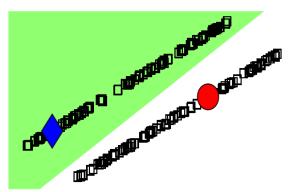
View 2: RLS (2 labeled examples)



View 2: Co-trained RLS (1 step)



View 2: Co-RLS



Semi-supervised Learning

• Learning from a mixture of labeled and unlabeled examples

Labeled Data

Unlabeled Data

 $L = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\} \quad D = \{(x_{n+1}), (x_{n+2}), \dots, (x_{n+m})\}$

$$y = f(x)$$

usage	supervised	semi-supervised	unsupervised
	learning	learning	learning
$\{(x,y)\}$ labeled data	yes	yes	no
$\{x\}$ unlabeled data	no	yes	yes

Why Semi-supervised Learning?

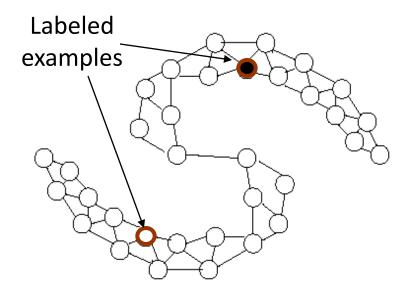
Labeling

- Expensive and difficult
- Unreliable
- Unlabeled examples
 - Easy to obtain in large numbers
 - Ex. Web pages, text documents, etc.

Manifold Assumption

Graph representation

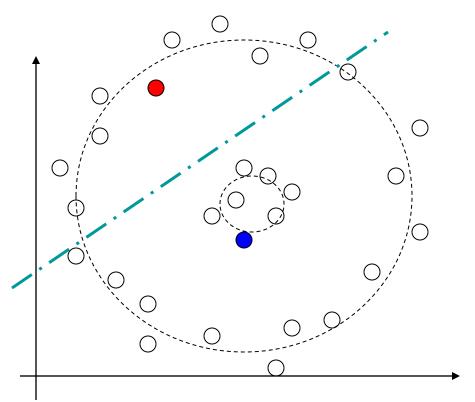
- Vertex: training example (labeled and unlabeled)
- Edge: similar examples



Regularize the classification function f(x)

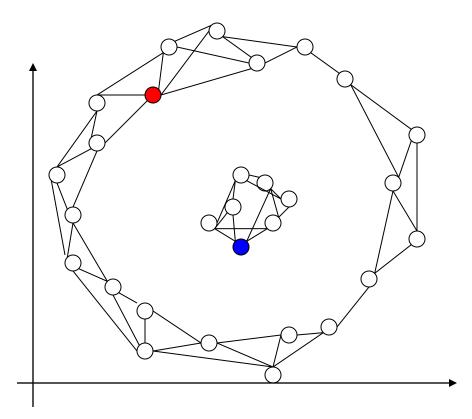
 x_1 and x_2 are connected -> distance between $f(x_1)$ and $f(x_2)$ is small

Label Propagation: Key Idea



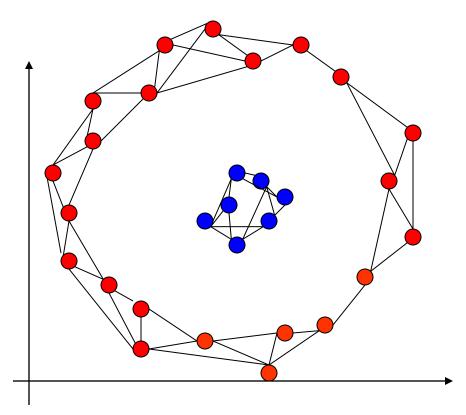
- A decision boundary based on the labeled examples is unable to take into account the layout of the data points
- How to incorporate the data distribution into the prediction of class labels?

Label Propagation: Key Idea



 Connect the data points that are close to each other

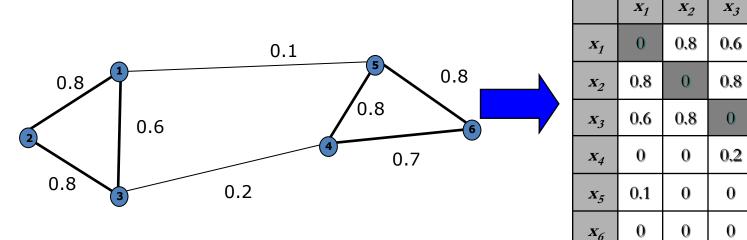
Label Propagation: Key Idea



- Connect the data points that are close to each other
- Propagate the class labels over the connected graph

Matrix Representations

- Similarity matrix (W)
 - -n x n matrix
 - $-W = [w_{ij}]$: similarity between x_i and x_j



 X_4

0

0

0.2

0

0.8

0.7

 X_5

0.1

0

0

0.8

0

0.8

 X_6

0

0

0

0.7

0.8

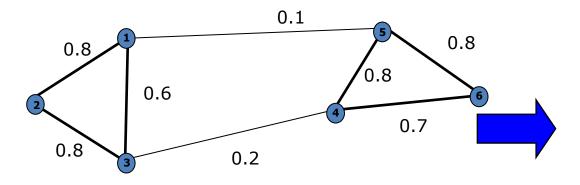
0

Matrix Representations

• Degree matrix (D)

-n x n diagonal matrix

- $D(i,i) = \sum_{j} w_{ij}$: total weight of edges incident to vertex x_{ij}



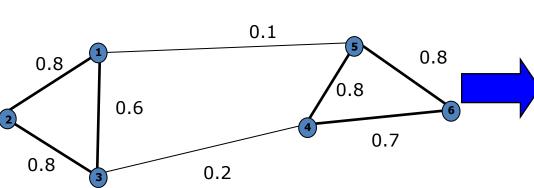
	<i>x</i> ₁	<i>X</i> ₂	X ₃	X ₄	<i>X</i> ₅	X ₆
<i>X</i> ₁	1.5	0	0	0	0	0
<i>x</i> ₂	0	1.6	0	0	0	0
X ₃	0	0	1.6	0	0	0
X ₄	0	0	0	1.7	0	0
<i>X</i> ₅	0	0	0	0	1.7	0
X ₆	0	0	0	0	0	1.5

Matrix Representations

• Normalized similarity matrix (S)

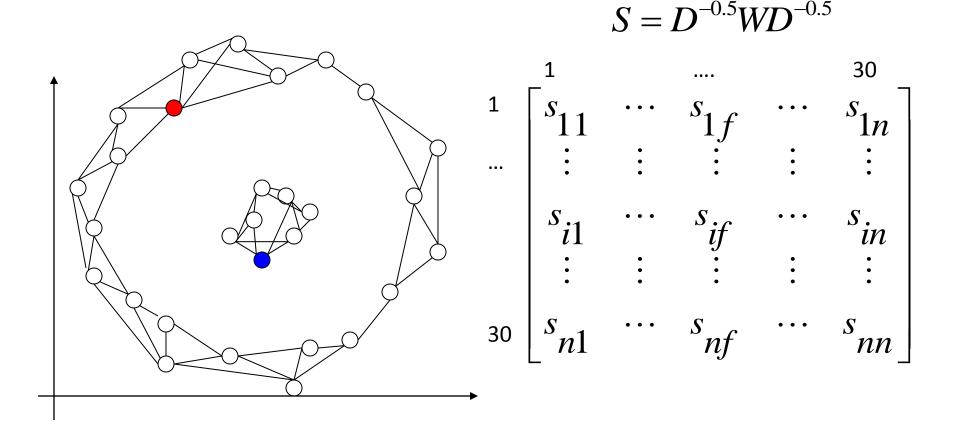
-n x n symmetric matrix

$$S = D^{-0.5} W D^{-0.5}$$



		<i>x</i> ₁	<i>X</i> ₂	X ₃	X ₄	<i>X</i> ₅	X ₆
	<i>x</i> ₁	0	0.52	0.39	0	0.06	0
•	<i>X</i> ₂	0.52	0	0.5		0	0
	X ₃	0.39	0.5	0	0.12	0	0
	<i>X</i> ₄	0	0	0.12	0	0.47	0.44
	<i>X</i> ₅	0.06	0	0	0.47	0	0.5
	X ₆	0	0	0	0.44	0.5	0

Normalized Similarity Matrix



Initial Label and Prediction

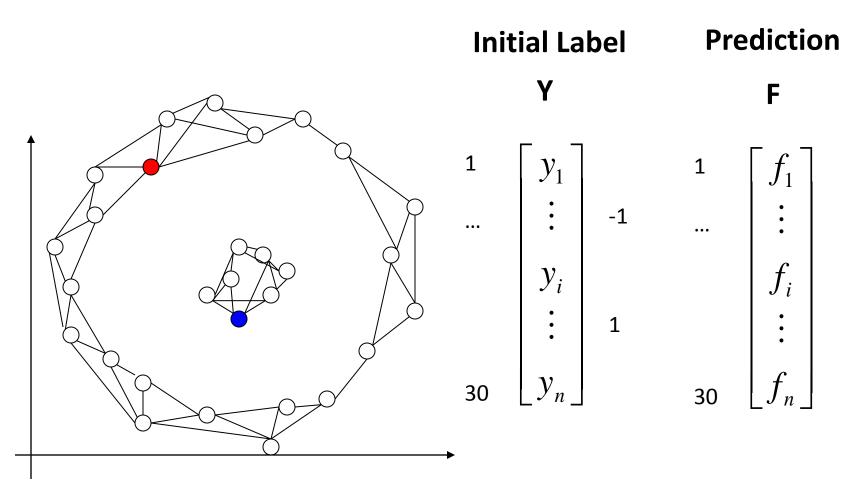
• Let Y be the initial assignment of class labels

- $-y_i = 1$ when the i-th node is assigned to the positive class
- $-y_i = -1$ when the i-th node is assigned to the negative class
- $y_i = 0$ when the i-th node is not initially labeled

• Let F be the predicted class labels

- The i-th node is assigned to the positive class if $f_i > 0$
- The i-th node is assigned to the negative class if $f_i < 0$

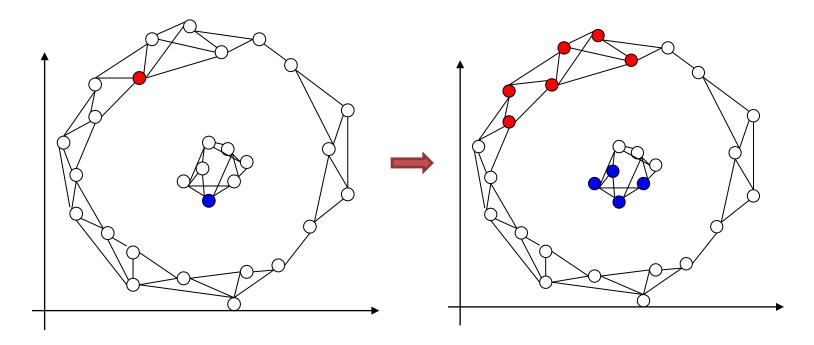
Initial Label and Prediction



Label Propagation

One iteration

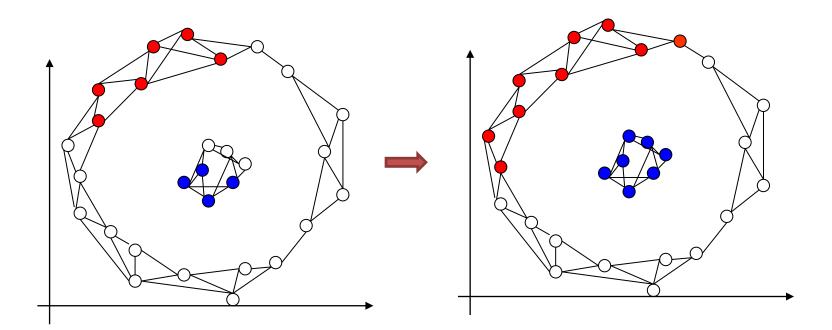
- $-F = Y + \alpha SY = (I + \alpha S)Y$
- α weights the propagation values



Label Propagation

Two iteration

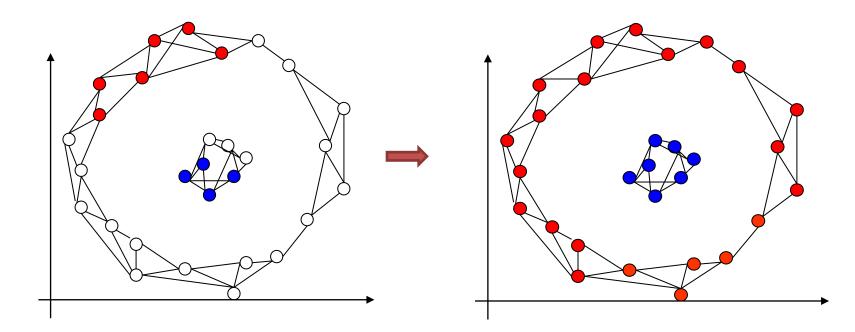
 $- \mathsf{F} = \mathsf{Y} + \alpha \mathsf{S} \mathsf{Y} + \alpha^2 \mathsf{S}^2 \mathsf{Y} = (\mathsf{I} + \alpha \mathsf{S} + \alpha^2 \mathsf{S}^2) \mathsf{Y}$



Label Propagation

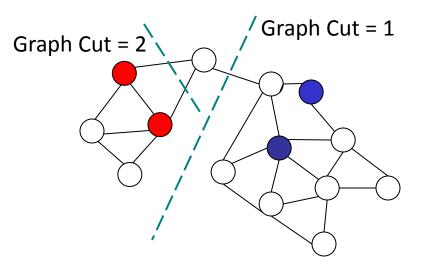
• More iterations

$$F = (\sum_{n=0}^{\infty} \alpha^n \mathbf{S}^n) Y = (I - \alpha \mathbf{S})^{-1} Y$$



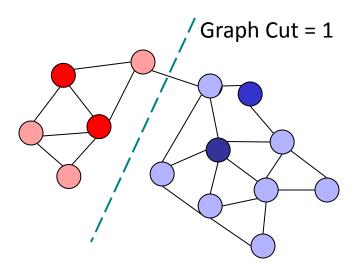
Graph Partitioning

- Classification as graph partitioning
- Search for a classification boundary
 - Consistent with labeled examples
 - Partition with small graph cut



Graph Partitioning

- Classification as graph partitioning
- Search for a classification boundary
 - Consistent with labeled examples
 - Partition with small graph cut



Review of Spectral Clustering

• Express a bi-partition (C_1, C_2) as a vector

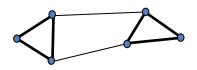
$$f_i = \begin{cases} 1 & \text{if } x_i \in C_1 \\ -1 & \text{if } x_i \in C_2 \end{cases}$$

 We can minimise the cut of the partition by finding a non-trivial vector *f* that minimizes the function

$$g(f) = \sum_{i,j \in V} w_{ij} (f_i - f_j)^2 = f^T L f$$
Laplacian
matrix

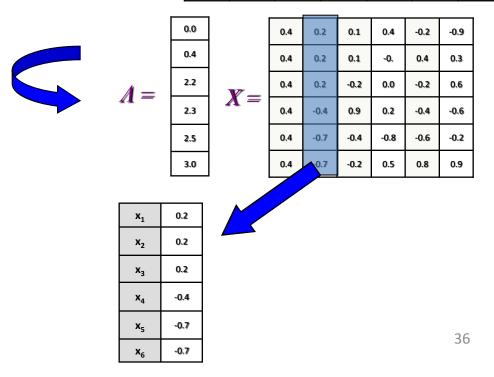
Spectral Bi-partitioning Algorithm

- 1. Pre-processing
 - Build Laplacian
 matrix L of the
 graph



	<i>X</i> ₁	<i>X</i> ₂	X ₃	X ₄	<i>X</i> ₅	X ₆
<i>X</i> ₁	1.5	-0.8	-0.6	0	-0.1	0
<i>X</i> ₂	-0.8	1.6	-0.8	0	0	0
X ₃	-0.6	-0.8	1.6	-0.2	0	0
X ₄	0	0	-0.2	1.7	-0.8	-0.7
<i>X</i> ₅	-0.1	0	0	-0.8	1.7	-0.8
X ₆	0	0	0	-0.7	-0.8	1.5

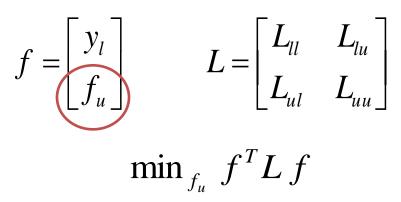
- 2. Decomposition
 - Find eigenvalues X and eigenvectors A of the matrix L
 - Map vertices to corresponding components of λ₂



Semi-Supervised Learning

$$g(f) = \sum_{i,j \in V} w_{ij} (f_i - f_j)^2 = f^T L f$$

Method 1: Fix y_{μ} , solve for f_u

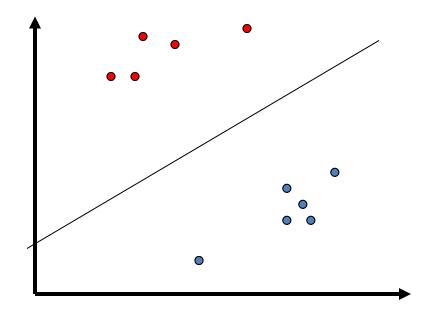


Method 2: Solve for *f*

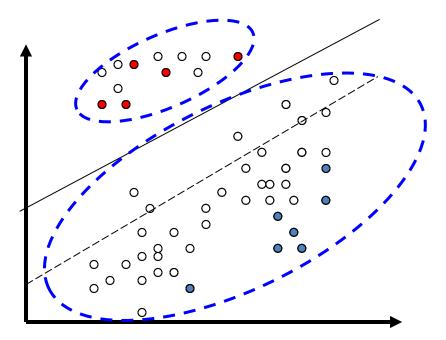
$$\min_{f} f^{T}Lf + (f - y)^{T}C(f - y)$$

 $C_{ii} = 1$ if x_i is labeled

Clustering Assumption

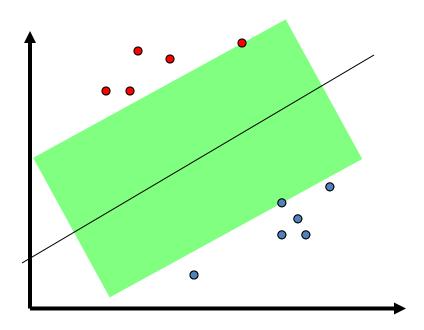


Clustering Assumption

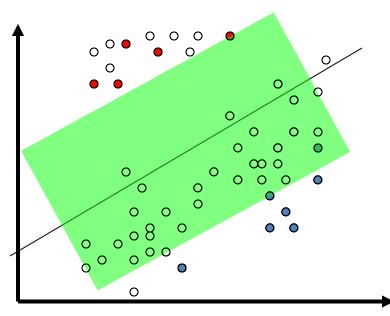


- Points with same label are connected through high density regions, thereby defining a cluster
- Clusters are separated through low-density regions

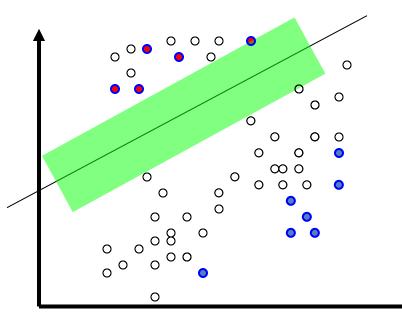
 Decision boundary given a small number of labeled examples



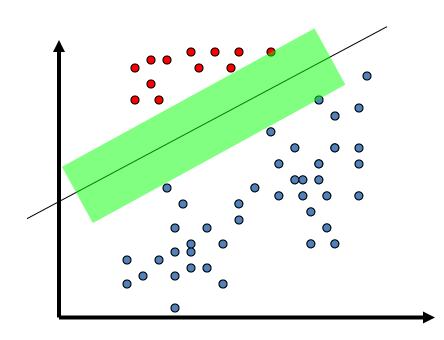
- Decision boundary given a small number of labeled examples
- How will the decision boundary change given both labeled and unlabeled examples?



- Decision boundary given a small number of labeled examples
- Move the decision boundary to place with low local density



- Decision boundary given a small number of labeled examples
- Move the decision boundary to place with low local density
- Classification results
- How to formulate this idea?

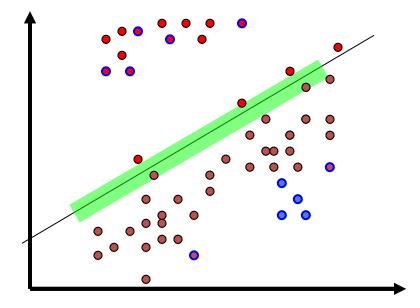


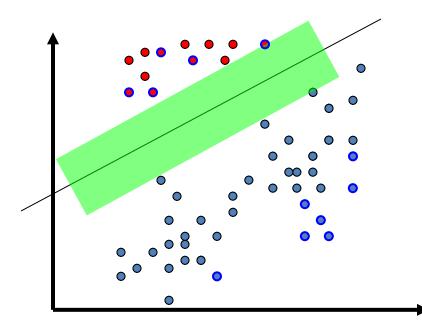
Transductive SVM: Formulation

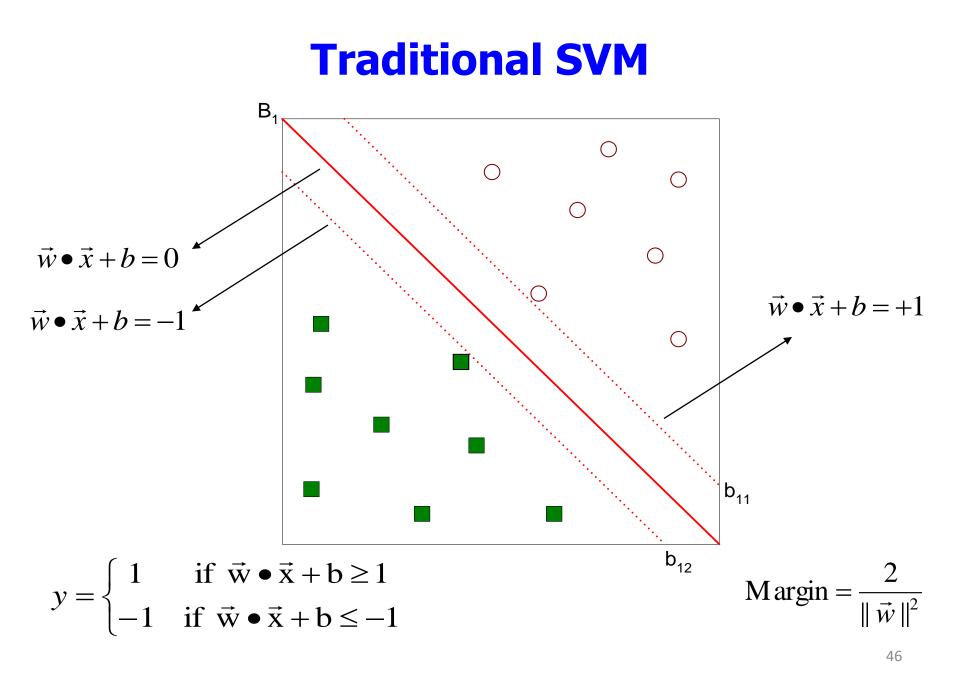
- Labeled data L: $L = \{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$
- Unlabeled data D: $D = \{(x_{n+1}), (x_{n+2}), ..., (x_{n+m})\}$
- Maximum margin principle for mixture of labeled and unlabeled data
 - For each label assignment of unlabeled data, compute its maximum margin
 - Find the label assignment whose maximum margin is maximized

Different label assignment for unlabeled data

 \rightarrow different maximum margin





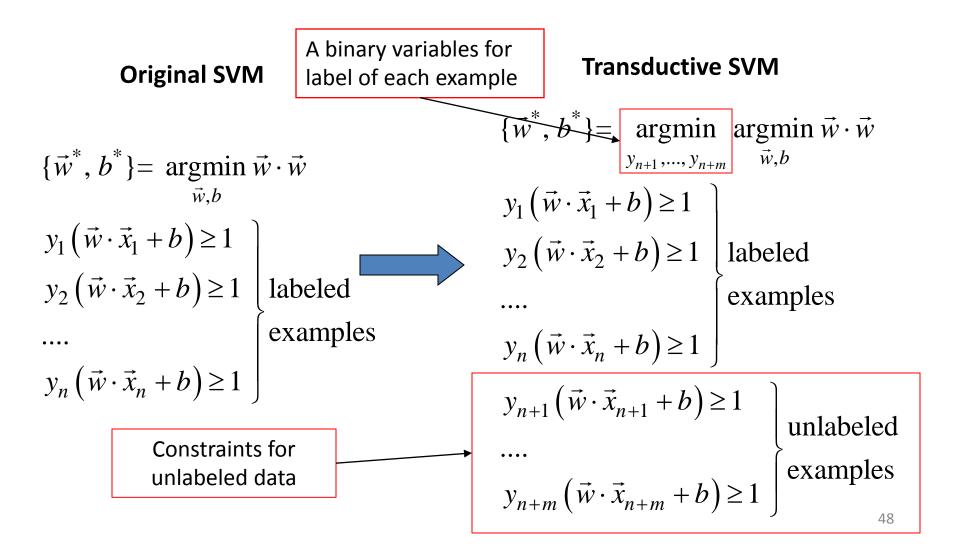


SVM Formulation

- We want to maximize: Margin = $\frac{2}{\|\vec{w}\|^2}$
 - Which is equivalent to minimizing: $\|\vec{w}\|^2 = \vec{w} \cdot \vec{w}$
 - But subjected to the following constraints:

$$\vec{w} \bullet \vec{x}_i + b \ge 1 \text{ if } y_i = 1$$
$$\vec{w} \bullet \vec{x}_i + b \le -1 \text{ if } y_i = -1$$
$$\downarrow$$
$$y_i (\vec{w} \bullet \vec{x}_i + b) \ge 1$$

Transductive SVM: Formulation

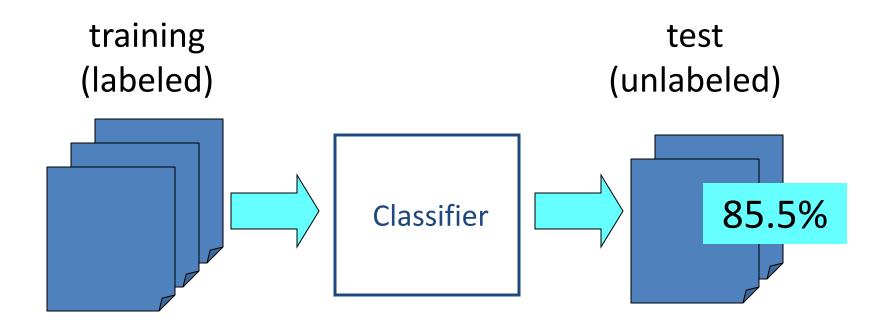


Alternating Optimization

$\{\vec{w}^*, b^*\} = \operatorname*{argmin}_{y_{n+1}, \dots, y_{n+m}} \operatorname*{argmin}_{\vec{w}, b} \vec{w} \cdot \vec{w}$		
y_{n+1}, \dots, y_{n+1} $y_1 \left(\vec{w} \cdot \vec{x}_1 + b \right) \ge 1$ $y_2 \left(\vec{w} \cdot \vec{x}_2 + b \right) \ge 1$ \dots		
$y_2\left(\vec{w}\cdot\vec{x}_2+b\right)\geq 1$	labeled	
••••	examples	
$y_n\left(\vec{w}\cdot\vec{x}_n+b\right)\geq 1$		
$y_{n+1}\left(\vec{w}\cdot\vec{x}_{n+1}+b\right) \ge 1$ unlabeled		
$ y_{n+m} \left(\vec{w} \cdot \vec{x}_{n+m} + b \right) \ge 1 $		

- Step 1: fix y_{n+1},..., y_{n+m}, learn weights w
- Step 2: fix weights w, try to predict y_{n+1},..., y_{n+m}

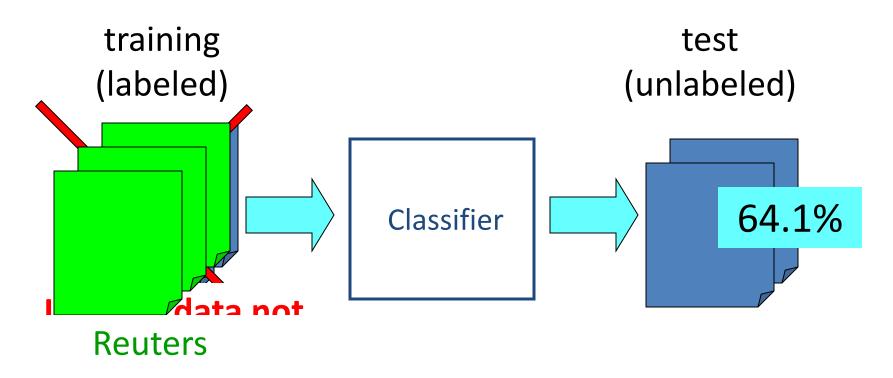
Standard Supervised Learning



New York Times

New York Times

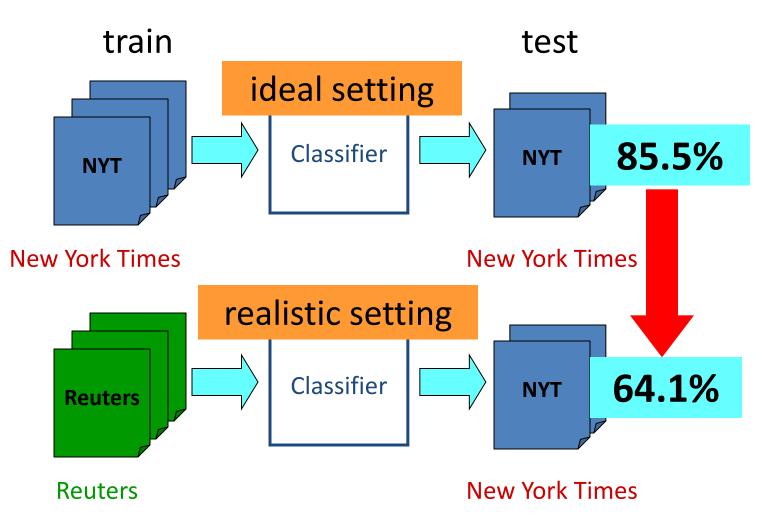
In Reality.....



New York Times

New York Times

Domain Difference → **Performance Drop**



Other Examples

• Spam filtering

- Public email collection \rightarrow personal inboxes
- Intrusion detection
 - Existing types of intrusions \rightarrow unknown types of intrusions

• Sentiment analysis

- Expert review articles \rightarrow blog review articles

• The aim

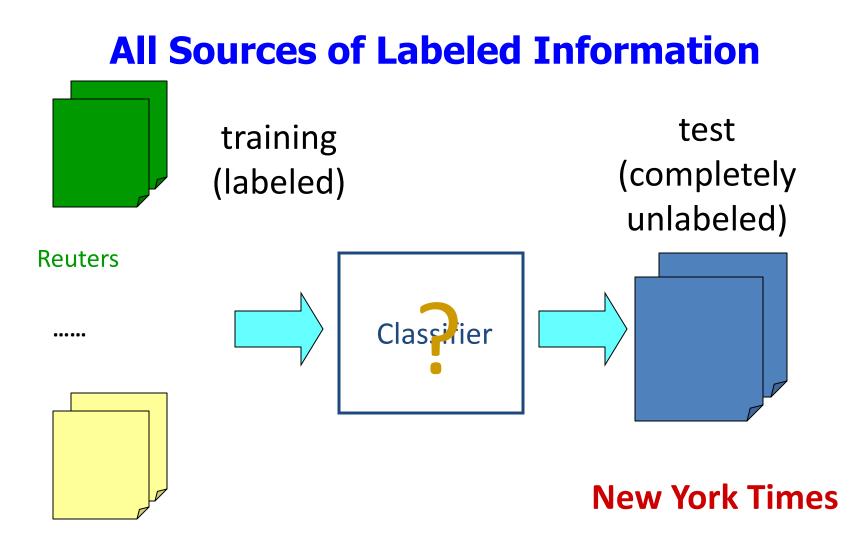
To design learning methods that are aware of the training and test domain difference

• Transfer learning

Adapt the classifiers learnt from the source domain to the new domain

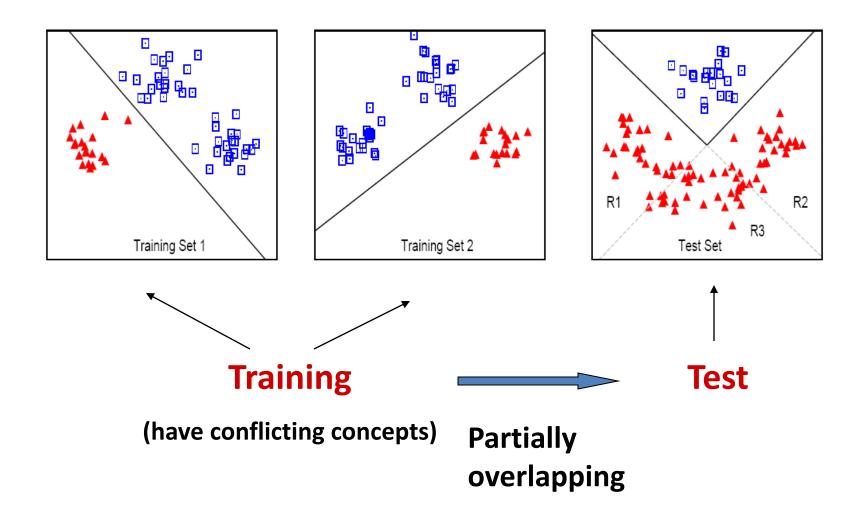
Approaches to Transfer Learning

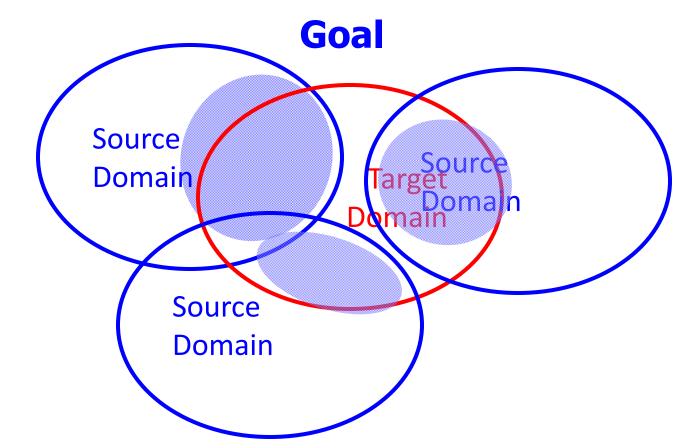
Transfer learning approaches	Description
Instance-transfer	To re-weight some labeled data in a source domain for use in the target domain
Feature-representation-transfer	Find a "good" feature representation that reduces difference between a source and a target domain or minimizes error of models
Model-transfer	Discover shared parameters or priors of models between a source domain and a target domain
Relational-knowledge-transfer	Build mapping of relational knowledge between a source domain and a target domain.



Newsgroup

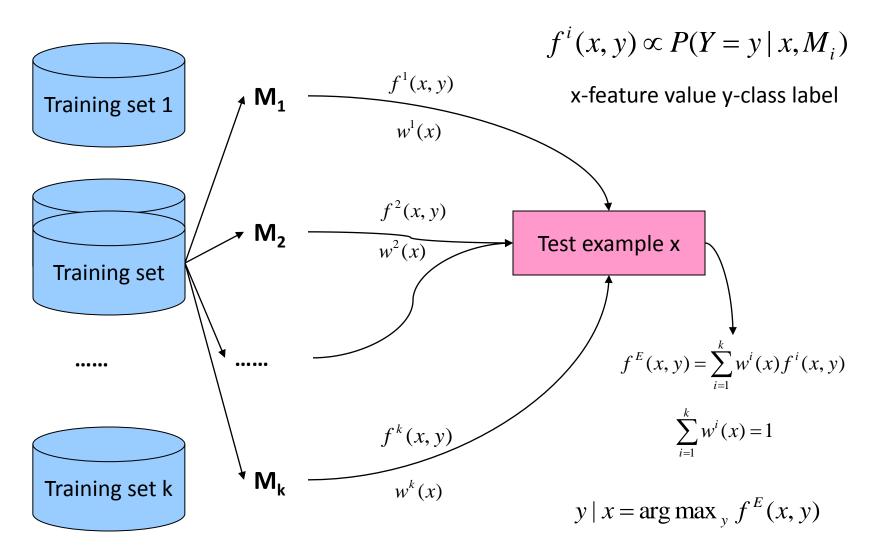
A Synthetic Example



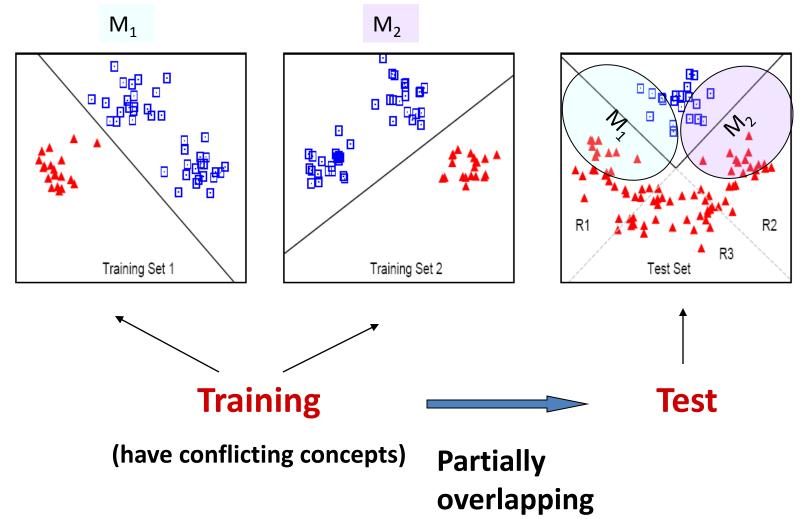


• To unify knowledge that are consistent with the test domain from multiple source domains (models)

Locally Weighted Ensemble

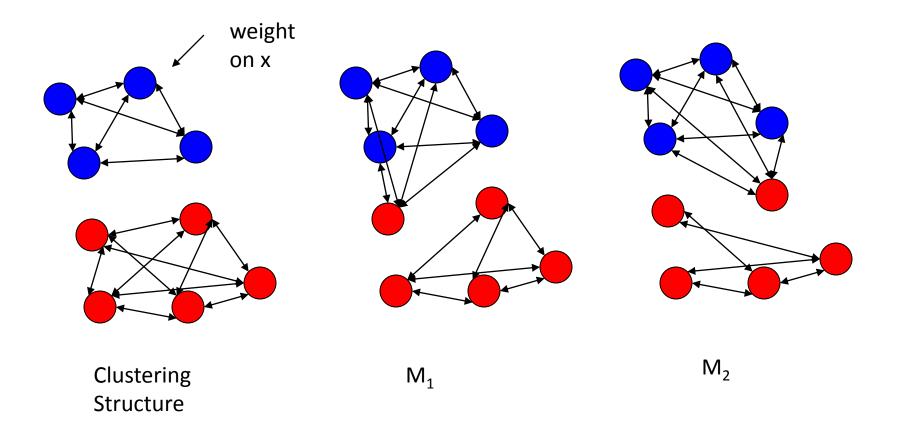


Synthetic Example Revisited

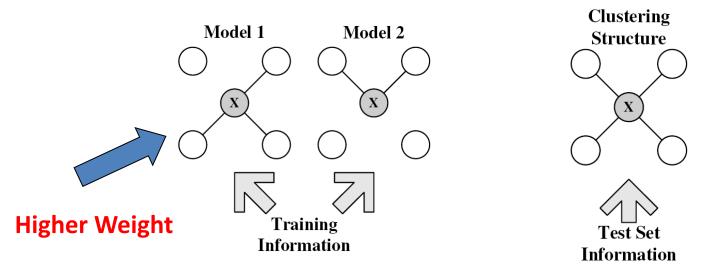


Graph-based Heuristics

- Graph-based weights approximation
 - Map the structures of models onto test domain



Graph-based Heuristics

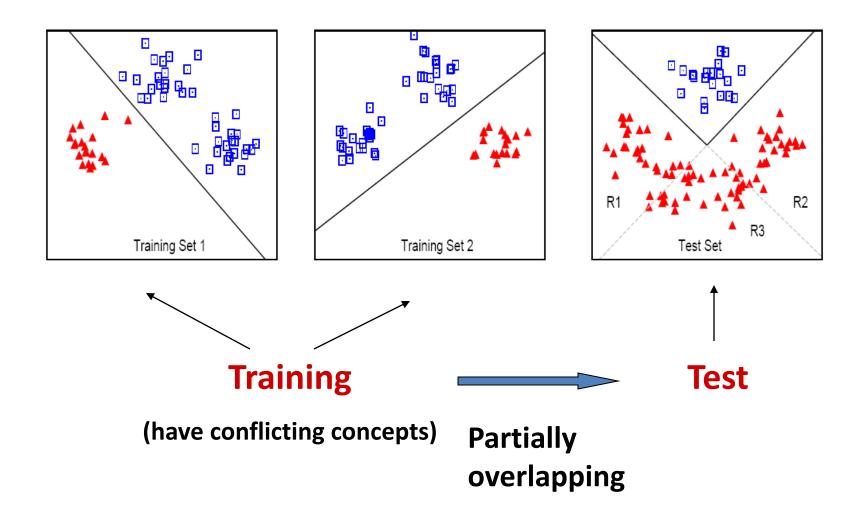


Local weights calculation

 Weight of a model is proportional to the similarity between its neighborhood graph and the clustering structure around x.

$$w_{M,\mathbf{x}} \propto s(G_M, G_T; \mathbf{x}) = \frac{\sum_{v_1 \in V_M} \sum_{v_2 \in V_T} \mathbf{1}\{v_1 = v_2\}}{|V_M| + |V_T|}$$

A Synthetic Example



Experiments on Synthetic Data

