Clustering Lecture 9: Other Topics

Jing Gao SUNY Buffalo

Outline

• Basics

- Motivation, definition, evaluation

Methods

- Partitional
- Hierarchical
- Density-based
- Mixture model
- Spectral methods

Advanced topics

- Clustering ensemble
- Clustering in MapReduce
- Subspace clustering, co-clustering, semi-supervised clustering

Clustering High-Dimensional Data

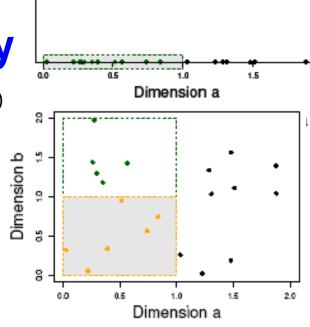
High-dimensional data everywhere

- Many applications: text documents, DNA microarray data
- Major challenges:
 - Many irrelevant dimensions may mask clusters
 - Distance measure becomes meaningless—due to equi-distance
 - Clusters may exist only in some subspaces

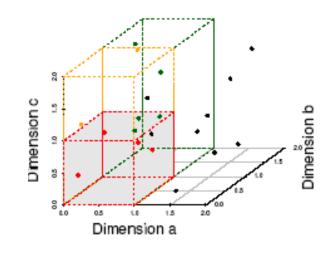
The Curse of Dimensionality

(graphs adapted from Parsons et al. KDD Explorations 2004)

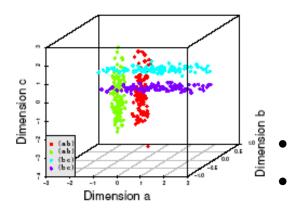
- Data in only one dimension is relatively packed
- Adding a dimension "stretch" the points across that dimension, making them further apart
- Adding more dimensions will make the points further apart—high dimensional data is extremely sparse
- Distance measure becomes meaningless due to equi-distance



(b) 6 Objects in One Unit Bin



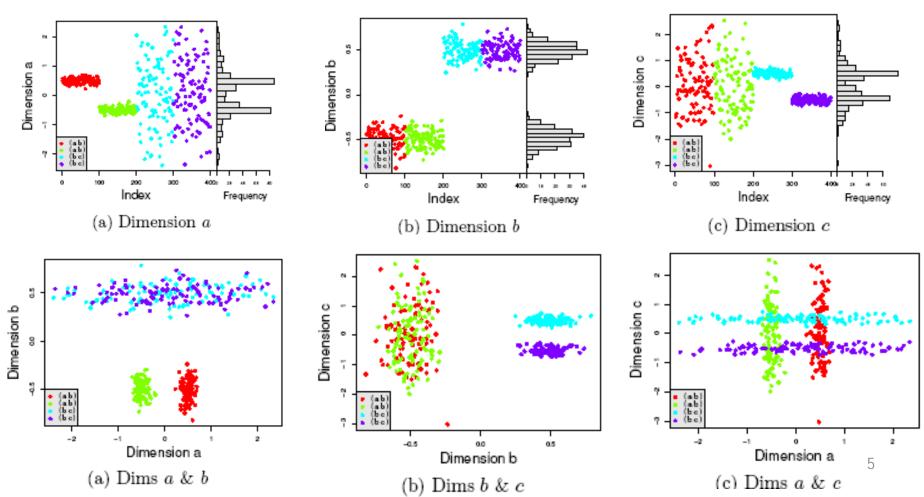
(c) 4 Objects in One Unit Bin



Why Subspace Clustering?

(adapted from Parsons et al. SIGKDD Explorations 2004)

- Clusters may exist only in some subspaces
- Subspace-clustering: find clusters in all the subspaces



CLIQUE (Clustering In QUEst)

- Agrawal, Gehrke, Gunopulos, Raghavan (SIGMOD'98)
- Automatically identifying subspaces of a high dimensional data space that allow better clustering than original space
- Basic idea of CLIQUE
 - It partitions each dimension into the same number of equal length interval
 - It partitions an high dimensional data space into non-overlapping rectangular units
 - A unit is dense if the fraction of total data points contained in the unit exceeds the input model parameter
 - A cluster is a maximal set of connected dense units within a subspace

CLIQUE: The Major Steps (1)

Grid density

 Partition the data space and find the number of points that lie inside each cell of the partition

• Dense subspace

- Identify the subspaces that contain clusters using the Apriori principle
- Dense subspace in (*d*+1)-dimension should be dense in *d*dimension
- Start with 1-d units and find the dense units in all the subspaces

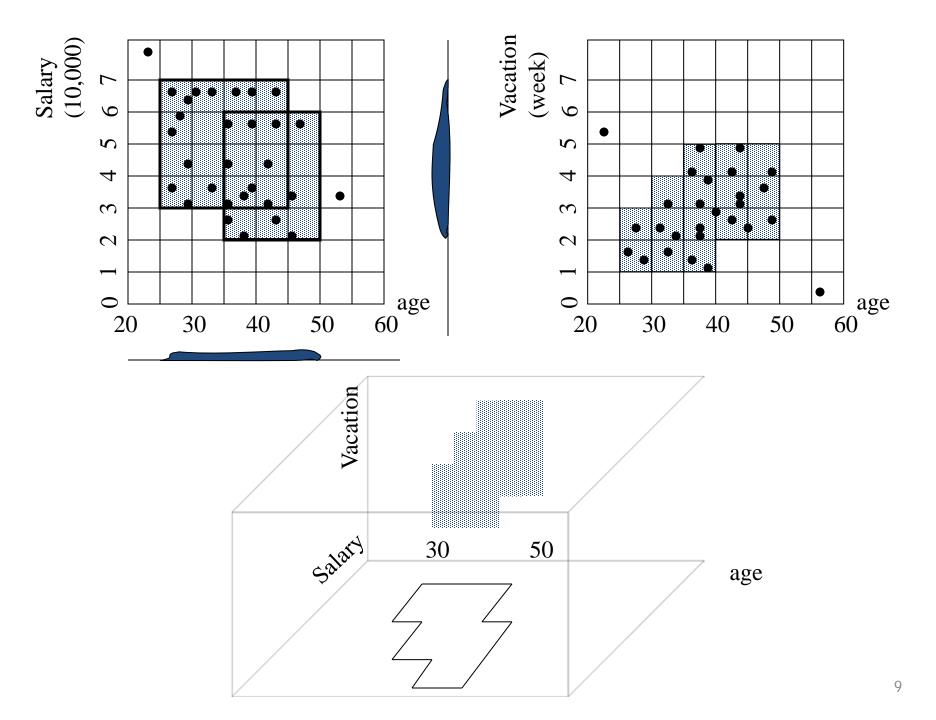
CLIQUE: The Major Steps (2)

• Identify clusters

- Determine dense units in all subspaces
- Determine connected dense units in all subspaces

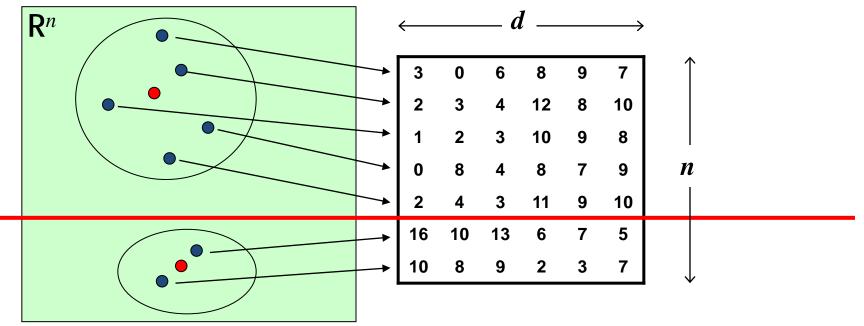
Generate minimal description for the clusters

- Determine maximal regions that cover a cluster of connected dense units for each cluster
- Determination of minimal cover for each cluster



Clustering Definition Revisited

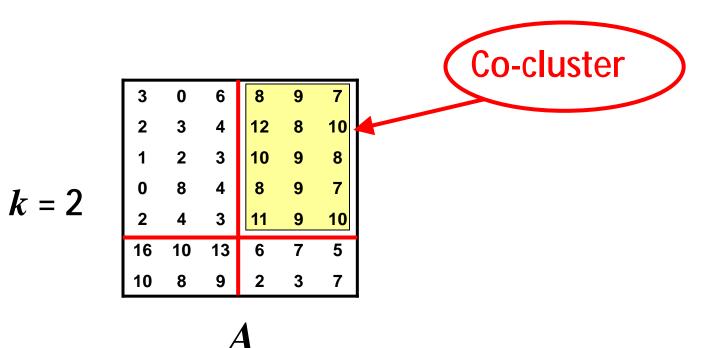
- *n* points in **R**^d
- Group them to k clusters
- Represent them by a matrix $A\hat{I} R^{n \times d}$
 - A point corresponds to a row of A
- Clustering: Partition the rows to k clusters



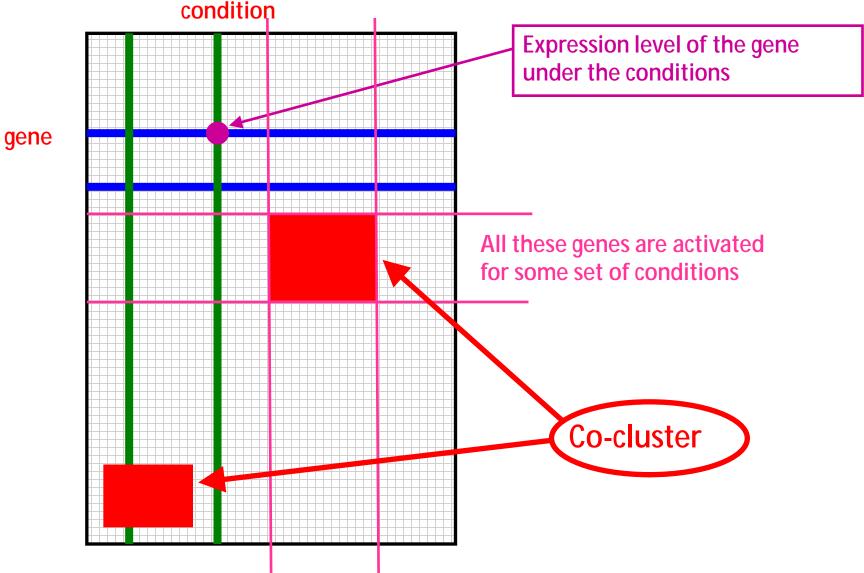
Co-Clustering

Co-Clustering

• Cluster rows and columns of A simultaneously:



Co-Clusters in Gene Expression Data



K-Means Objective Function Revisited

3	0	6	8	9	7
2	3	4	12	8	10
1	2	3	10	9	8
0	8	4	8	7	9
2	4	3	11	9	10
16	10	13	6	7	5
10	8	9	2	3	7

3.4 9.8 8.4 8.8 1.6 4 9.8 8.4 1.6 3.4 8.8 9.8 8.4 3.4 1.6 8.8 8.8 1.6 3.4 9.8 8.4 8.8 13 11 9 5 6 13 11 5 9 4 6

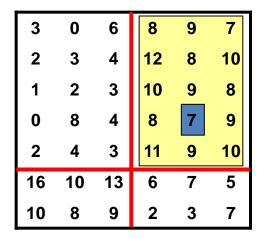
Original data points A

Data representation A'

- In A', every point in A is replaced by the corresponding cluster center
- •The quality of the clustering is measured by computing distances between the data entries of ${\bf A}$ and ${\bf A'}$

$$\min \mathop{a}_{j} \mathop{a}_{x^{j} C_{k}}^{c} (x - m_{k})^{2} \qquad \Longrightarrow \qquad \min \mathop{a}_{i} \mathop{a}_{j}^{c} (A_{ij} - A'_{ij})^{2}$$

Co-Clustering Objective Function



3	3	3	9	9	9
3	3	3	9	9	9
3	3	3	9	9	9
3	3	3	9	9	9
3	3	3	9	9	9
11	11	11	5	5	5
11	11	11	5	5	5

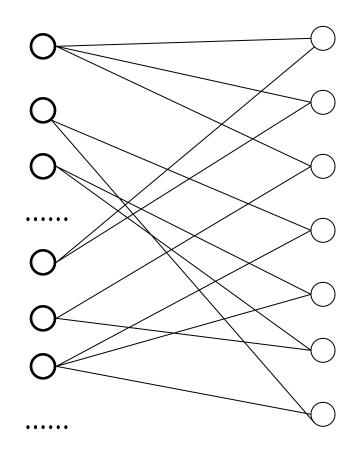
- In A' every point in A is replaced by the corresponding co-cluster center
- \bullet The quality of the clustering is measured by computing distances between the data in the cells of A and A'

$$\min \mathop{\text{a}}_{i,j} \mathop{\text{a}}_{x_{ij}} (x_{ij} - m_k)^2 \qquad \Longrightarrow \qquad \min \mathop{\text{a}}_{i} \mathop{\text{a}}_{j} (A_{ij} - A'_{ij})^2$$

Co-Clustering by Bipartite Graph Partitioning

• Example

- Find co-clusters in documents
- Co-clusters indicate that a set of keywords frequently occur together in a set of documents
- Bipartite graph
 formulation
 - Document-word association
- Bipartite graph partitioning
 - Result partitions are coclusters



Probabilistic Models for Co-Clustering

Mixture model for clustering

- first pick one of the components with probability π_k
- then draw a sample x_i from that component distribution

• Co-clustering

- first pick one of the row clusters with probability P_r
- first pick one of the column clusters with probability P_c
- then draw a sample x_i from the co-cluster distribution (combination of row and column clusters forms a co-cluster)

Semi-supervised Clustering: Problem Definition

- Input:
 - A set of unlabeled objects, each described by a set of attributes
 - A small amount of domain knowledge
- Output:
 - A partitioning of the objects into *k* clusters
- Objective:
 - Maximum intra-cluster similarity
 - Minimum inter-cluster similarity
 - High consistency between the partitioning and the domain knowledge

Semi-Supervised Clustering

• Domain knowledge

- Partial label information is given
- Apply some constraints (must-links and cannot-links)
- Approaches
 - Search-based Semi-Supervised Clustering
 - Alter the clustering algorithm using the constraints
 - Similarity-based Semi-Supervised Clustering
 - Alter the similarity measure based on the constraints
 - Combination of both

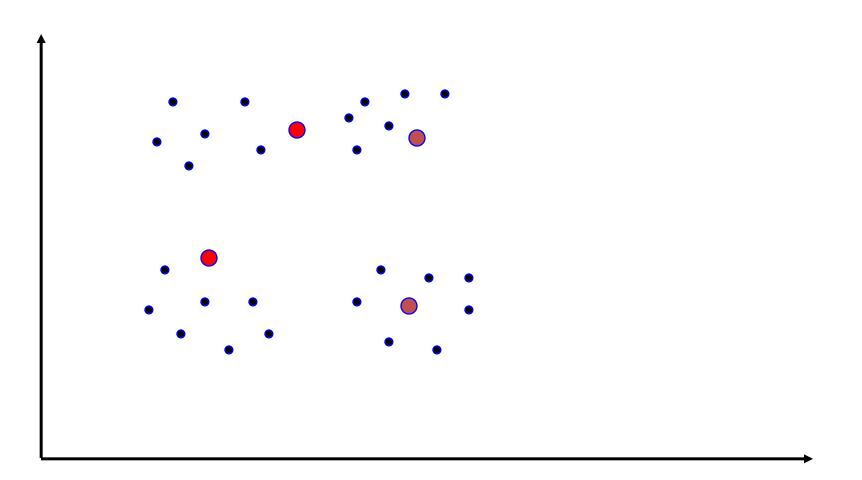
Semi-Supervised K-Means for partially labeled data

• Seeded K-Means:

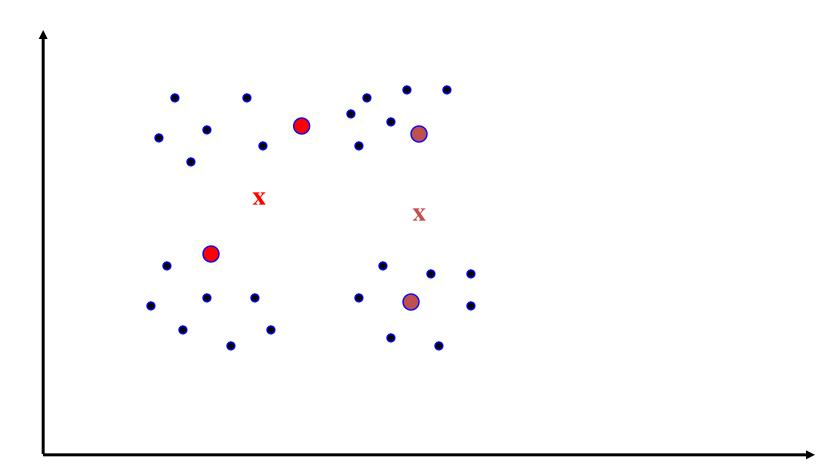
- Labeled data provided by user are used for initialization: initial center for cluster *i* is the mean of the seed points having label *i*.
- Seed points are only used for initialization, and not in subsequent steps.

• Constrained K-Means:

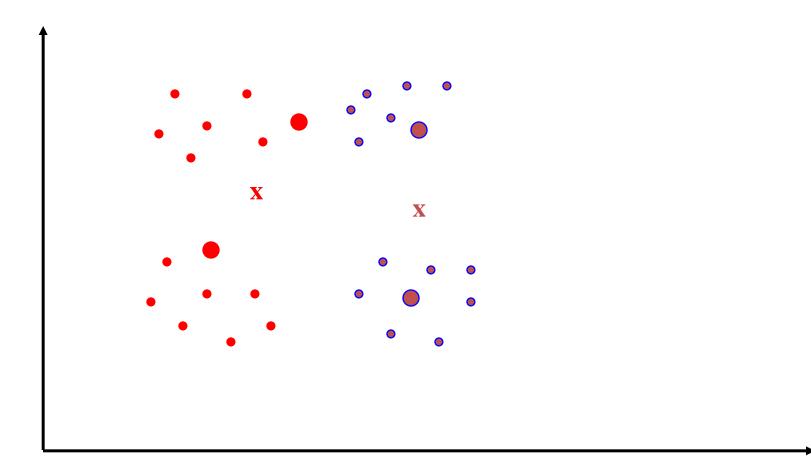
- Labeled data provided by user are used to initialize K-Means algorithm.
- Cluster labels of seed data are kept unchanged in the cluster assignment steps, and only the labels of the nonseed data are re-estimated.



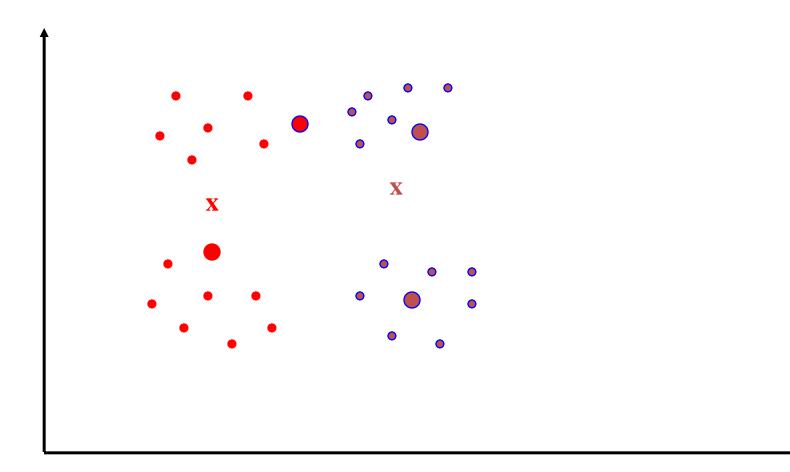
Initialize Means Using Labeled Data



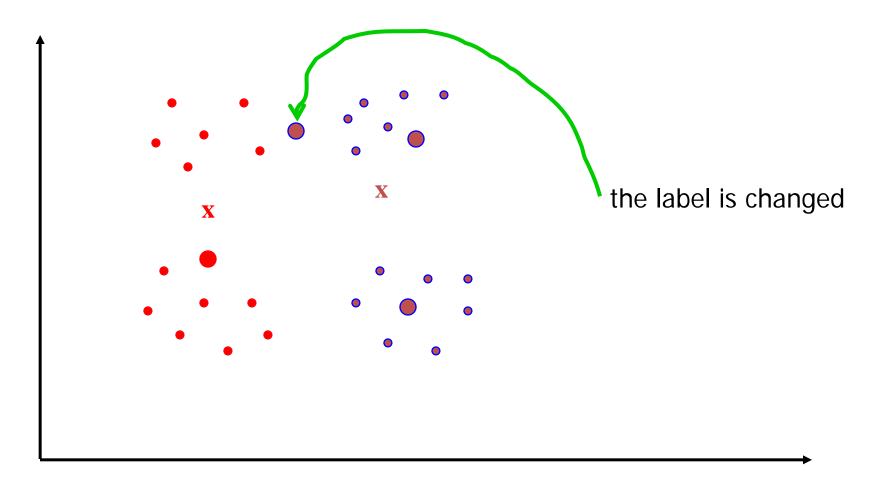
Assign Points to Clusters

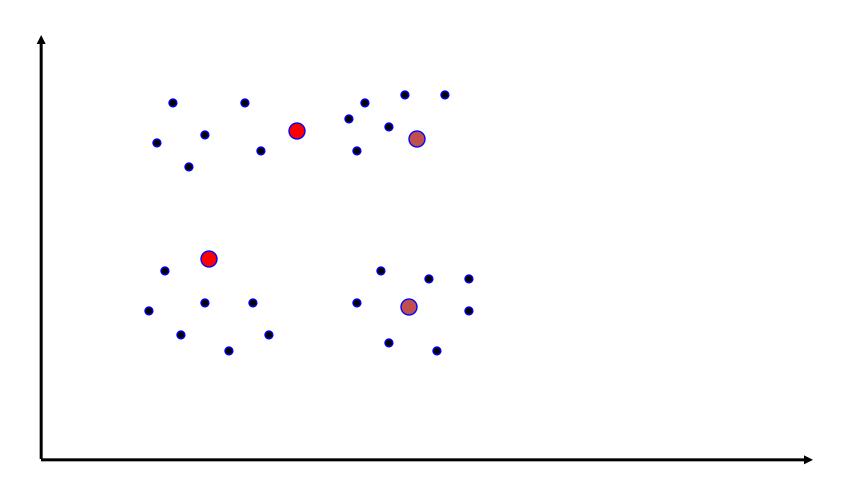


Re-estimate Means

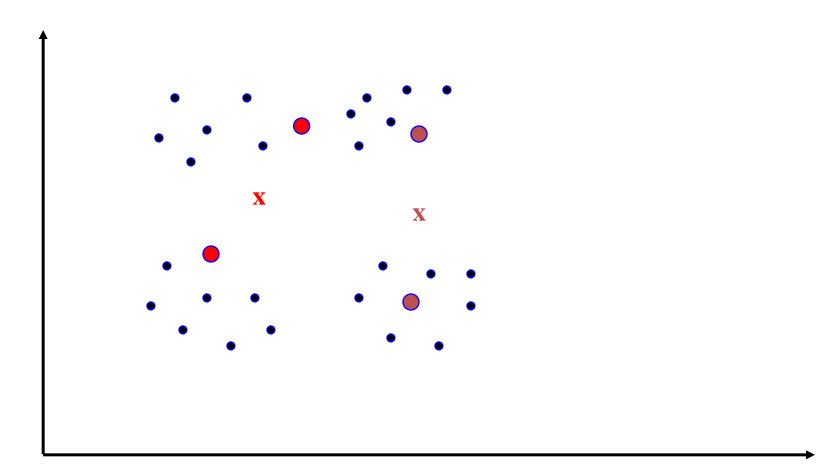


Assign points to clusters and Converge

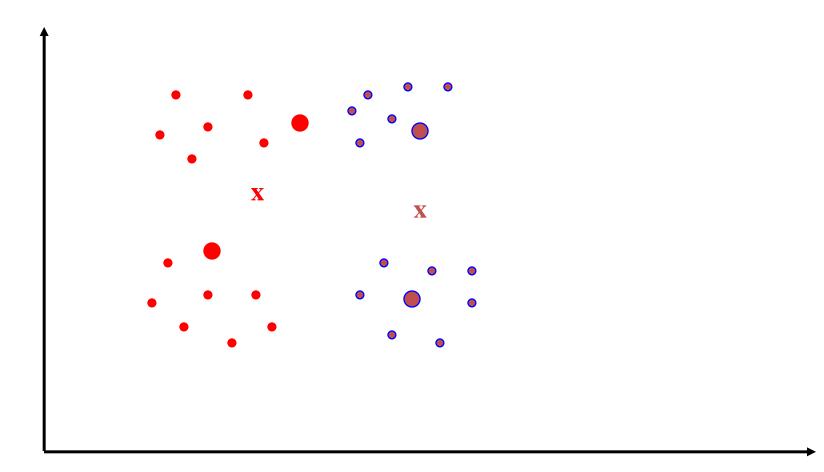




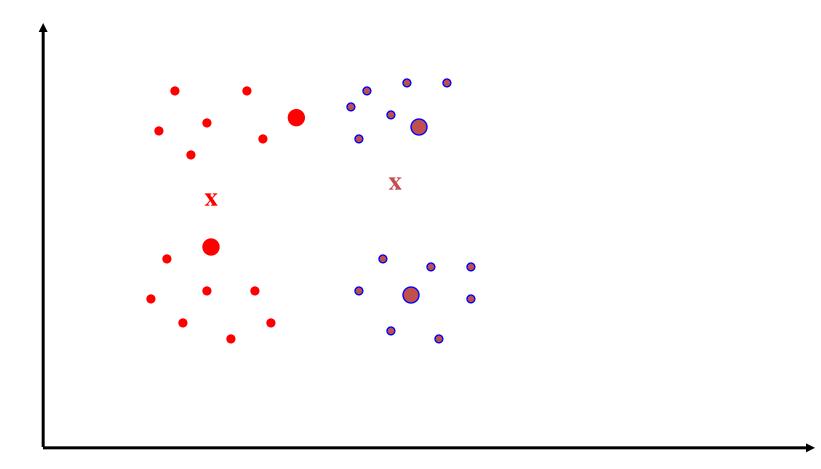
Initialize Means Using Labeled Data



Assign Points to Clusters



Re-estimate Means and Converge



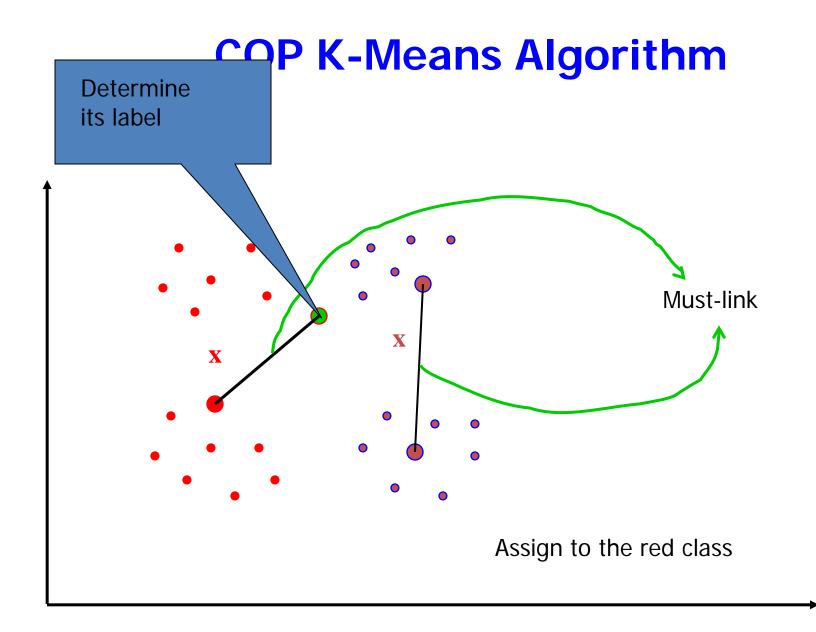
• COP K-Means [Wagstaff *et al.*: ICML01] is K-Means with mustlink (must be in same cluster) and cannot-link (cannot be in same cluster) constraints on data points.

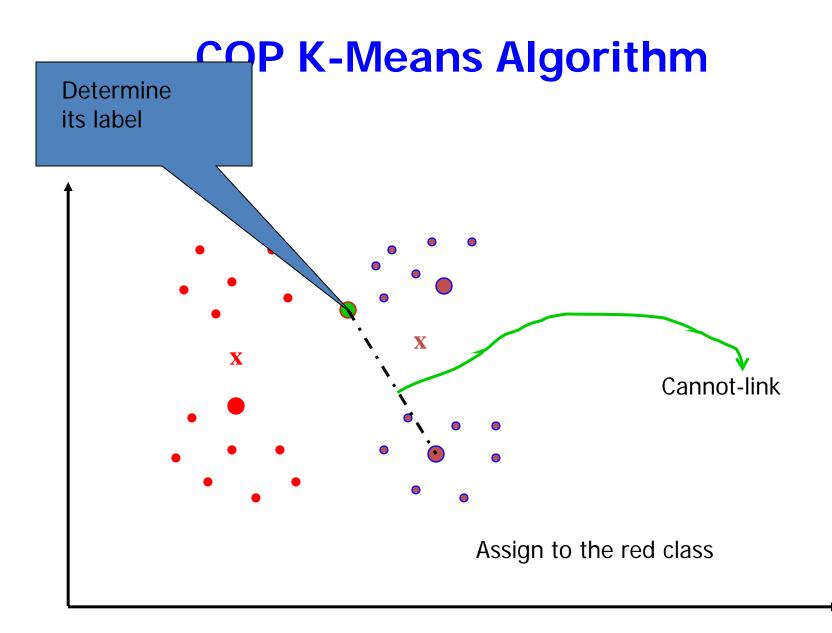
• Initialization

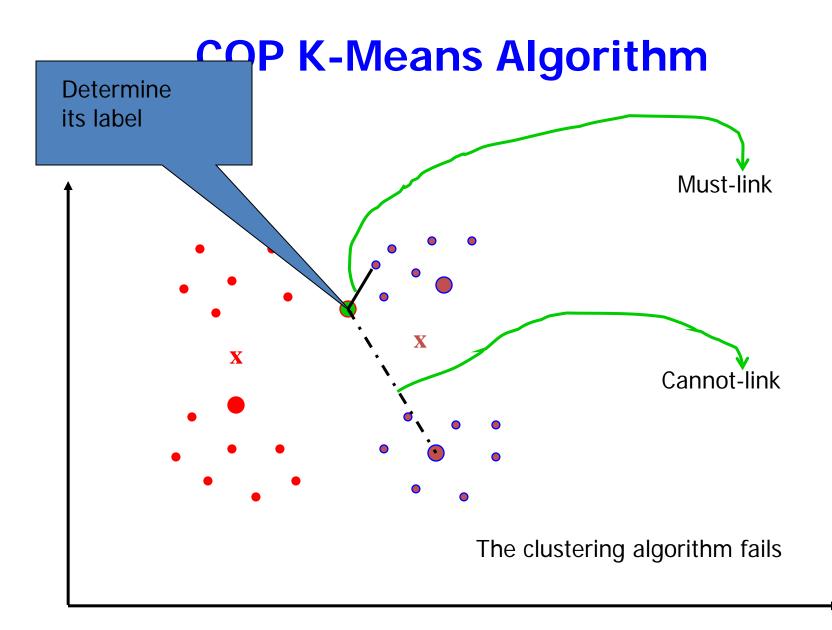
– Cluster centers are chosen randomly

• Algorithm

 During cluster assignment step in COP-K-Means, a point is assigned to its nearest cluster without violating any of its constraints. If no such assignment exists, abort.



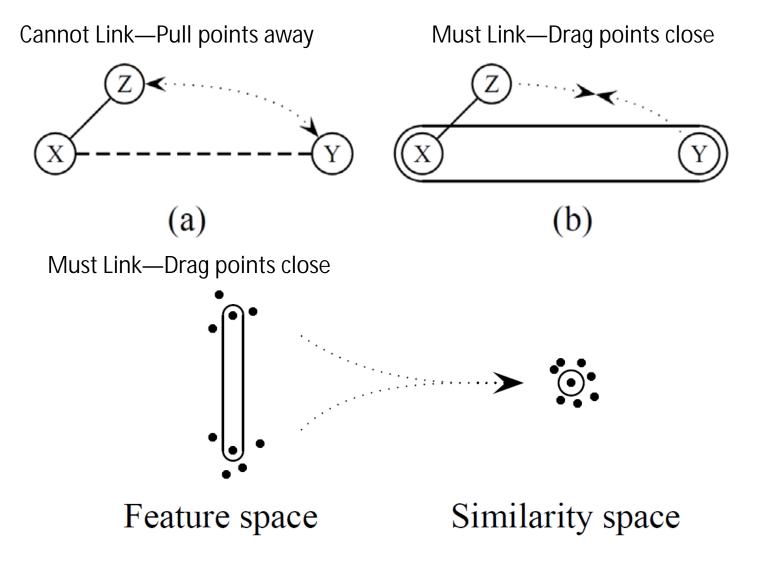




Similarity-Based Semi-Supervised Clustering

- Train an adaptive similarity function to fit the labeled data
- Use a standard clustering algorithm with the trained similarity function to cluster the unlabeled data
- Adaptive similarity functions:
 - Altered similarity matrix [Kamvar:IJCAI03]
 - Trained Mahalanobis distance [Xing:NIPS02]
 - Altered Euclidian distance [Klein:ICML02]
- Clustering algorithms:
 - Spectral clustering [Kamvar:IJCAI03]
 - Complete-link agglomerative [Klein:ICML02]
 - K-means [Xing:NIPS02]

Using Constraints to Alter Similarity



Altered similarity matrix

- Paper: Spectral learning. Kamvar et al.
- Graph based clustering
 - W: similarity matrix
 - D: degree matrix (row sum of W)
- Key idea: alter the similarity matrix W based on the domain knowledge

Semi-supervised spectral clustering

- 1. Compute the similarity matrix W and D
- 2. For each pair of must-link (i,j), assign $W_{ij} = W_{ji} = 1$
- 3. For each pair of cannot-link (i,j), assign $W_{ij} = W_{ji} = 0$
- 4. Form the matrix $D^{-0.5}WD^{-0.5}$
- 5. Form the matrix Y consisting of the first K eigenvectors of $D^{-0.5}WD^{-0.5}$
- 6. Normalize Y so that all the rows have unit lengths
- 7. Run K-Means on the rows to get the K clusters

Distance metric learning

Paper: Distance metric learning, with application to clustering with side-information. E. Xing, *et al.*

Given two sets of pairs S and D:

S:
$$(x_i, x_j) \in S$$
, if x_i and x_j are similar
D: $(x_i, x_j) \in D$, if x_i and x_j are disimilar

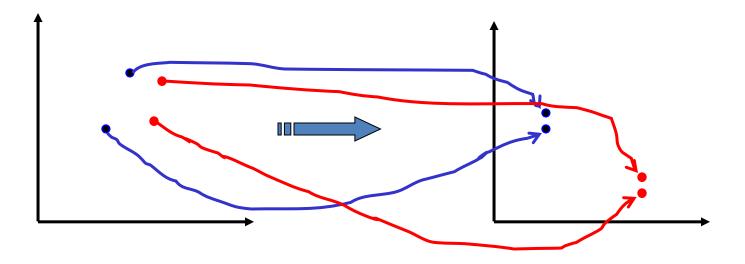
Compute a distance metric which respects these two sets

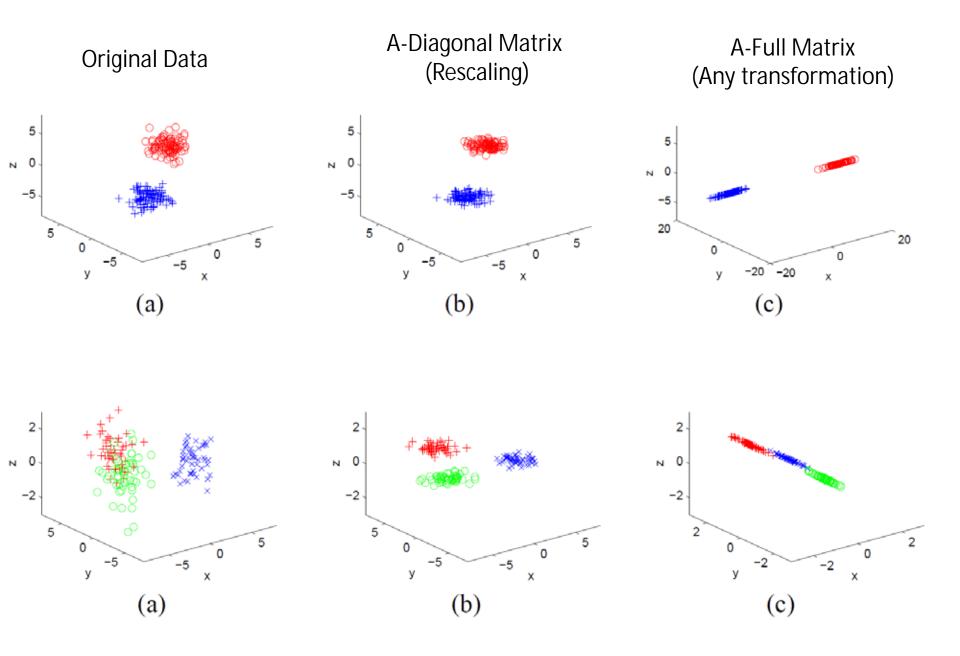
Distance metric learning

Define a new distance measure of the form:

$$d(x, y) = \|x - y\|_{A} = \sqrt{(x - y)^{T} A(x - y)} \qquad A \ge 0$$

 $x \rightarrow A^{1/2}x$ Linear transformation of the original data





Source: E. Xing, et al. Distance metric learning

Take-away Message

- Subspace clustering tries to find clusters in subspaces in high-dimensional data
- Co-clustering tries to find strong associations among a set of objects with respect to a set of attributes
- Semi-supervised clustering tries to improve clustering based on existing domain knowledge (labeled data or pairwise constraints)
- Many other topics to be explored for clustering