Clustering Lecture 7: Clustering Ensemble

Jing Gao SUNY Buffalo

Outline

• Basics

- Motivation, definition, evaluation

Methods

- Partitional
- Hierarchical
- Density-based
- Mixture model
- Spectral methods

Advanced topics

- Clustering ensemble
- Clustering in MapReduce
- Semi-supervised clustering, subspace clustering, co-clustering, etc.

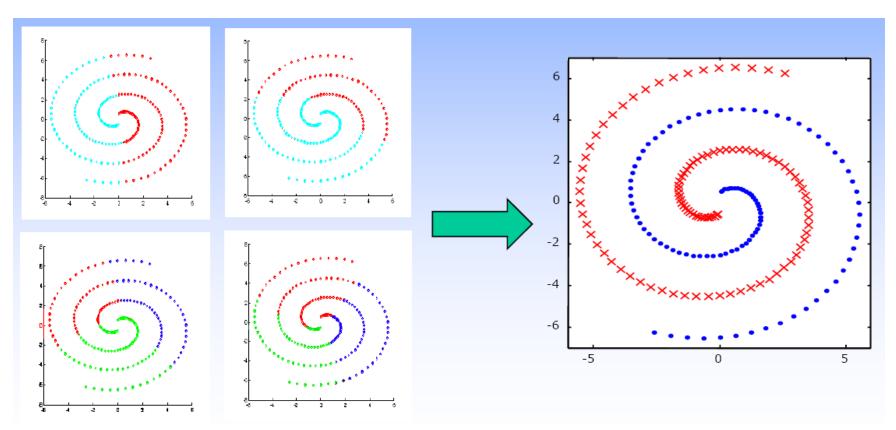
Clustering Ensemble

- Problem
 - Given an unlabeled data set $D=\{x_1, x_2, \dots, x_n\}$
 - An ensemble approach computes:
 - A set of clustering solutions {C₁, C₂,..., C_k}, each of which maps data to a cluster: f_j(x)=m
 - A unified clustering solutions *f** which combines base clustering solutions by their consensus
- Challenges
 - The correspondence between the clusters in different clustering solutions is unknown

Motivations

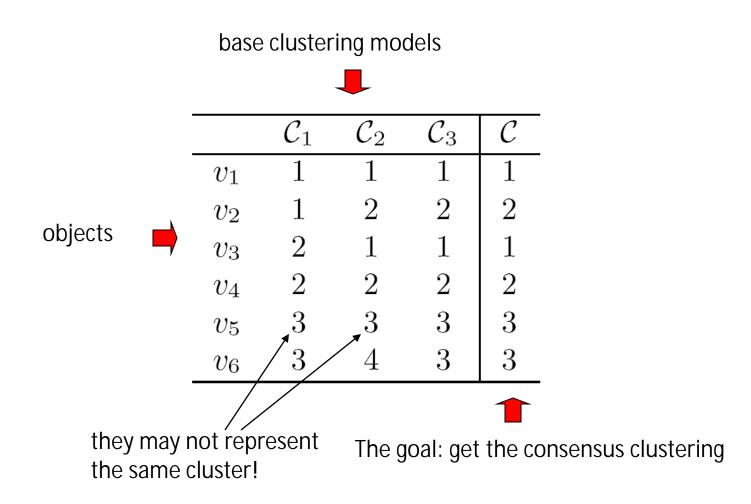
• Goal

- Combine "weak" clusterings to a better one



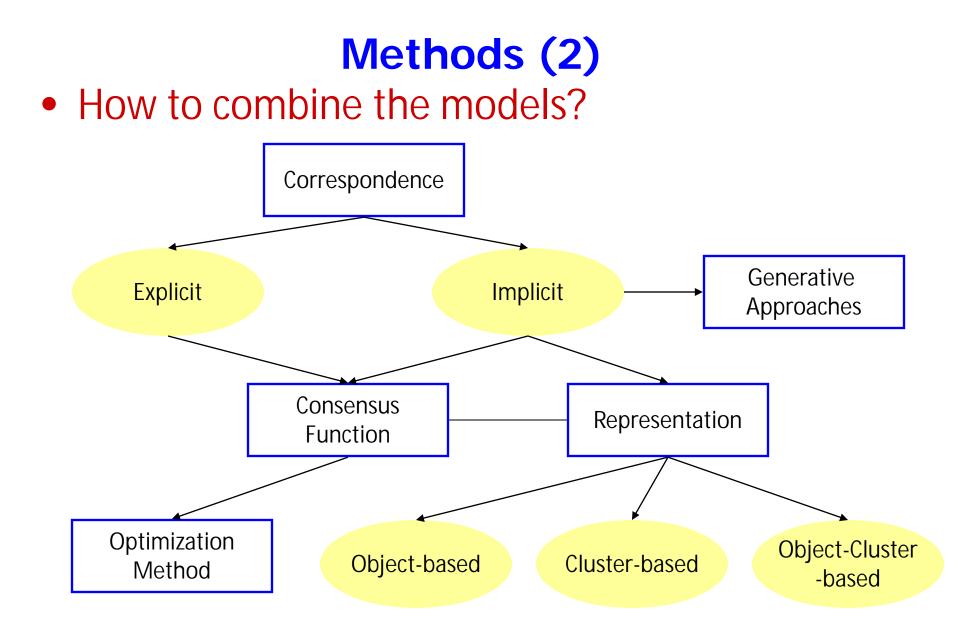
[PTJ05]

An Example



Methods (1)

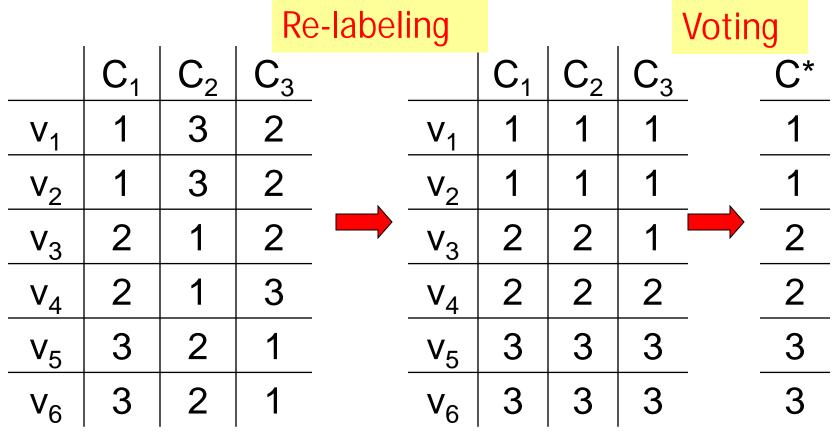
- How to get base models?
 - Bootstrap samples
 - Different subsets of features
 - Different clustering algorithms
 - Random number of clusters
 - Random initialization for K-means
 - Incorporating random noises into cluster labels
 - Varying the order of data in on-line methods



Hard Correspondence (1)

• Re-labeling+voting

 Find the correspondence between the labels in the partitions and fuse the clusters with the same labels by voting [DuFr03,DWH01]



8

Hard Correspondence (2)

- Details
 - Minimize match costs
 - Match to a reference clustering or match in a pairwise manner
- Problems
 - In most cases, clusters do not have one-to-one correspondence

Soft Correspondence* (1)

• Notations

 $- M_i S_i = M$

*[LZY05]

- Membership matrix M_1 , M_2 , ..., M_k
- Membership matrix of consensus clustering M
- Correspondence matrix S₁, S₂, ..., S_k
- C₂ Μ S_2 M_2 3 2 V_1 0ù 0 0 1ù 2 3 V_2 0ú 1ú 0 0 0ù 0ú 0ú 2 1 0ú 2 1 0 V_3 1^Ú 1Ú Х 0 0ú 1 0 3 2 1 0ģ V_4 0 1ú 0 0ú 1 u 1ģ ú 0ģ 3 2 1 0 V_5 3 2 1 V_6

10

Soft Correspondence (2)

Consensus function

Minimize disagreement

$$\min \mathbf{a}_{j=1}^{k} || M - M_{j}S_{j} ||^{2}$$

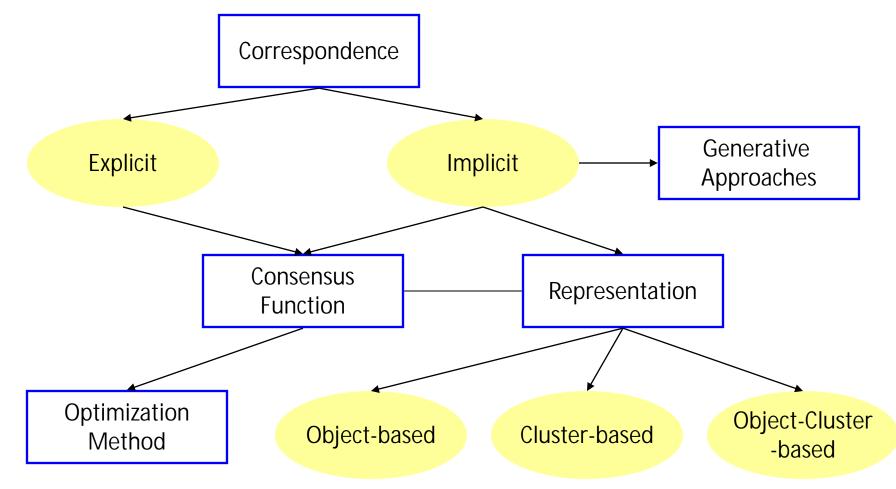
- Constraint 1: column-sparseness
- Constraint 2: each row sums up to 1
- Variables: M, S_1, S_2, \dots, S_k

• Optimization

- EM-based approach
- Iterate until convergence
 - Update S using gradient descent

• Update *M* as
$$M = \frac{1}{k} \mathbf{a}_{j=1}^{k} M_{j} S_{j}$$

• How to combine the models?

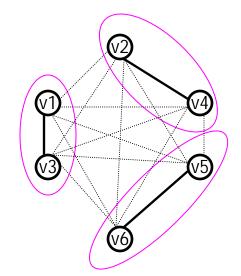


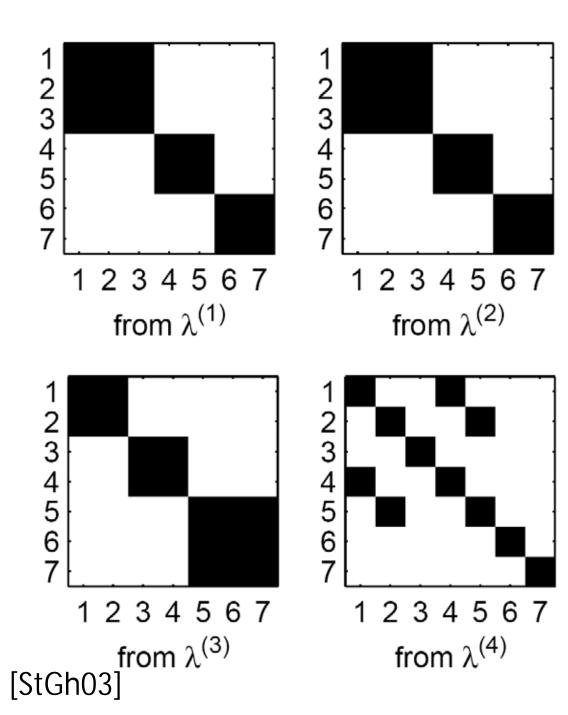
Object-based Methods (1)

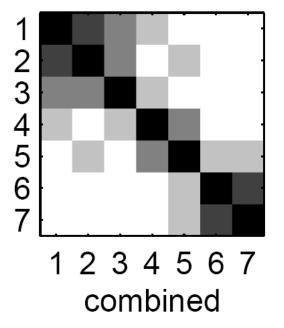
- Clustering objects
 - Define a similarity or distance measure:
 - Similarity between two objects can be defined as the percentage of clusterings that assign the two objects into same clusters
 - Distance between two objects can be defined as the percentage of clusterings that assign the two objects into different clusters
 - Conduct clustering on the new similarity (distance) matrix
 - Result clustering represents the consensus
 - Can view this approach as clustering in the new feature space where clustering results are the categorical features

Object-based Methods (2)

_		\mathcal{C}_1	\mathcal{C}_2	\mathcal{C}_3	\mathcal{C}
	v_1	1	1	1	1
	v_2	1	2	2	2
	v_3	2	1	1	1
	v_4	2	2	2	2
	v_5	3	3	3	3
	v_6	3	4	3	3







Co-association matrix T

Consensus Function

- Minimizing disagreement
 - Information-theoretic [StGh03] $\max \frac{1}{k} \overset{\circ}{a}_{j=1}^{k} NMI(T,T_{j}) \qquad NMI(T,T_{j}) = \frac{I(T,T_{j})}{\sqrt{H(T)H(T_{j})}}$
 - Median partition [LDJ07]

$$\overline{T} = \frac{1}{k} \mathbf{\mathring{a}}_{j=1}^{k} T_{j} \qquad \min \|\overline{T} - T\|^{2}$$

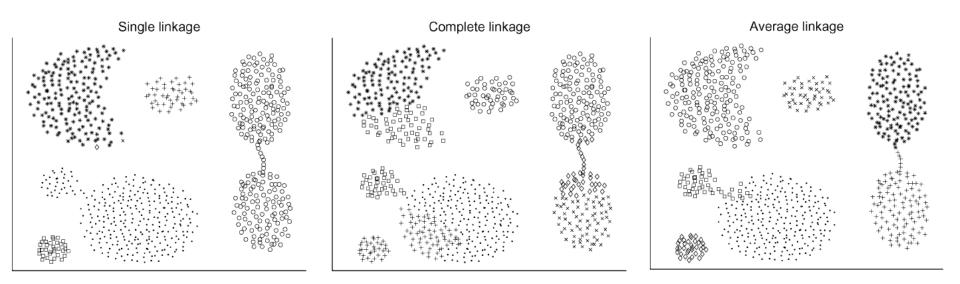
- Correlation clustering [GMT07]

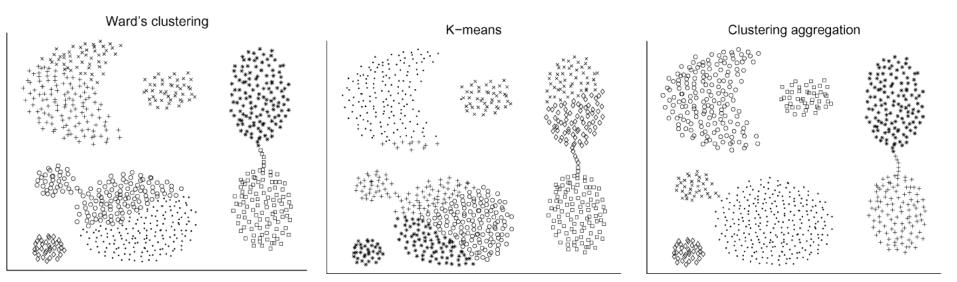
$$\max \mathbf{a}_{C(u)=C(v)} \overline{T}_{uv} + \mathbf{a}_{C(u)^{1}C(v)} (1 - \overline{T}_{uv})$$

Optimization Method

• Approximation

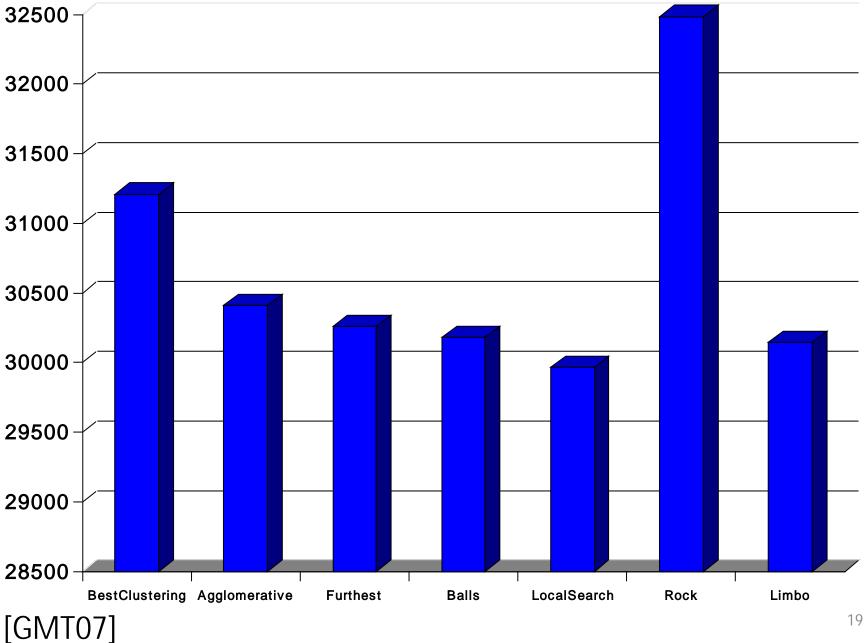
- Agglomerative clustering (bottom-up) [FrJa02,GMT07]
 - Single link, average link, complete link
- Divisive clustering (top-down) [GMT07]
 - Furthest
- LocalSearch [GMT07]
 - Place an object into a different cluster if objective function improved
 - Iterate the above until no improvements can be made
- BestClustering [GMT07]
 - Select the clustering that maximize (minimize) the objective function
- Graph partitioning [StGh03]
- Nonnegative matrix factorization [LDJ07,LiDi08]



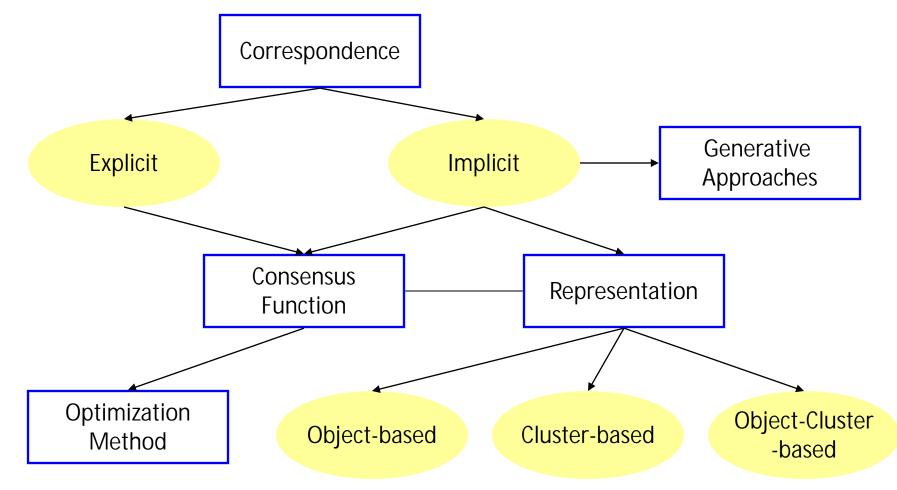


[GMT07]

Overall Distance on Votes data set



• How to combine the models?



Cluster-based Methods

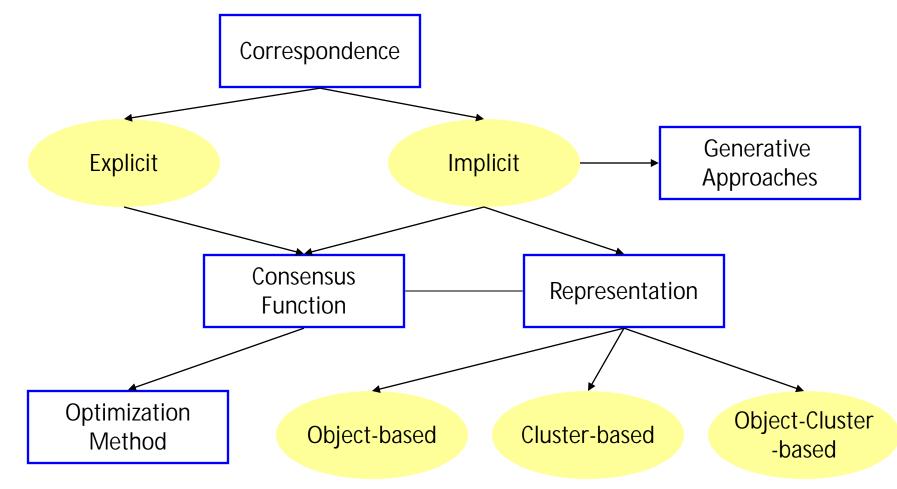
- Clustering clusters
 - Regard each cluster from a base model as a record
 - Similarity is defined as the percentage of shared common objects
 - eg. Jaccard measure
 - Conduct clustering on these clusters
 - Assign an object to its most associated consensus cluster

Meta-Clustering Algorithm (MCLA)*

								<i>M</i> ₁ <i>M</i> ₂
	${\mathcal C}_1$	\mathcal{C}_2	\mathcal{C}_3	\mathcal{C}	<i>M</i> ₁	<i>M</i> ₂	M_3	
v_1	1	1	1	1	3	0	0	
v_2	1	2	2	2	1	2	0	
v_3	2	1	1	1	2	1	0	
v_4	2	2	2	2	0	3	0	
v_5	3	3	3	3	0	0	3	
v_6	3	4	3	3	0	0	3	

*[StGh03]

• How to combine the models?

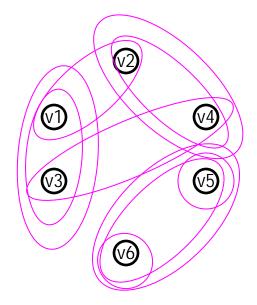


HyperGraph-Partitioning Algorithm (HGPA)*

- Hypergraph representation and clustering
 - Each node denotes an object
 - A hyperedge is a generalization of an edge in that it can connect any number of nodes
 - For objects that are put into the same cluster by a clustering algorithm, draw a hyperedge connecting them
 - Partition the hypergraph by minimizing the number of cut hyperedges
 - Each component forms a consensus cluster

HyperGraph-Partitioning Algorithm (HGPA)

	\mathcal{C}_1	\mathcal{C}_2	\mathcal{C}_3	\mathcal{C}
v_1	1	1	1	1
v_2	1	2	2	2
v_3	2	1	1	1
v_4	2	2	2	2
v_5	3	3	3	3
v_6	3	4	3	3

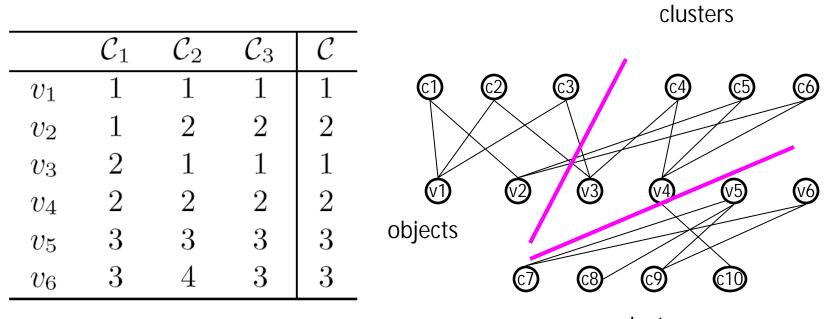


Hypergraph representation– a circle denotes a hyperedge

Bipartite Graph Partitioning*

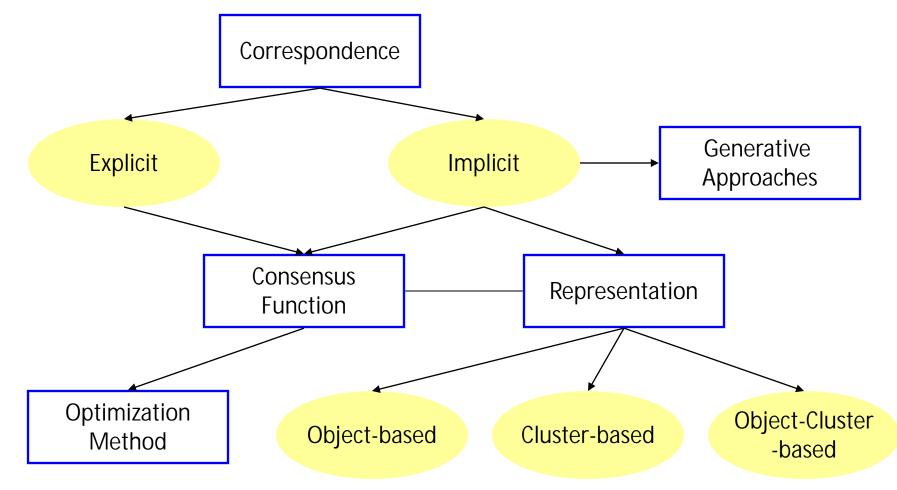
- Hybrid Bipartite Graph Formulation
 - Summarize base model output in a bipartite graph
 - Lossless summarization—base model output can be reconstructed from the bipartite graph
 - Use spectral clustering algorithm to partition the bipartite graph
 - Time complexity O(nkr)—due to the special structure of the bipartite graph
 - Each component represents a consensus cluster

Bipartite Graph Partitioning



clusters

• How to combine the models?



A Mixture Model of Consensus*

• Probability-based

- Assume output comes from a mixture of models
- Use EM algorithm to learn the model
- Generative model
 - The clustering solutions for each object are represented as nominal features--v_i
 - v_i is described by a mixture of k components, each component follows a multinomial distribution
 - Each component is characterized by distribution parameters q_j

EM Method

• Maximize log likelihood

$$\mathbf{\mathring{a}}_{i=1}^{n}\log\left(\mathbf{\mathring{a}}_{j=1}^{k}\boldsymbol{a}_{j}P(\boldsymbol{v}_{i}|\boldsymbol{q}_{j})\right)$$

- Hidden variables
 - z_i denotes which consensus cluster the object belongs to
- EM procedure
 - E-step: compute expectation of z_i
 - M-step: update model parameters to maximize likelihood

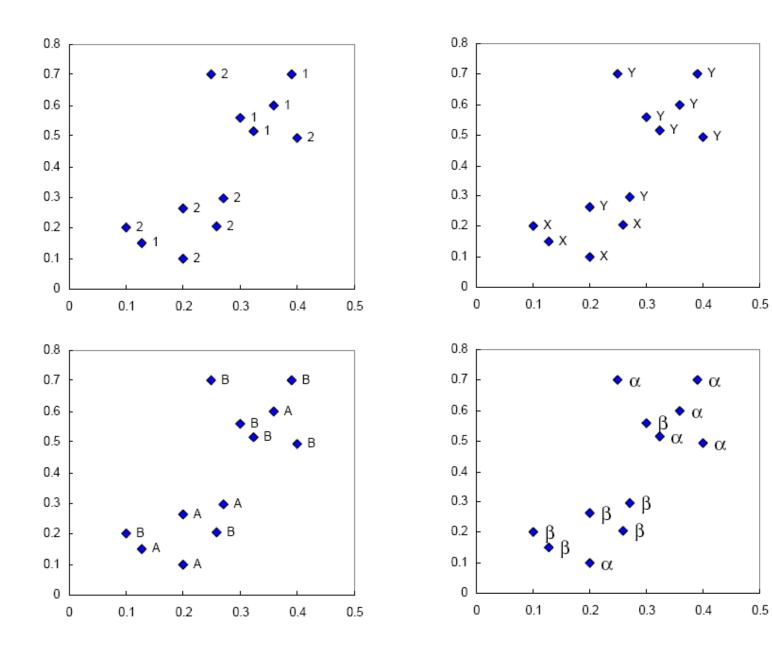
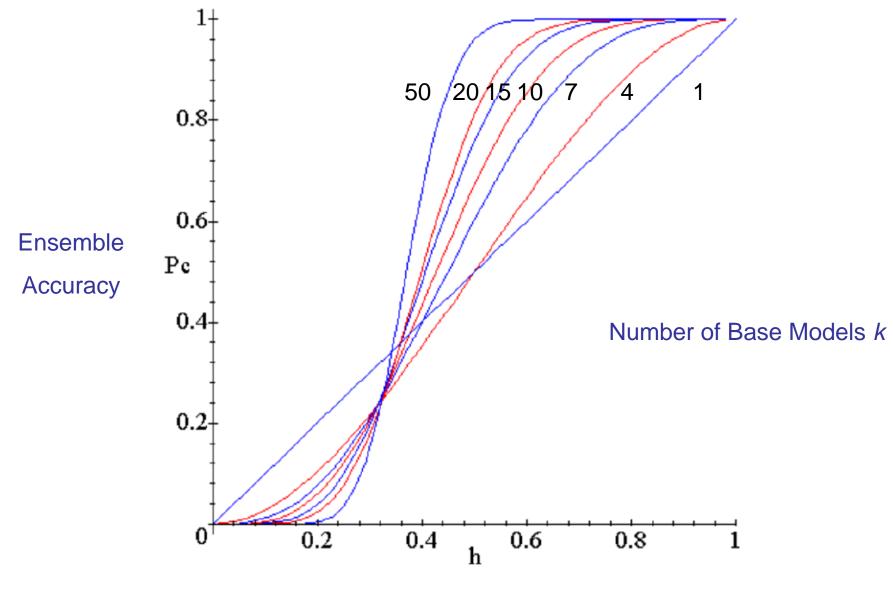


Table 1: Clustering ensemble and consensus solution

	π_1	π_2	π_3	π_4	$E[z_{i1}]$	$E[z_{i2}]$	Consensus
\mathbf{y}_1	2	В	Х	β	0.999	0.001	1
\mathbf{y}_2	2	А	Х	α	0.997	0.003	1
y ₃	2	А	Y	β	0.943	0.057	1
\mathbf{y}_4	2	В	Х	β	0.999	0.001	1
\mathbf{y}_5	1	А	Х	β	0.999	0.001	1
\mathbf{y}_{6}	2	А	Y	β	0.943	0.057	1
\mathbf{y}_7	2	В	Y	α	0.124	0.876	2
\mathbf{y}_8	1	В	Y	α	0.019	0.981	2
y 9	1	В	Y	β	0.260	0.740	2
\mathbf{y}_{10}	1	А	Y	α	0.115	0.885	2
\mathbf{y}_{11}	2	В	Y	α	0.124	0.876	2
y ₁₂	1	В	Y	α	0.019	0.981	2



[TLJ+04]

Base Model Accuracy

Take-away Message

- Clustering ensemble
- Different approaches to combine multiple clustering solutions to one solution