
Clustering 
Lecture 8: MapReduce 

Jing Gao 
SUNY Buffalo 

 

 

1 



Outline 

• Basics 
– Motivation, definition, evaluation 

• Methods 
– Partitional 

– Hierarchical 

– Density-based 

– Mixture model 

– Spectral methods 

• Advanced topics 
– Clustering ensemble 

– Clustering in MapReduce 

– Semi-supervised clustering, subspace clustering, co-clustering, 
etc.  

 

 2 



Big Data EveryWhere  

• Lots of data is being collected  
and warehoused  

– Web data, e-commerce 

– purchases at department/ 
grocery stores 

– Bank/Credit Card  
transactions 

– Social Network 

3 



Divide and Conquer 

“Work” 

w1 w2 w3 

r1 r2 r3 

“Result” 

“worker” “worker” “worker” 

Partition 

Combine 

4 



Distributed Grep 

Very  
big 

data 

Split data 

Split data 

Split data 

Split data 

grep 

grep 

grep 

grep 

matches 

matches 

matches 

matches 

cat 
All 

matches 

5 



Distributed Word Count 

Very  
big 

data 

Split data 

Split data 

Split data 

Split data 

count 

count 

count 

count 

count 

count 

count 

count 

merge 
merged 
count 

6 



Parallelization Challenges 

• How do we assign work units to workers? 

• What if we have more work units than 
workers? 

• What if workers need to share partial results? 

• How do we aggregate partial results? 

• How do we know all the workers have 
finished? 

• What if workers die? 

7 



Common Theme? 

• Parallelization problems arise from 

– Communication between workers (e.g., to 
exchange state) 

– Access to shared resources (e.g., data) 

• Thus, we need a synchronization mechanism 

 

8 



Source: Ricardo Guimarães Herrmann 



Managing Multiple Workers 

• Difficult because 
– We don’t know the order in which workers run 
– We don’t know when workers interrupt each other 
– We don’t know the order in which workers access shared data 

• Thus, we need 
– Semaphores (lock, unlock) 
– Conditional variables (wait, notify, broadcast) 
– Barriers 

• Still, lots of problems 
– Deadlock, race conditions, ... 

• Moral of the story: be careful! 

10 



Concurrency Challenge 

• Concurrency is difficult to reason about 
• Concurrency is even more difficult to reason about 

– At the scale of datacenters (even across datacenters) 
– In the presence of failures 
– In terms of multiple interacting services 

• Not to mention debugging… 
• The reality: 

– Lots of one-off solutions, custom code 
– Write you own dedicated library, then program with it 
– Burden on the programmer to explicitly manage 

everything 

 

11 



What’s the point? 

• Right level of abstraction 
– multi-core/cluster environment 

• Hide system-level details from the developers 
– No more race conditions, lock contention, etc. 

• Separating the what from how 
– Developer specifies the computation that needs to 

be performed 

– Execution framework (“runtime”) handles actual 
execution 

 
12 



MapReduce 

• Key properties 
– Google has used successfully is processing its “big-data” sets 

(~ 20000 peta bytes per day) 

– Users specify the computation in terms of a map and a 
reduce function 

– Underlying runtime system automatically parallelizes the 
computation across large-scale clusters of machines 

– Underlying system also handles machine failures, efficient 
communications, and performance issues 

 

 

13 



MapReduce can refer to… 

• The programming model 

• The execution framework (aka “runtime”) 

• The specific implementation 

Usage is usually clear from context! 

14 



Typical Large-Data Problem 

• Iterate over a large number of records 

• Extract something of interest from each 

• Shuffle and sort intermediate results 

• Aggregate intermediate results 

• Generate final output 

Key idea: provide a functional abstraction for these two 
operations 

(Dean and Ghemawat, OSDI 2004) 

15 



MapReduce Programming Model 

• Programmers specify two functions: 
map (k, v) → [(k’, v’)] 

reduce (k’, [v’]) → [(k’, v’)] 

– All values with the same key are sent to the same 
reducer 

• The execution framework handles everything 
else… 

16 



“Everything Else” 

• The execution framework 
– Scheduling: assigns workers to map and reduce tasks 
– “Data distribution”: moves processes to data 
– Synchronization: gathers, sorts, and shuffles intermediate data 
– Errors and faults: detects worker failures and restarts 

• Limited control over data and execution flow 
– All algorithms must expressed in m, r, c, p 

• You don’t know: 
– Where mappers and reducers run 
– When a mapper or reducer begins or finishes 
– Which input a particular mapper is processing 
– Which intermediate key a particular reducer is processing 

 

17 



Architecture Overview 

Job tracker 

Task tracker Task tracker Task tracker 

Master node 

Slave node 1 Slave node 2 Slave node N 

Workers 

user 

Workers Workers 

18 



MapReduce Implementations 

• Google MapReduce 

– Not available outside Google 

• Hadoop  

– An open-source implementation in Java 

– Development led by Yahoo, used in production 

– Now an Apache project 

– Rapidly expanding software ecosystem 

• Custom research implementations 

– For GPUs, cell processors, etc. 

19 



Who uses Hadoop? 

• Amazon/A9 

• Facebook 

• Google 

• IBM 

• Joost 

• Last.fm 

• New York Times 

• PowerSet 

• Veoh 

• Yahoo! 

• …… 

20 



How do we get data to the workers? 

Compute Nodes 

NAS 

SAN 

What’s the problem here? 

21 



Distributed File System 

• Move workers to the data 
– Store data on the local disks of nodes in the cluster 

– Start up the workers on the node that has the data 
local 

• Why? 
– Not enough RAM to hold all the data in memory 

– Disk access is slow, but disk throughput is reasonable 

• A distributed file system 
– GFS (Google File System) for Google’s MapReduce 

– HDFS (Hadoop Distributed File System) for Hadoop 

22 



Distributed File System Design 

• Chunk Servers 
– File is split into contiguous chunks 
– Typically each chunk is 16-64MB 
– Each chunk replicated (usually 2x or 3x) 
– Try to keep replicas in different racks 

• Master node 
– a.k.a. Name Nodes in HDFS 
– Stores metadata 
– Might be replicated 

• Client library for file access 
– Talks to master to find chunk servers  
– Connects directly to chunk servers to access data 

23 



Hadoop HDFS 

24 



Job submission node 

Slave node 

TaskTracker DataNode 

HDFS master 

JobTracker NameNode 

Slave node 

TaskTracker DataNode 

Slave node 

TaskTracker DataNode 

Client 

Hadoop Cluster Architecture 

25 From Jimmy Lin’s slides 



Map+Reduce 

 

 

 

 

 

• Map: 
– Accepts input key/value 

pair 

– Emits intermediate 
key/value pair 

 

 

 

 

 

 

• Reduce : 
– Accepts intermediate 

key/value* pair 

– Emits output key/value 
pair 

Very  
big 

data 

Result 
M 
A 
P 

R 
E 
D 
U 
C 
E 

26 



The Map Step 

v k 

k v 

k v 

map 
v k 

v k 

… 

k v 

map 

Input 
key-value pairs 

Intermediate 
key-value pairs 

… 

k v 

27 



The Reduce Step 

k v 

… 

k v 

k v 

k v 

Intermediate 
key-value pairs 

group 

reduce 

reduce 

k v 

k v 

k v 

… 

k v 

… 

k v 

k v v 

v v 

Key-value groups 
Output  
key-value pairs 

28 



MapReduce 

• Input: a set of key/value pairs 

• User supplies two functions: 

– map(k,v)  list(k1,v1) 

– reduce(k1, list(v1))  (k1,v2) 

• (k1,v1) is an intermediate key/value pair 

• Output is the set of (k1,v2) pairs 

 

29 



Word Count 

• We have a large collection of documents 

• Count the number of times each distinct word 
appears in the collection of documents 



Word Count Execution 

the quick 

brown fox 

the fox ate 

the mouse 

how now 

brown cow 

Map 

Map 

Map 

Reduce 

Reduce 

brown, 2 

fox, 2 

how, 1 

now, 1 

the, 3 

ate, 1 

cow, 1 

mouse, 1 

quick, 1 

the, 1 

brown, 1 

fox, 1 

quick, 1 

the, 1 

fox, 1 

the, 1 

how, 1 

now, 1 

brown, 1 

ate, 1 

mouse, 1 

cow, 1 

Input Map Shuffle & Sort Reduce Output 

31 



Word Count using MapReduce 

map(key, value): 

// key: document name; value: text of document 

 for each word w in value: 

  emit(w, 1) 

 

reduce(key, values): 
// key: a word; value: an iterator over counts 
 result = 0 
 for each count v in values: 
  result += v 
 emit(result) 

32 



Combiners 

• Often a map task will produce many pairs of the form 
(k,v1), (k,v2), … for the same key k 
– E.g., popular words in Word Count 

• Can save network time by pre-aggregating at mapper 

• For associative ops. like sum, count, max 

• Decreases size of intermediate data 

• Example: local counting for Word Count: 

 
def combiner(key, values): 
  output(key, sum(values)) 
 

33 



Word Count with Combiner 

Input Map & Combine Shuffle & Sort Reduce Output 

the quick 

brown fox 

the fox ate 

the mouse 

how now 

brown cow 

Map 

Map 

Map 

Reduce 

Reduce 

brown, 2 

fox, 2 

how, 1 

now, 1 

the, 3 

ate, 1 

cow, 1 

mouse, 1 

quick, 1 

the, 1 

brown, 1 

fox, 1 

quick, 1 

the, 2 

fox, 1 

how, 1 

now, 1 

brown, 1 

ate, 1 

mouse, 1 

cow, 1 

34 



Partition Function 

• Inputs to map tasks are created by contiguous 
splits of input file 

• For reduce, we need to ensure that records with 
the same intermediate key end up at the same 
worker 

• System uses a default partition function e.g., 
hash(key) mod R 

• Sometimes useful to override  
– Balance the loads 
– Specific requirement on which key value pairs should 

be in the same output files 

35 



map map map map 

Shuffle and Sort: aggregate values by keys 

reduce reduce reduce 

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6 

b a 1 2 c c 3 6 a c 5 2 b c 7 8 

a 1 5 b 2 7 c 2 3 6 8 

r1 s1 r2 s2 r3 s3 

36 



combine combine combine combine 

b a 1 2 c 9 a c 5 2 b c 7 8 

partition partition partition partition 

map map map map 

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6 

b a 1 2 c c 3 6 a c 5 2 b c 7 8 

Shuffle and Sort: aggregate values by keys 

reduce reduce reduce 

a 1 5 b 2 7 c 2 9 8 

r1 s1 r2 s2 r3 s3 

c 2 3 6 8 

37 



38 

How to MapReduce K-means 

• Partition {x1,…,xn} into K clusters 

– K is predefined 

• Initialization 

– Specify the initial cluster centers (centroids) 

• Iteration until no change 

– For each object xi 
•  Calculate the distances between xi and the K centroids 

•  (Re)assign xi to the cluster whose centroid is the 
closest to xi 

– Update the cluster centroids based on current 
assignment 



K-Means Map/Reduce Design 

39 



K-Means Map/Reduce Design 

40 



MapReduce K-means Algorithm 

• Driver 
– Runs multiple iteration jobs using 

mapper+combiner+reducer 

• Mapper 
– Configure: A single file containing cluster centers 
– Input: Input data points 
– Output: (data id, cluster id) 

• Reducer 
– Input: (data id, cluster id) 
– Output: (cluster id, cluster centroid) 

• Combiner 
– Input: (data id, cluster id) 
– Output: (cluster id, (partial sum, number of points)) 

 
41 



MapReduce Characteristics 

 Very large scale data: peta, exa bytes 

 Map and Reduce are the main operations: simple code 

 There are other supporting operations such as combine and 
partition  

 All the map should be completed before reduce operation starts 

 Map and reduce operations are typically performed by the same 
physical processor 

 Number of map tasks and reduce tasks are configurable 

 Operations are provisioned near the data 

 Commodity hardware and storage 

 Runtime takes care of splitting and moving data for operations 

 Special distributed file system, such as Hadoop Distributed File 
System 

42 
CCSCNE 2009 Palttsburg, April 24 

2009 



MapReducable? 

CCSCNE 2009 Palttsburg, April 24 
2009 

43 



Development Cycle 

Hadoop Cluster 
You 

1. Scp data to cluster 

2. Move data into HDFS 

3. Develop code locally 

4. Submit MapReduce job 
4a. Go back to Step 3 

5. Move data out of HDFS 

6. Scp data from cluster 

44 



Take-away Message 

• MapReduce programming model 

• How to design map, reduce, combiner, 
partition functions 

• Which tasks can be easily MapReduced and 
which cannot 

45 


