Anomaly Detection

Jing Gao SUNY Buffalo

Anomaly Detection

Anomalies

- the set of objects are considerably dissimilar from the remainder of the data
- occur relatively infrequently
- when they do occur, their consequences can be quite dramatic and quite often in a negative sense

"Mining needle in a haystack. So much hay and so little time"

Definition of Anomalies

- Anomaly is a pattern in the data that does not conform to the expected behavior
- Also referred to as outliers, exceptions, peculiarities, surprise, etc.
- Anomalies translate to significant (often critical) real life entities
 - Cyber intrusions
 - Credit card fraud

Real World Anomalies

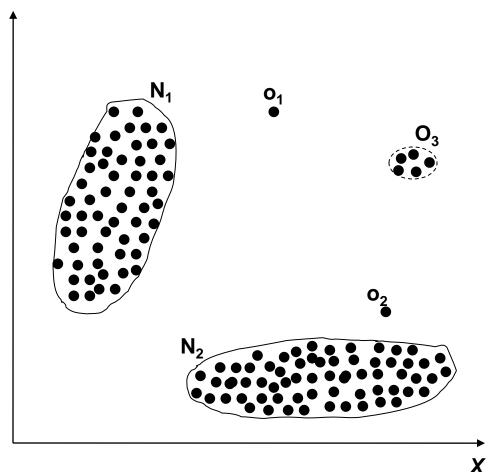
- Credit Card Fraud
 - An abnormally high purchase made on a credit card

- Cyber Intrusions
 - Computer virus spread over Internet

Simple Example

Y

- N₁ and N₂ are regions of normal behavior
- Points o₁ and o₂ are anomalies
- Points in region O₃ are anomalies



Related problems

- Rare Class Mining
- Chance discovery
- Novelty Detection
- Exception Mining
- Noise Removal

Key Challenges

- Defining a representative normal region is challenging
- The boundary between normal and outlying behavior is often not precise
- The exact notion of an outlier is different for different application domains
- Limited availability of labeled data for training/validation
- Malicious adversaries
- Data might contain noise
- Normal behaviour keeps evolving

Aspects of Anomaly Detection Problem

- Nature of input data
- Availability of supervision
- Type of anomaly: point, contextual, structural
- Output of anomaly detection
- Evaluation of anomaly detection techniques

Input Data

- Most common form of data handled by anomaly detection techniques is *Record Data*
 - Univariate
 - Multivariate

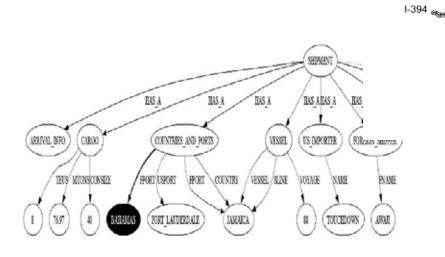
Tid	SrcIP	Start time	Dest IP	Dest Port	Number of bytes	Attack
1	206.135.38.95	11:07:20	160.94.179.223	139	192	No
2	206.163.37.95	11:13:56	160.94.179.219	139	195	No
3	206.163.37.95	11:14:29	160.94.179.217	139	180	No
4	206.163.37.95	11:14:30	160.94.179.255	139	199	No
5	206.163.37.95	11:14:32	160.94.179.254	139	19	Yes
6	206.163.37.95	11:14:35	160.94.179.253	139	177	No
7	206.163.37.95	11:14:36	160.94.179.252	139	172	No
8	206.163.37.95	11:14:38	160.94.179.251	139	285	Yes
9	206.163.37.95	11:14:41	160.94.179.250	139	195	No
10	206.163.37.95	11:14:44	160.94.179.249	139	163	Yes

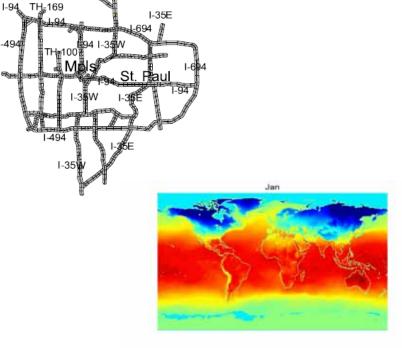
Input Data – Complex Data Types

1-494

- Relationship among data instances
 - Sequential
 - Temporal
 - Spatial
 - Spatio-temporal
 - Graph

GGTTCCGCCTTCAGCCCCGCGCC CGCAGGGCCCGCCCCGCGCCGTC GAGAAGGGCCCGCCTGGCGGGCG GGGGGAGGCGGGGCCGCCCGAGC CCAACCGAGTCCGACCAGGTGCC CCCTCTGCTCGGCCTAGACCTGA GCTCATTAGGCGGCAGCGGACAG GCCAAGTAGAACACGCGAAGCGC TCCCCTCCTGCTGCGACCAGGG





I-35W

Data Labels

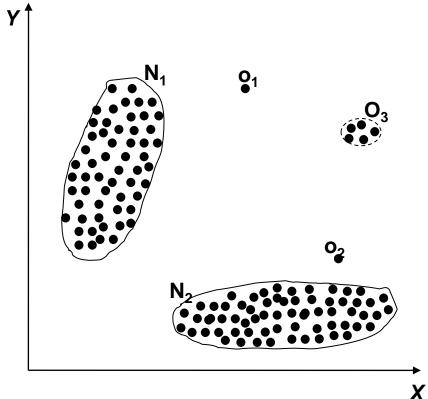
- Supervised Anomaly Detection
 - Labels available for both normal data and anomalies
 - Similar to skewed (imbalanced) classification
- Semi-supervised Anomaly Detection
 - Limited amount of labeled data
 - Combine supervised and unsupervised techniques
- Unsupervised Anomaly Detection
 - No labels assumed
 - Based on the assumption that anomalies are very rare compared to normal data

Type of Anomalies

- Point Anomalies
- Contextual Anomalies
- Collective Anomalies

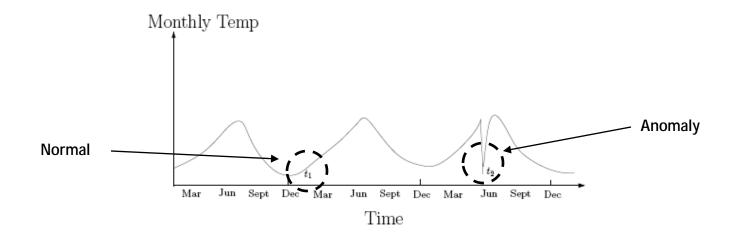
Point Anomalies

• An individual data instance is anomalous w.r.t. the data



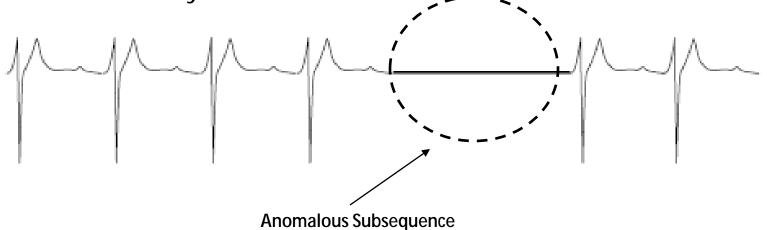
Contextual Anomalies

- An individual data instance is anomalous within a context
- Requires a notion of context
- Also referred to as conditional anomalies



Collective Anomalies

- A collection of related data instances is anomalous
- Requires a relationship among data instances
 - Sequential Data
 - Spatial Data
 - Graph Data
- The individual instances within a collective anomaly are not anomalous by themselves



Output of Anomaly Detection

Label

- Each test instance is given a *normal* or *anomaly* label
- This is especially true of classification-based approaches
- Score
 - Each test instance is assigned an anomaly score
 - Allows the output to be ranked
 - Requires an additional threshold parameter

Metrics for Performance Evaluation

• Confusion Matrix

	PREDICTED CLASS						
ACTUAL CLASS		+	-				
	+	а	b				
	-	С	d				

a: TP (true positive)c: FP (b: FN (false negative)d: TN

c: FP (false positive)

d: TN (true negative)

Metrics for Performance Evaluation

	PREDICTED CLASS						
		+	-				
ACTUAL	+	a (TP)	b (FN)				
CLASS	-	с (FP)	d (TN)				

• Measure used in classification:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Limitation of Accuracy

- Anomaly detection
 - Number of negative examples = 9990
 - Number of positive examples = 10
- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any positive examples

Cost Matrix

	PREDICTED CLASS							
ACTUAL CLASS	C(i j)	+	-					
	+	C(+ +)	C(- +)					
	-	C(+ -)	C(- -)					

C(i|j): Cost of misclassifying class j example as class i

Computing Cost of Classification

Cost Matrix	PREDICTED CLASS						
	C(i j)	+	-				
ACTUAL CLASS	+	-1	100				
	-	1	0				

Model M ₁	PREDICTED CLASS						
		+	-				
ACTUAL CLASS	+	150	40				
OLAGO	-	60	250				

Accuracy = 80% Cost = 3910

Model M ₂	PREDICTED CLASS					
		+	-			
ACTUAL CLASS	+	250	45			
OLAGO	-	5	200			

Accuracy = 90% Cost = 4255

Cost-Sensitive Measures

Precision (p) =
$$\frac{a}{a+c}$$

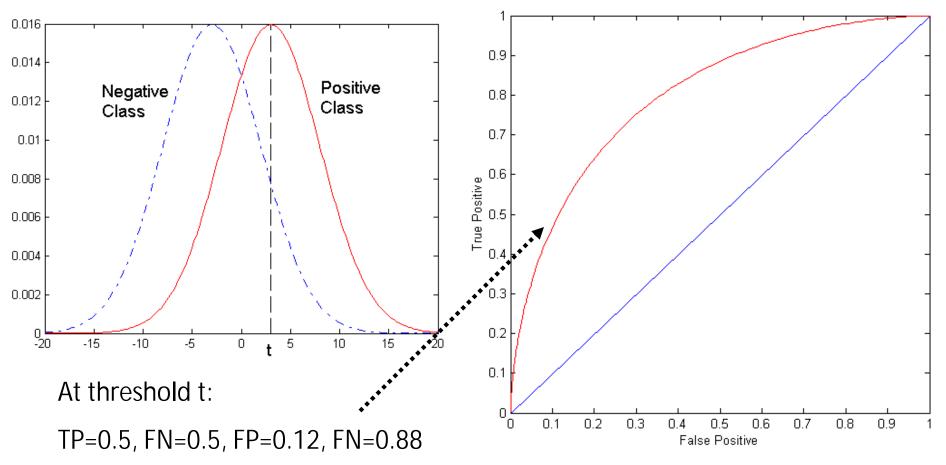
Recall (r) = $\frac{a}{a+b}$
F - measure (F) = $\frac{2rp}{r+p} = \frac{2a}{2a+b+c}$
Weighted Accuracy = $\frac{w_1a+w_4d}{w_1a+w_2b+w_3c+w_4d}$

ROC (Receiver Operating Characteristic)

- ROC curve plots TPR (on the y-axis) against FPR (on the x-axis)
- Performance of each classifier represented as a point on the ROC curve
 - changing the threshold of algorithm, sample distribution or cost matrix changes the location of the point

ROC Curve

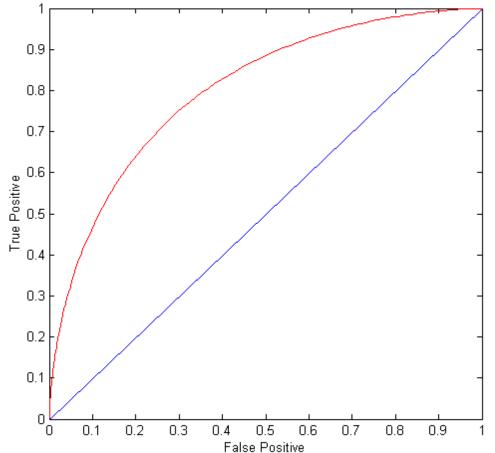
- 1-dimensional data set containing 2 classes (positive and negative)
- any points located at x > t is classified as positive



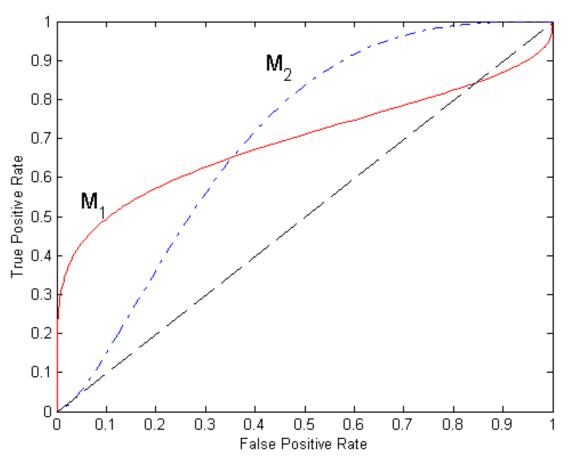
ROC Curve

(TPR,FPR):

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (1,0): ideal
- Diagonal line:
 - Random guessing
 - Below diagonal line:
 - prediction is opposite of t true class



Using ROC for Model Comparison



- Comparing two models
 - M₁ is better for small FPR
 - M₂ is better for large FPR
- Area Under the ROC curve
 - Ideal:
 - **§** Area = 1
 - Random guess:

§ Area = 0.5

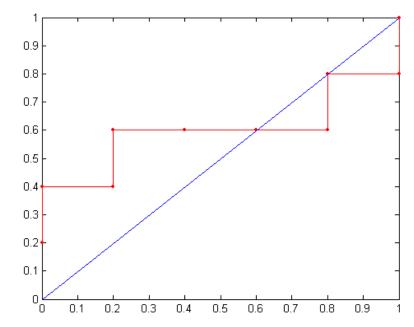
How to Construct an ROC curve

	Instanc	e	Sco	ore	L	abel	
	1		0.95		+		
	2		0.9	3	+		
	3		0.8	37		-	
	4		0.8	5		-	
	5		0.8	5		-	
	6		0.85		+		
	7		0.76				
	8		0.53			+	
			PRE	DICTE	ED CL	ASS	
				+		-	
ACTUAL CLASS			+	a (TP)		b (FN)	
	ULAGO .		-	c (FP)		d (TN)	

- Calculate the outlier scores of the given instances
- Sort the instances according to the scores in decreasing order
- Apply threshold at each unique value of the score
- Count the number of TP, FP, TN, FN at each threshold
- TP rate, TPR = TP/(TP+FN)
- FP rate, FPR = FP/(FP + TN)

How to construct an ROC curve

	Class	+	-	+	-	-	-	+	-	+	+	
Threshold >=		0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	ТР	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1	1	2	3	4	4	5	5	5
	FN	0	1	1	2	2	2	2	3	3	4	5
	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
\rightarrow	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0

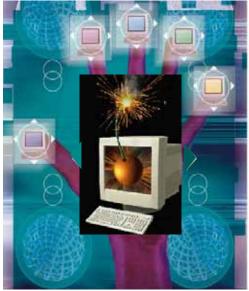


Applications of Anomaly Detection

- Network intrusion detection
- Insurance / Credit card fraud detection
- Healthcare Informatics / Medical diagnostics
- Image Processing / Video surveillance

Intrusion Detection

- Intrusion Detection
 - Process of monitoring the events occurring in a computer system or network and analyzing them for intrusions
 - Intrusions are defined as attempts to bypass the security mechanisms of a computer or network
- Challenges
 - Traditional signature-based intrusion detection systems are based on signatures of known attacks and cannot detect emerging cyber threats
 - Substantial latency in deployment of newly created signatures across the computer system
- Anomaly detection can alleviate these limitations



Fraud Detection

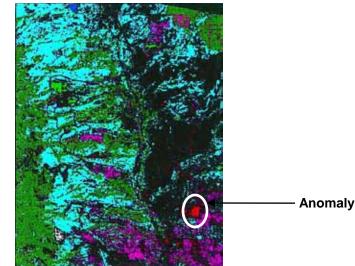
- Fraud detection refers to detection of criminal activities occurring in commercial organizations
 - Malicious users might be the actual customers of the organization or might be posing as a customer (also known as identity theft).
- Types of fraud
 - Credit card fraud
 - Insurance claim fraud
 - Mobile / cell phone fraud
 - Insider trading
- Challenges
 - Fast and accurate real-time detection
 - Misclassification cost is very high

Healthcare Informatics

- Detect anomalous patient records
 - Indicate disease outbreaks, instrumentation errors, etc.
- Key Challenges
 - Misclassification cost is very high
 - Data can be complex: spatio-temporal

Image Processing

- Detecting outliers in a image monitored over time
- Detecting anomalous regions within an image
- Used in
 - mammography image analysis
 - video surveillance
 - satellite image analysis
- Key Challenges
 - Detecting collective anomalies
 - Data sets are very large



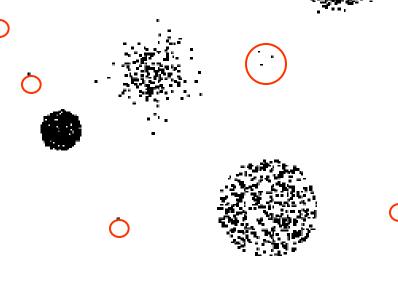
Anomaly Detection Schemes

General Steps

- Build a profile of the "normal" behavior
 - Profile can be patterns or summary statistics for the overall population
- Use the "normal" profile to detect anomalies
 - Anomalies are observations whose characteristics differ significantly from the normal profile

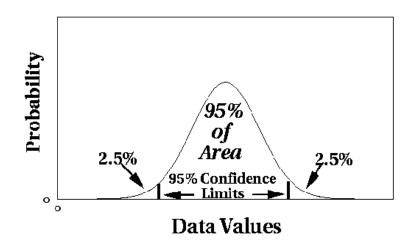
Methods

- Statistical-based
- Distance-based
- Model-based



Statistical Approaches

- Assume a parametric model describing the distribution of the data (e.g., normal distribution)
- Apply a statistical test that depends on
 - Data distribution
 - Parameter of distribution (e.g., mean, variance)
 - Number of expected outliers (confidence limit)



Grubbs' Test

- Detect outliers in univariate data
- Assume data comes from normal distribution
- Detects one outlier at a time, remove the outlier, and repeat
 - H₀: There is no outlier in data
 - H_A: There is at least one outlier
- Grubbs' test statistic: G = -

$$G = \frac{\max \left| X - \overline{X} \right|}{s}$$

• Reject H₀ if:
$$G > \frac{(N-1)}{\sqrt{N}} \sqrt{\frac{t_{(a/N,N-2)}^2}{N-2+t_{(a/N,N-2)}^2}}$$

Statistical-based – Likelihood Approach

- Assume the data set D contains samples from a mixture of two probability distributions:
 - M (majority distribution)
 - A (anomalous distribution)
- General Approach:
 - Initially, assume all the data points belong to M
 - Let $L_t(D)$ be the log likelihood of D at time t
 - For each point x_t that belongs to M, move it to A
 - Let L_{t+1} (D) be the new log likelihood.
 - Compute the difference, $D = L_t(D) L_{t+1}(D)$
 - If D > c (some threshold), then x_t is declared as an anomaly and moved permanently from M to A

Statistical-based – Likelihood Approach

- Data distribution, D = (1 I) M + I A
- M is a probability distribution estimated from data
 - Can be based on any modeling method, e.g., mixture model
- A can be assumed to be uniform distribution
- Likelihood at time t:

$$L_t(D) = \bigotimes_{i=1}^{N} P_D(x_i) = \bigotimes_{\ell=1}^{\infty} (1 - 1)^{|M_t|} \sum_{x_i \in M_t} \sum_{k_i \in M_t} P_{M_t}(x_i) \xrightarrow{\overset{\text{line}}{\leftrightarrow}} P_{A_t}(x_i) \xrightarrow{\overset{\text{line}}{\leftrightarrow}} \sum_{x_i \in A_t} P_{A_t}(x_i) \xrightarrow{\overset{\text{line}}{\leftrightarrow}} \sum_{k_i \in M_t} \sum_{x_i \in M_t} P_{A_t}(x_i) \xrightarrow{\overset{\text{line}}{\leftrightarrow}} \sum_{k_i \in M_t} \sum_$$

Limitations of Statistical Approaches

- Most of the tests are for a single attribute
- In many cases, data distribution may not be known
- For high dimensional data, it may be difficult to estimate the true distribution

Distance-based Approaches

- Data is represented as a vector of features
- Three major approaches
 - Nearest-neighbor based
 - Density based
 - Clustering based

Nearest-Neighbor Based Approach

• Approach:

 Compute the distance between every pair of data points

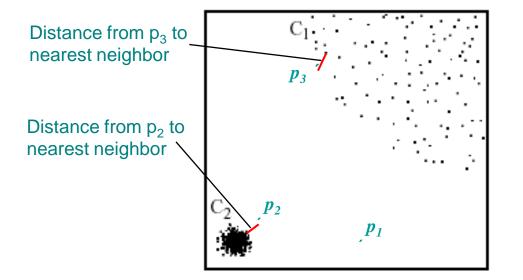
- There are various ways to define outliers:
 - Data points for which there are fewer than *p* neighboring points within a distance *D*
 - The top *n* data points whose distance to the *k*-th nearest neighbor is greatest
 - The top *n* data points whose average distance to the *k* nearest neighbors is greatest

Distance-Based Outlier Detection

- For each object o, examine the # of other objects in the *r*-neighborhood of o, where *r* is a user-specified distance threshold
- An object o is an outlier if most (taking π as a fraction threshold) of the objects in D are far away from o, i.e., not in the r-neighborhood of o
- An object o is a DB(r, π) outlier if
- $\frac{\|\{o'|dist(o,o') \le r\}\|}{\|D\|} \le \pi$
- Equivalently, one can check the distance between *o* and its *k*th nearest neighbor o_{k} , where $k = \lceil \pi ||D|| \rceil$. *o* is an outlier if dist(*o*, o_k) > r

Density-based Approach

- Local Outlier Factor (LOF) approach
 - Example:



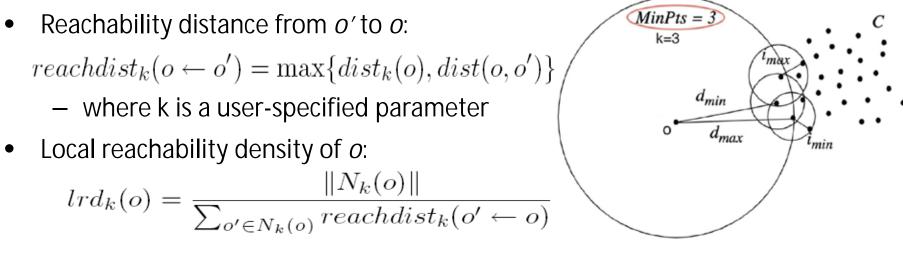
In the *NN* approach, p_2 is not considered as outlier, while the *LOF* approach find both p_1 and p_2 as outliers

NN approach may consider p_3 as outlier, but LOF approach does not

Density-based: LOF approach

- For each point, compute the density of its local neighborhood
- Compute local outlier factor (LOF) of a sample *p* as the average of the ratios of the density of sample *p* and the density of its nearest neighbors
- Outliers are points with largest LOF value

Local Outlier Factor: LOF



LOF (Local outlier factor) of an object o is the average of the ratio of local reachability of o and those of o's k-nearest neighbors

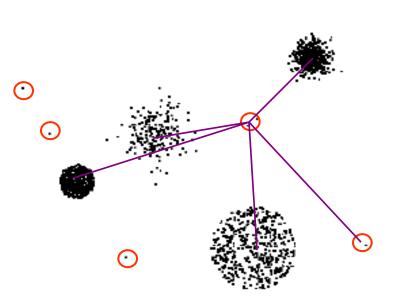
$$LOF_k(o) = \frac{\sum_{o' \in N_k(o)} \frac{lrd_k(o')}{lrd_k(o)}}{\|N_k(o)\|} = \sum_{o' \in N_k(o)} lrd_k(o') \cdot \sum_{o' \in N_k(o)} reachdist_k(o' \leftarrow o)$$

- The higher the local reachability distance of o, and the higher the local reachability density of the kNN of o, the higher LOF
- This captures a local outlier whose local density is relatively low comparing to the local densities of its kNN

Clustering-Based

• Basic idea:

- Cluster the data into groups of different density
- Choose points in small cluster as candidate outliers
- Compute the distance between candidate points and non-candidate clusters.
 - If candidate points are far from all other non-candidate points, they are outliers



Detecting Outliers in Small Clusters

- *FindCBLOF:* Detect outliers in small clusters
 - Find clusters, and sort them in decreasing size
 - To each data point, assign a *cluster-based local outlier factor* (CBLOF):
 - If obj p belongs to a large cluster, CBLOF = cluster_size X similarity between p and cluster
 - If p belongs to a small one, CBLOF = cluster size X similarity betw. p and the closest large cluster
- **n** Ex. In the figure, o is outlier since its closest large cluster is C_1 , but the similarity between o and C_1 is small. For any point in C_3 , its closest large cluster is C_2 but its similarity from C_2 is low, plus $|C_3| = 3$ is small

73

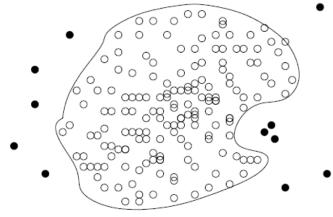
(]]

Classification-Based Methods

- Idea: Train a classification model that can distinguish "normal" data from outliers
- Consider a training set that contains samples labeled as "normal" and others labeled as "outlier"
 - But, the training set is typically heavily biased: # of "normal" samples likely far exceeds # of outlier samples
- Handle the imbalanced distribution
 - Oversampling positives and/or undersampling negatives
 - Alter decision threshold
 - Cost-sensitive learning

One-Class Model

- One-class model: A classifier is built to describe only the normal class
 - Learn the decision boundary of the normal class using classification methods such as SVM
 - Any samples that do not belong to the normal class (not within the decision boundary) are declared as outliers
 - Adv: can detect new outliers that may not appear close to any outlier objects in the training set



Semi-Supervised Learning

- Semi-supervised learning: Combining classificationbased and clustering-based methods
- Method
 - Using a clustering-based approach, find a large $_{_{\rm D}\,a}$ cluster, C, and a small cluster, C1
 - Since some objects in C carry the label "normal", treat all objects in C as normal
 - Use the one-class model of this cluster to identify normal objects in outlier detection
 - Since some objects in cluster C₁ carry the label "outlier", declare all objects in C₁ as outliers
 - Any object that does not fall into the model for C (such as a) is considered an outlier as well

C

Cl

objects with lable "normal"

- objects with label "outlier"
- objects without label

Take-away Message

- Definition of outlier detection
- Applications of outlier detection
- Evaluation of outlier detection techniques
- Unsupervised approaches (statistical, distance, density-based)
- Supervised and semi-supervised approaches