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Abstract— Map building through cooperative localisation
(co-location) using circular geometric targets and a SICK
laser range scanner is investigated. The tenet of co-location
is circle detection in laser range data. Two methods for
circle detection, a Range Weighted Circular Hough Trans-
form (RWCHT) and a novel squared-residual voting strategy
are compared and their performance assessed. The custom
squared-residual voting strategy outperforms the RWCHT in
all respects and is subsequently used for localisation and map
building. The results include robust continuous localisation at
speeds of 0.2m/s with 98% of scan frames used and an error of
less than 0.03m. This localisation accuracy helps build maps
of 96% quality and occupancy grids of cluttered environments
despite the presence of distractors.

Index Terms— Cooperative Localisation, Mapping, Hough
Transform, Circle Detection

I. INTRODUCTION

It is widely agreed that the ability of a mobile robot to
locate itself within the environment is the most fundamental
problem currently thwarting mobile autonomous operation.
Most current localisation methods require a prior map or
attempt to build one. Therefore, equally important is the
ability of mobile robots to build accurate environment
representations (maps). However, building a map without
knowledge of robot pose (position and orientation) is
difficult. The problem of locating a robot given a prior map
has been solved in many fashions, however there is not yet
a universally adopted method. Difficulties localising using
natural landmarks have resulted in a resurgence in the use
of artificial landmarks for localisation [1]. Success using
natural landmarks such as corners has been achieved by
[2].

Mobile robots are expected to operate in a variety of
locales, both indoors and outdoors, as well as, structured
and unstructured. These environments are usually dynamic
and vary enormously. Outdoors, global localisation is made
considerably easier through the use of GPS. However,
for indoor robots there is no such global location signal
infrastructure. It is possible to use the wireless network
signal strength as a signal locator [3]. The location accuracy
is around 2m, orientation determination appears all but
impossible with standard wireless network cards and the
environment has to contain a wireless infrastructure. There
is no doubting the necessity of fast, accurate and robust
navigation and mapping approaches that would work in
these environments. Better would be the extraction of
paradigms that would span all arenas of operation.

Cooperative localisation, hereafter referred to as co-
location, is often assumed, [4], but implementations are
not discussed. Initially the problem of co-location might
be perceived as straightforward but robust, accurate and
fast co-location techniques are not readily available.

In general, robots should be able to detect each other
in order to co-locate and a number of methods were
considered. The two main contenders were an infra-red
beacon approach or using distinct shapes (geometric bea-
cons) and a laser scanner. The infra-red beacon approach
suffers from two main drawbacks, significant hardware
deployment and the return of target angles only. The former
is surmountable, however the latter is a serious problem.
Localisation given separation angles of indistinguishable
targets is possible, [1], [5], however the problem is highly
non-linear and difficult to implement. A laser scanner and
geometric beacons provide both the range and angle to tar-
gets vastly simplifying the process of relative localisation.
The main difficulty is reliable geometric target extraction
from the laser range data.

Once this is possible cooperating robots can be detected
and removed from the laser scans producing an important
improvement in the fidelity of the global map. This is an
improvement upon [6] in which the robots detect each other
as obstacles that should simply decay over time when the
occupancy grid is updated.

In this paper, two techniques are implemented to extract
circular landmarks from laser range data. Section II-A
examines the established Hough Transform and Section
II-B contains the novel squared-residual voting strategy
tailored for range data. The performance of these two
algorithms is then compared with the custom squared-
residual voting strategy proving to be more effective. The
results for continuous localisation and map building are
presented in Section III. Finally, the conclusion is given in
Section IV.

II. CO-LOCATION

Returning the range and bearing to other robots requires
the detection of these robots from the range scans. The
robots need to carry geometric targets that are easily found
and unique within the environment. Indoor environments
usually contain many straight lines; consequently targets
incorporating straight lines are not used. The detection
process is greatly aided if the target always has identical
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Fig. 1. Cooperative localisation and mapping scenario with three robots.

range signatures regardless of relative position or orien-
tation. This is the case for one shape only, the circle.
This characteristic aids detection but is not helpful when
determining relative position because rotational changes
cannot be perceived. Two distinguishable circles guarantee
unique localisation. If the circles are indistinguishable
then localisation is one of two places. Fig. 1 presents a
cooperative localisation and mapping scenario involving
three robots R1, R2 and R3. R1 is equipped with a laser
scanner and the remaining robots are mobile landmarks.
The initial positions of R2 and R3 allow R1 to map the
room on the left. Under the observation of R1, at position
A, R2 and R3 move across the corridor to the second room
where they adopt positions B and C. Now R1 can continue
to D using R2 and R3 as artificial landmarks and map the
second room.

Once the relative positions of the companion robots are
known, map building is possible. The main difficulty is
achieving fast and reliable detection of circles of known
radius from noisy range data. The detection of shapes
in images is a large area of research within the com-
puter vision community and contains relevant techniques,
specifically the Hough Transform and least squares fitting
approaches.

A. Circular Hough Transform

The Hough Transform [7] has been hugely successful
in the vision community thanks to its tolerance of image
noise and excellent straight-line detection. A typical high
resolution laser scan is given in Fig. 2 which shows an
environment with two circular landmarks.

A Range Weighted Circular Hough Transform (RWCHT)
similar to [8] was used to extract the circular targets from
Fig 2. The resulting accumulator array is depicted in Fig 3.
The RWCHT’s confusion of straight lines with circles was
a serious problem that refused to be resolved. A possible
solution would be to first remove all points corresponding
to straight lines and then perform the RWCHT on the
remaining points, however this is very time consuming.

There are a number of reasons why the circular Hough
Transform was not particularly suited to this application.
Range data is different to image data for which the Hough
Transform was first devised. Another problem is that it
always returns an answer even if the geometric primitive
is not present in the data. The determination of peak
significance by comparison with others and the kind of
data expected requires a complicated statistical analysis.
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Fig. 2. Typical laser scan at high resolution (0.25◦) and 100◦ scan angle.
Two circular landmarks are indicted with dashed lines.
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Fig. 3. Surface plot of the accumulator array searching for circles in
the range scan shown in Fig. 2 using a RWCHT. The two highest peaks
correspond to the circular landmarks.

B. Circle Detection by Squared-Residual Voting

It is evident from [9] that fitting circles to points is a non-
trivial process, mainly because the resulting equations are
highly non-linear and circles cannot be elegantly expressed
in Cartesian coordinate systems.

One of the problems with the circular Hough Transform
is that there is much information specific to range scans
that is not included in the search for circles. One important
property of circles is that they are highly symmetric and so
appear identical when viewed from any angle; this greatly
eases the burden of detection. Also, the range data has an
inherent sequence that is not obvious in Cartesian coor-
dinates. Detection of a circle occurs when a sequence of
adjacent points lie close to the circumference of that circle.
Relaxing the requirement for the detection of occluded
targets allows the following algorithm expounded in Fig. 4
and Fig. 5.

The algorithm assumes the centre of the circular target is
at the scan angle of the current scan point being analysed.
The mean of the squared-residuals is then calculated by (4)
and (5). Scan angles with this quantity below a threshold
(comparable to the accuracy of the laser scanner) are likely
contenders for having the centre of the target circle situated
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Fig. 4. Geometric construction illustrating the squared-residual voting
method for circle detection.

Fig. 5. Flowchart summarising the squared-residual voting strategy.

along them. Fig. 4 illustrates the geometry involved with
laser scan points depicted by crosses. Point A is the current
scan point being evaluated and the circle represents the
search target. The candidate circle for A is assumed to be
positioned with centre C, as shown on the line OA where
O is the origin of the laser scan. Assuming the laser scan
returns points evenly distributed over θ then the number of
nearest neighbours to be incorporated is determined. Points
that lie within an angle of ÂOB from A are candidate
points where

ÂOB = arcsin
R

R + OA
(1)

and R is the radius of the circular landmark. Care has to be
taken regarding scan points lying near D and B, which are
subject to glancing edge effects. The causes of these effects
are specular reflection and pixel mixing which occurs when
the laser spot spans an environmental range discontinuity.
The subset of laser range points processed is

S =
(

r1 r2 · · · rn

θ1 θ2 · · · θn

)
(2)

where n is odd; r and θ are the polar coordinates of the scan
points in the coordinate system of the robot. The position
of the hypothesis circle in polar coordinates is(

Cr

Cθ

)
=

(
rn+1

2
+ R

θn+1
2

)
. (3)

The distance of the ith point from circle circumference
is

di =
√

C2
r + r2

i − 2Crri cos (Cθ − θi) − R. (4)

Ultimately the mean and squared-residual is calculated in
the usual fashion as

d
2

=
1
n

n∑
i=1

d2
i . (5)
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Fig. 6. Reciprocal root mean squared-residuals of the laser scan in Fig.
2. The two prominent peaks correspond to the circular landmarks.

This indicates how far, on average, the points are from
the circumference of the hypothesis circle and the recip-
rocal is proportional to the likelihood of detection. This is
repeated for each point in the scan. The points that exceed
a threshold probability imply successful circle detection at
that position. Fig. 6 plots the reciprocal root mean squared-
residuals for the example laser scan in Fig. 2.

What is apparent from Fig. 6 is the accurate detec-
tion and localisation of the two circular targets with the
smaller of the two circle peaks being nearly twice as
big as the largest background peak. This ensures a su-
perior performance of 98% reliability versus 50% for the
RWCHT. A comparison of Fig. 3 and Fig. 6 emphasises
the effectiveness of the squared-residual voting strategy
over the RWCHT for reliable circular target extraction
from laser range data. The squared-residual voting strategy
takes advantage of range data specific characteristics like
sequence and a single observation point. The more generic
RWCHT does not utilise this extra information and so the
squared-residual voting strategy is not only 25 times more
accurate but also faster and requires less memory.

C. Cooperative pose change determination

The two cylindrical targets are observed from two differ-
ent poses and the observations superimposed. This is shown
in Fig. 7 with the second observation cylinder positions
indicated with an apostrophe. The pose change consists of
a rotation and translation. The rotation angle is the change
in angle of the line joining the two circles. This angle is
indicated in Fig. 7. Once the rotation of the robot between
the poses is known, the rotation effect can be undone
placing the cylinders at the positions C and D, as shown
in Fig. 7. The change in position or translation of the robot
between observations is given by the difference in position
of the midpoints of CD and AB. Knowing the rotation, θ,
and translation, T, of the robot between successive scans,
enables the amalgamation of scan data to produce a global
map. Scan data, L, is transformed point by point into the
coordinate frame of the global map, L′, by

L′
i =

(
Tx

Ty

)
+
(

cos θ − sin θ
sin θ cos θ

)
Li. (6)
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Fig. 7. Pose change calculation from two observations.

Given that a robot can observe other stationary robots,
how may it determine changes in its pose? Changes in pose
my be described as linear combinations of two geometric
transforms, translation and rotation. An important consid-
eration is if the observed robots are distinguishable; if they
can be unambiguously identified then the determination
of pose change between landmark observations is trivial.
The rotation is calculated from the change in angle of
the lines joining the landmarks and the translation is the
average displacement of each point to its image point.
If the landmarks are indistinguishable then it is not so
straightforward because each point cannot be associated
with absolute certainty to the same point in the subsequent
sensor update. Problems also arise with symmetric distri-
butions of landmarks.

If the relative positional information of indistinguish-
able landmarks is available then three are sufficient to
unambiguously determine pose. Initially two would appear
sufficient, however the ambiguity of identity means that
landmarks may be rotated 180◦ degrees. Even though only
three asymmetrically distributed indistinguishable land-
marks are needed for unambiguous pose determination, the
fewer landmarks required the better. Is it possible to have
reliable pose updates using only the relative positions of
two landmarks? There are a number of ways that this may
be achieved. The simplest is to use distinguishable land-
marks, for instance circles of sufficiently different radii. If
indistinguishable landmarks have to be used then they may
be placed in such a configuration so that localisation is only
required in one half plane. An example would be when they
are against a wall then the robot cannot be localised in the
half plane behind the wall and still be able to detect the
landmarks. Use of odometry and fast updates means that
the large pose changes that would cause ambiguity would
never happen between updates or would be detected by the
odometry sensors.

III. EXPERIMENTAL RESULTS

The experimental platform is a Magellan Pro robot
equipped with a SICK LMS 200 laser range finder. The
range-finder has a scanning angle width of 180◦ and a
resolution of 0.5◦. The laser range finder is almost an
ideal sensor with unrivalled accuracy, acquisition time and
range. The main problems are cost, mass(4.5kg) and power
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Fig. 8. Geometric construction used to calculate the localisation error.

consumption (17.5W). The characteristics of this LMS are
detailed in [10], [11].

A. Localisation

Experiments were performed to test the localisation
accuracy delivered. They involved driving the robot along
a straight line and in a square. The deviation of the co-
location positions from this straight line give an indication
of the localisation error in the direction perpendicular to
the line. This error depends approximately linearly on
the angular resolution of the laser scanner, the range and
separation of the geometric targets. The localisation error
was of the order of 0.02m at ranges of 0 to 8m with the
laser scanner operating at a resolution of 0.25◦.

Error in the range to the targets introduces error into
the position estimation of the robot. Fig. 8 illustrates the
dependence of the pose uncertainty on the range error. The
origin O is the true position of the robot and O′ is its worst
case perceived position if the range to the target A is over
estimated and that to target B is underestimated. The error
estimate is greatly simplified if a far field approximation is
used which implies

AB � OM (7)

in this approximation the following similarities prove use-
ful

sin θ ≈ tan θ ≈ θ (8)

for small angles of θ in radians. As OM = O′M then for
the displacement of O′ the angle of rotation is

̂OMO′ = arctan
(

2√
2

AA′

AB

)
≈

√
2
AA′

AB
. (9)

Note the root two factor due to the addition of the errors
in quadrature. Finally the position error can be expressed
as

OO′ ≈
√

2
AA′

AB
OM (10)

The far field approximation, expressed in (7), falters if
the targets are near and for large target separations, however
in these situations the error is minimal. It should also be
clear from Fig. 8 that the dependence of position error σx

on angular error (σθ) for the laser scanner is simply

σx ≈ OMσθ (11)

The angular error for the SICK LMS 200 is circa 0.5◦ so
at a range of 4m the position error due to angular error is
around 0.03m. Targets separated by 2m with radii 0.1225m
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Fig. 9. Plot showing the increase of position error with range to targets
and line of best fit.
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Fig. 10. Localisation along square path, solid line indicates true path
taken. The circles are the geometric targets used for localisation.

at a range of 4m observed with a range error of 0.01m
produced a position error of 0.03m. This prediction is close
enough to the error observed at this range in Fig. 9.

A typical set of continuous localisation results is dis-
played in Fig. 10. The robot was moved one loop around
a 1.57m square at 0.2m/s. The laser scanner mounted on
the robot has a maximum scan angle of 180◦ and so
the robot had to reverse along some edges of the square
in order to maintain tracking. The target cylinders were
located at (0, 1) and (−1, 0) because in these positions
they can always be observed by the 180◦ scanner, allowing
continuous position updates. The localisation error can
easily be extracted from Fig. 10 and is of the order of
0.03m. The position accuracy is better towards the origin of
the graph because the robot is nearer to the target positions
of (0, 1) and (−1, 0).

B. Cooperative Map Building

The accomplishment of reliable and accurate cooperative
localisation is easily extended to allow the construction of
local maps. The co-location gives the rotation and transla-
tion between successive laser range scans. This information
allows all the scans to be converted into one reference
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Fig. 11. Typical global map with the ground truth (solid line) and
trajectory (dotted line).

frame resulting in the production of a global map of the
environment. First the laser data is acquired from the SICK
LMS which has a variety of angular resolution and range
modes. The two main modes used were 180◦ at 0.5◦ reso-
lution and 100◦ at 0.25◦. Better angular resolution enables
more accurate co-location over a larger area surrounding
the reference targets.

It is important to note that although co-location may be
limited to 8m from the landmarks larger environments can
still be mapped because the robot can incorporate observa-
tions from outside this area. The increased data associated
with higher resolutions results in slow data acquisition and
increased processing time. The most appropriate laser mode
will ultimately depend on the operational environment,
small rooms (less than eight metres) will need wide angle
perception and larger rooms will require better accuracy.

Once the laser range data has been acquired, the circular
geometric targets are located and extracted from the range
data using the squared-residual voting strategy, which finds
circles of prior known radius from range data. If the
best candidate has a root mean squared-residual exceeding
0.01m then the scan is rejected and the next one processed.
Possible causes of rejection include situations when the
targets cannot be perceived as they are outside of the
angular or distance range, occlusion of targets and velocity
aberrations.

Once the positions of the stationary targets have been
extracted the change in pose enables alignment of the scan
to the global map. Using, (6), the scan, without the targets,
is added to the global map. It is important to remove the
targets once they have been detected as they are not part
of the environment and should not be added to the global
map.

A quantitative idea of mapping accuracy may be ob-
tained by comparing dimensions extracted from Fig. 11 to
the measurements taken from the operational arena. This
analysis yields a deviation of around 4% between dimen-
sions extracted from the global map and those measured
from the ground truth. The performance in more realis-
tic, complex and cluttered environments is demonstrated
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Fig. 12. Overhead camera view of the robot arena.

Fig. 13. Occupancy map generated of environment in Fig. 12.

through a comparision of Fig. 12 and Fig. 13. Fig. 12
is an overhead view of the robot arena. This cluttered
environment has circular targets identical to the two central
ones used for localisation. Augmenting the distictiveness
of the targets with retroreflective tape eliminates false
landmark matches. Fig. 13 is an occupancy map built using
the two central cylinders as landmarks differentiated from
the remaining distracting cylinders by the retroreflective
tape. Unobserved areas are depicted in grey, obstacles in
black and free space is white. The mapping strategy incor-
porates both retroreflectivity and curvature so the chance of
confusing targets appearing naturally is incredibly remote.
This gives rise to good maps of cluttered environments
despite the presence of distractors.

IV. CONCLUSION

This paper demonstrates the feasibility of cooperative
localisation and mapping based on one sensing robot and
two landmark robots. It is implemented by a novel squared-
residual voting strategy optimised for the sequential nature
of the range data and the highly symmetric aspect of the
circular geometric targets.

This co-location scheme allows fast position and ori-
entation determination with bounded errors and reliability
indicators in unknown indoor environments. The robust
localisation algorithm lays the foundation for mapping fea-
tureless and highly symmetric environments. Continuous
localisation was performed at 0.2m/s and the map shown in
Fig. 11 was built. This map is 96% accurate however more
accurate maps can be constructed if the robot moves a short
distance to a new pose then stops and scans. Continuous
localisation can be provided however these scans should not
be incorporated into the global map, only the ones taken
when stationary should be used to improve the quality of
the global map.

Improvements in co-location accuracy should be possible
allowing either the extending of the range over which
cooperative localisation is possible or reducing the sep-
aration of the targets so that they may be mounted on
one robot thus allowing cooperative mapping with only
two robots. These improvements in co-location accuracy
would primarily come from oversampling the squared-
residual voting strategy. Our next stage of research aims
at merging maps produced from target robots in different
positions. Once this has been achieved the way is clear
for robust, reliable and accurate cooperative mapping of
extensive unknown indoor environments.

REFERENCES

[1] H. Hu and D. Gu, “Landmark-based navigation of industrial mobile
robots,” Industrial Robot: An International Journal, vol. 27, no. 6,
pp. 458–467, 2000.

[2] L. Wang, L. Yong, and M. Ang Jr, “Mobile robot localisation for
indoor environment,” SIMTech Technical Report, 2002.

[3] O. Serrano, J. M. Ca nas, V. Matellán, and L. Rodero, “Robot
localization using WiFi signal without intensity map,” WAF, 2004.

[4] M. Betke and L. Gurvits, “Mobile robot localization using land-
marks,” IEEE Transactions on Robotics and Automation, vol. 13,
no. 2, pp. 251–263, 1997.
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