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Abstract. This paper describes the development of a 3D laser scandeareap-
proach to 3D mapping and localization. The 3D scanner ctansfsa standard 2D
laser scanner and a rotating mirror assembly. Employingdipfeilrobots and mu-
tual localization local 3D maps are built. Global localieat within the maps is
performed by extracting a cross-section of the map jusivbéie ceiling and then
using an exhaustive search algorithm to enable the mergewtifple local 3D
maps. The quality of these maps is such that the poses estirbpthis method are
accurate to within 0.1m and 1 degree.
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1. Introduction

Extracting 3D information about the world surrounding aagblas proved difficult. The
two main approaches, vision and laser range finding, have degged by problems. Vi-
sion is often computationally intensive and suffers fromssvity to changes in illumi-
nation. Many of the difficulties stem from having to solve tteerespondence problem
which can be alleviated by structured light approaches dvewthe data spatial density
does not come close to that provided by laser scanners. isoahocalization and map-
ping has taken place in 2D, mainly due to limitations of thesses in the case of laser
range finders, or processor speed and algorithms for théti@ascopic vision.

Recently in a drive to test the benefits of 3D sensors reseegttave mounted 2D
laser scanners on nodding or rotating mechanisms to odbesc@ns [1,2]. Alternatively,
two laser scanners mounted with their scan planes ortho{@jrere also popular. The
main problems with nodding or rotating approaches are diffes in hardware imple-
mentation and high power consumption as the 2D scannersearg.hConsequently a
rotating mirror prototype has been built which produces 8&ns with a field of view of
100 by 180, is light, has low power consumption and is easily deployedanventional
robotics platforms.

A number of groups are undertaking research into 3D laseipingmowever very
few groups are performing cooperative 3D laser mapping. dibgest are groups us-
ing cooperative vision and laser based mapping in outdogra@mments [4] and vision
only [5]. The benefits of full 3D mapping are abundant and sordpid expansion of
this field is inevitable. The detection of negative and dvanging obstacles greatly en-



2 J. Ryde and H. Hu / Mutual Localization and 3D mapping by Coafpee Mobile Robots

hances avoidance behavior. Once 3D maps of environmengsie®mn built they can be
customized for different robots. For instance various 2bupancy grids may be built
for robots of different sizes or with 2D sensors at differbaights. Severely cluttered
non-manifold environments such as search and rescuesitaanay be reliably mapped.
Maps based upon the ceilings of rooms will remain accuratéoitger and an unoc-
cluded view of the ceiling is usually readily accessible tolot even in crowded envi-
ronments [6]. The disadvantages of 3D sensing technolagéslower acquisition time
and the geometric increase in data that needs to be processed

In this paper, the mutual localization approach discusse8dction 2.1 coupled
with the 3D laser range finder prototype pushes this reséatalthe new area of three-
dimensional cooperative localization and mapping. Coinlgimutual localization with
the data from multiple 3D laser scanners enables full 3D nmappf indoor environ-
ments. This would prove vital for a number of industries sashnuclear decommis-
sioning, search and rescue scenarios, surveying as buittgtes and maps for mobile
robots.

The rest of this paper is organized as follows. Section 2gmtsshe system frame-
work of the research carried out in this paper. Section 3ilddte 3D scanner hardware.
Section 4 includes the experimental results and is follobe8ection 5 discussing their
implications along with future research directions.

2. System Framework
2.1. Mutual Localization

The premise for mutual localization is that rather than nyesbserving robots as bea-
cons each robot observes and is itself observed simultahefd]. Additionally, ensur-
ing that robots may observe team-mates and be observeddhesnmeans that simulta-
neous mutual localization events can occur. These evdatg siperior relative pose de-
termination. Firstly, the mutual localization is robusspurious readings because simple
checks on the validity of the mutual pose are available;rfstance the separation of the
robots should be similar as measured by both observing soBetondly, the accuracy
in the pose does not deteriorate with separation, [7], a ueeful property. Increasing
separation merely decreases the frequency of mutual ¥atialih events. This is accom-
plished by mounting retro-reflective cylinders above theefsscanner as shown in Fig.
1(a). The 3D laser scanner prototype has a blind spot direcftont of it with an angu-
lar width of 20° thus higher mounted beacons will be visible from furtherldfitost
clutter in rooms is quite low, for example chairs and taldessven when the line of sight
between the robots is interrupted; the beacons, being saydram the ground, may
still be detected by the laser scanners.

Mutual localization is accomplished by first projecting thieserved beacon’s 3D
position onto thery-plane which is parallel to the floor of the room. Once pradainto
the horizontal plane the 2D mutual localization algorithraynbe used. This method
assumes that the beacons are always the same height abd®theeasonable in the
case for many indoor environments with flat horizontal flo@wen the relative pose of
the mapping robot with respect to the observing robot mlelt§D laser scans may be
combined to produce a local map.
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Figure 1. Beacon positioning and geometry used to calculate thewelpbse. AB is the stationary robot and
CD the mapping robot. D and B are the beacons with C and D tigenerof the laser scanners.

The beacons are above the laser scanner and there is a srirhital displacement
from the origin of the laser scanner. This displacemenbahices the complications
evident in Fig. 1(b), where the laser scanners are represders semi-circles with the
forward part of the scanner corresponding to the curve o$émeicircle and the beacons
as solid circles. The robots are at A and C, with C mappingstilremains stationary.
The pose of A may be constrained to the origin arakis without loss of generality. The
beacons, B and D, are attached to the robots at A and C regggclihe distances AB
and CD are both equal tb The separation of the beacons is labelleghaendss because
s1 is the separation as observed by the robot at Asarid the separation as observed by
the robot at C, which in practice will not be identical. Théobat A observes the beacon
D at rangez and anglex whilst that at C observes the beacon B at ralhged angles.
The beacon separation may be calculated from the robotwdigsrs by the cosine rule
for triangles. Comparison of the two valuesandss (which should be approximately
equal) allows erroneous localizations to be detected ajedtesl. Typical errors stem
from distractors in the environment or error sensitive getsim configurations.

To acquire the position of the robot at C it is best to constergeometry in the
complex plane rather than the more immediately apparemhge@ methods involving
the sine and cosine rules. Using vectors in the complex glaves two expressions for
the position of C found by traversing the two available pdtbsn the origin to C. A
detailed explanation is given in [7]. Equating these givesfollowing expression faf.

w0 ae'*—d
 b—deP

e

1)

Eliminatinge*® and simplifying gives C in terms of the observed angles, earand the
parameted.

abe@+h) _ 2
=P —d @)

The real and imaginary parts 6fgive the Cartesian coordinates of the second robot. The
orientation i) — 5+ with 6§ determined from the argument of (1). The complex number
calculations are done in Java using the Java Math ExpreBsiser (JEP) because Java
does not natively handle complex numbers. The robots aecstaleixchange information
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through wireless networking. Once the pose of robot C is meduts scan data may be
used to update the centrally held occupancy map.

The map is a standard occupancy grid [8], where each celagmthe probability
that the particular space it represents contains an obstHoé grid is initialized so that
all cells contain 0.5 representing complete uncertaingpidally the resolution is 0.1m
and the size is 30 by 30m and the origin is the initial positibthe observing robot. New
sensor data is incorporated via the Bayesian update prdessgbed in (3). Occupancy
grids are an effective map representation as they are rdmarstle uncertainty well and
allow fusion of data from different sensors [9].

(1 — evidence(1 — prior) ) -t

Ploccupied = <1 + evidencex prior

®3)

Due to the fidelity and narrow beam width of the laser scanngraghtforward
raytrace model was employed. When updating the occupaidglycells along the path
of the laser ray have their probabilities decreased witikstcell containing the end point
of the ray has its probability increased.

2.2. Global Localization

Whilst producing local maps in a cooperative manner, ona@fobots remains station-
ary acting as a reference frame for building the map. In ot@lenap areas larger than
the local map the stationary robot must move at some poiris. i§han opportunity for
odometry errors to adulterate the global map. Althoughdhmeay be vastly reduced by
moving the reference robot under observation of the mappingt, these errors included
at each step, albeit small, still undergo unbounded accatioal Without some form of
reference to the global map frame, mapping of large cyclidrenments would prove
impossible. Thus global localization is a necessity.

Usually mobile robots operate on the floor, consequentlihassumption may be
enforced for global localization. In most typical indoov@onments moveable objects
tend to lie on the floor. Floor-level 2D maps (as most in presiBD localization mapping
research have been) are unreliable and quickly become atddtefwhen furniture is
moved and doors are opened or closed. To avoid these proB@msp data is extracted
as a horizontal cross-section just below the ceiling of tranr. This volume of a room
changes infrequently and is more easily observed espeaiatliuttered environments.
The horizontal cross-section chosen was the volume fronmn2239m in height and the
resulting 2D occupancy grid is produced by simply summirggértical columns within
this height range and re-normalizing.

A plethora of global localization algorithms given a prioamexist however in this
research an exhaustive search approach was implemenisdakha number of advan-
tages, the entire pose probability density function maydmermded and inspected, it is
very robust and suffers only from its slow execution spedt impact of this on real-
time operation may be vastly reduced especially if a pasigistimate is available which
is almost always the case. The pose search algorithm mayysépipal search out from
the estimated position. It was found that the executiondpéan unoptimized algorithm
meant that global localization could take place on mapsz& 80m by 20m with pose
resolution of 0.1m and®lin the order of minutes on a 2GHz processor. For the imple-
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Figure 2. The 3D mapping process for two robots A and B

mentation of the exhaustive search algorithm the 3D semsomer is converted into a
2D occupancy grid by extracting the cross-section nearéfimg. A correlation metric

is then calculated iteratively for the sensor occupanay byi stepping through various
poses with respect to the map. Typically, pose resolutié@slan and ? are used. The
pose with the best correlation metric is then chosen. An @k@mosition probability

distribution function is displayed in Fig. 5(b).

2.3. Concurrent Processing

Usually an exhaustive search algorithm of localizationrifeasible because it does not
run fast enough to provide continuous real-time pose ugdatewever in this imple-
mentation the pose updates are supplied by the mutualzatialn. The global localiza-
tion is run in parallel with the local map build process asidigl in Fig. 2. In Fig. 2 the
first robot, A, moves to the next best view (NBV). The NBV is tiext position which
is most likely to yield useful observations for updating thap and in these experiment
is calculated manually. Robot A is acting as the stationabpt providing a reference
frame for B whilst B maps the local area around A. When thellotap is sufficiently
good it can be added to the global map. Whilst the local maprat@\'s new pose is
built the pose of A within the global map is calculated. Thise along with (3) enables
the merger of the local and global maps. The process is regeatil the global map is
of sufficient quality.

3. 3D Scanner Design

The 3D laser range scanner consists of a SICK LMS 200, rgtagfiecting surface
prototype (Fig. 3(a)) and software to convert the range soato 3D data. The mirror
rotation period is 40 seconds. The slow rotation speed ibutés to a very low power
consumption of 0.01W. Rotating at the same speed as the isdtee far blocking arm
in Fig. 3(a). The purpose of this arm is to allow feed back efahgular velocity of the
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Figure 3. Rotating mirror mechanism and calculating 3D coordinatemfrange data

mirror to the robot. This blocking arm approach circumvemisblems synchronizing
angular velocity with the laser data.

The laser scanner scans full 28Xans with most of the range data from side angles
discarded. The furthest right hand scan points are blockeryénalf a second and this
information is used to calculate the angular velocity of tiv@tor and consequently the
mirror. A particular advantage of this approach is ease pfajenent in that the rotating
mirror mechanism can simply be placed in front of the lasanser and no further
connections are required, even the power supply is selfagoed. The arm blocks are
easy to detect as falling edges in the side range data.

The LMS was configured to scan a P0érc at T intervals and mm measurement
setting. These settings were chosen to minimize the nunftsram points in order to
increase the complete scan frequency. The scan frequeliryted by the data rate and
at the momentis 0.05Hz. This data rate is 34.8kb/s, the maxifor the serial interface,
resulting in 13 horizontal scans per second. The SICK LMS @i0support a 500kb/s
data rate using a USB interface. At this data rate, full 3Db¥ 1° scans should be
possible at 0.5Hz.

The mirror is mounted in front of the scanner rather thantigaor nodding the
scanner itself. This has a number of advantages namely tegsrgonsumption and
simpler hardware setup. The disadvantages are a reduaecisgke to around 100 a
blind spot when the mirror is edge on and a requirement forencomplex geometric
calculations (Fig. 3(b)) to correct for the separation lestavthe mirror and the scanner.
In Fig 3(b) the effect of the mirror is to bend part of thg-coordinate plane to a new
elevation illustrated in grey.

The following equations, which reference the values inwidan Fig. 3(b), indicate
the conversion between the § and ¢ coordinates, measured by the laser scanner, and
3D cartesian coordinates.

x = ((rcos@ —d)cos¢+d,rsinf, (rcosf — d) sin ) 4)

where the valud is the separation between the origin of the laser scannetharakis of
the rotating mirror. The range and bearing as measured dgdke scanner areandd.
The angle of the plane (grey region in Fig. 3(b) to the horiabintroduced by reflecting
the laser ray from the rotating mirror in front of the scaniséndicated by.
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Figure5. Global sub ceiling map and position probability densitydiion both with a resolution of 0.1m. The
map is a thresholded occupancy probability grid of the sfpa2@m above the floor. The width of the room is
approximately 12m. Two pillars and the windows at the baekevident.

4. Experimental Resultsand Analysis

Results are visualized using a number of methods and s@&tpragrams. To visualize
the data a 3D scene is generated consisting of cubes or splegresenting occupancy
and the results rendered using a ray tracer, Fig 4(b). Tlieslthe production of high
quality images and movies with shadowing, luminosity angpective, visual cues that
allow the brain to extract the 3D information more effectysfieom the 2D display media.
However, despite these efforts it still remains difficuletffectively display 3D maps as
images. An example of such a 3D image is displayed in Fig.&fk)a photograph from
the corresponding view point is shown in Fig. 4(a). Each spheFig. 4(b) represents
a laser range return and is colored by its distance from tbw point, with those closer
being lighter.

Fig. 5 illustrates a typical global localization scenatfee occupancy grid, Fig. 5(a),
is represented by drawing a cube at every grid cell where ithiegbility of occupancy
exceeds 0.9. Fig. 5(b) shows a postion probability densitiase where the probability
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of each position is indicated by the height of the surface fRliability and accuracy of
the pose may be ascertained by inspection of the positiomapitity distribution. The
true position is easily discerned and the dominance andesbhhe peak denotes the
reliability and error respectively.

5. Conclusion and Future Work

For decades mobile robots have been shackled by the 2D aisamphich has been
necessary due to the absence of suitable 3D sensors. Exwn3Ddsensing technology
is problematic and expensive. In this paper a rotating mimmechanism has been added
to a standard SICK LMS 200 laser scanner which produces 3bssddese 3D scans
coupled with mutual localization have produced full 3D eomwimental representations
at very low cost. The fidelity of these representations has validated by performing
global localization within them.

Further work would include mounting the laser scanner soithia facing up into
the mirror to allow fuller scans which might allow localizat by range histograms.
Results from increasing the number of cooperating robotdavoe interesting. The 3D
occupancy grids produced by mutual localization, althouméresting for humans to
inspect, will mainly be used by other robots. Thus the gldbealization accuracy is
a good indicator of their fidelity and suitability for furthase by other robots. Global
localization in these maps delivers poses accurate to Ontit°a

References

[1] A. Nlchter, K. Lingemann, J. Hertzberg, and H. Surmarteuristic-based laser scan match-
ing for outdoor 6D SLAM,” inAdvances in artificial intelligence. 28th annual German €on
on Al, Sept. 2005.

[2] K. Lingemann, H. Surmann, A. Nichter, and J. Hertzbetgdtor and outdoor localization
for fast mobile robots,” ifProceedings of the IEEE/RSJ Int. Conf. on Intelligent Relzotd
SystemsSendai, Japan, Sept. 2004, pp. 2185-2190.

[3] A. Howard, D. F. Wolf, and G. S. Sukhatme, “Towards 3D miagpin large urban environ-
ments,” iINIEEE/RSJ Int. Conf. on Intelligent Robots and Sysie®esdai, Japan, Sept. 2004,
pp. 419-424.

[4] R. Madhavan and K. Fregene and L. Parker, “Distributedg&rative Outdoor Multirobot
Localization and Mapping,Autonomous Robatsol. 17, pp. 23—39, 2004.

[5] J. Little and C. Jennings and D. Murray, “Vision-basedppiag with cooperative robots,” in
Sensor Fusion and Decentralized Control in Robotic Systeais3523, Oct. 1998, pp. 2-12.

[6] W. Burgard, A. B. Cremers, D. Fox, D. Hahnel, G. Lakemey®2r Schulz, W. Steiner, and
S. Thrun, “Experiences with an interactive museum toudgubbot,”Artificial Intelligence
vol. 114, no. 1-2, pp. 3-55, 1999.

[7] J. Ryde and H. Hu, “Laser based simultaneous mutualiat@dn for multiple mobile robots,”
in Proc. of Int. Conf. Mechatronics and Automatjddiagara Falls, Canada, July 2005, pp.
404-409.

[8] A. Elfes, “Using occupancy grids for mobile robot pertiep and navigation,Computey vol.
22(6), pp. 46-57, 1989.

[9] P. S&pan, M. Kulich, and L. Rewtil, “Robust data fusion with occupancy gridEEE Trans-
actions on Systems, Man and Cyberneticd. 35, no. 1, pp. 106-115, 2005.



