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Abstract. This paper describes the development of a 3D laser scanner and an ap-
proach to 3D mapping and localization. The 3D scanner consists of a standard 2D
laser scanner and a rotating mirror assembly. Employing multiple robots and mu-
tual localization local 3D maps are built. Global localization within the maps is
performed by extracting a cross-section of the map just below the ceiling and then
using an exhaustive search algorithm to enable the merger ofmultiple local 3D
maps. The quality of these maps is such that the poses estimated by this method are
accurate to within 0.1m and 1 degree.
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1. Introduction

Extracting 3D information about the world surrounding a robot has proved difficult. The
two main approaches, vision and laser range finding, have been dogged by problems. Vi-
sion is often computationally intensive and suffers from sensitivity to changes in illumi-
nation. Many of the difficulties stem from having to solve thecorrespondence problem
which can be alleviated by structured light approaches, however the data spatial density
does not come close to that provided by laser scanners. Non-visual localization and map-
ping has taken place in 2D, mainly due to limitations of the sensors in the case of laser
range finders, or processor speed and algorithms for that of stereoscopic vision.

Recently in a drive to test the benefits of 3D sensors researchers have mounted 2D
laser scanners on nodding or rotating mechanisms to obtain 3D scans [1,2]. Alternatively,
two laser scanners mounted with their scan planes orthogonal [3] are also popular. The
main problems with nodding or rotating approaches are difficulties in hardware imple-
mentation and high power consumption as the 2D scanners are heavy. Consequently a
rotating mirror prototype has been built which produces 3D scans with a field of view of
100 by 180◦, is light, has low power consumption and is easily deployed on conventional
robotics platforms.

A number of groups are undertaking research into 3D laser mapping however very
few groups are performing cooperative 3D laser mapping. Theclosest are groups us-
ing cooperative vision and laser based mapping in outdoor environments [4] and vision
only [5]. The benefits of full 3D mapping are abundant and so the rapid expansion of
this field is inevitable. The detection of negative and over-hanging obstacles greatly en-



2 J. Ryde and H. Hu / Mutual Localization and 3D mapping by Cooperative Mobile Robots

hances avoidance behavior. Once 3D maps of environments have been built they can be
customized for different robots. For instance various 2D occupancy grids may be built
for robots of different sizes or with 2D sensors at differentheights. Severely cluttered
non-manifold environments such as search and rescue situations may be reliably mapped.
Maps based upon the ceilings of rooms will remain accurate for longer and an unoc-
cluded view of the ceiling is usually readily accessible to arobot even in crowded envi-
ronments [6]. The disadvantages of 3D sensing technologiesare slower acquisition time
and the geometric increase in data that needs to be processed.

In this paper, the mutual localization approach discussed in Section 2.1 coupled
with the 3D laser range finder prototype pushes this researchinto the new area of three-
dimensional cooperative localization and mapping. Combining mutual localization with
the data from multiple 3D laser scanners enables full 3D mapping of indoor environ-
ments. This would prove vital for a number of industries suchas nuclear decommis-
sioning, search and rescue scenarios, surveying as built structures and maps for mobile
robots.

The rest of this paper is organized as follows. Section 2 presents the system frame-
work of the research carried out in this paper. Section 3 details the 3D scanner hardware.
Section 4 includes the experimental results and is followedby Section 5 discussing their
implications along with future research directions.

2. System Framework

2.1. Mutual Localization

The premise for mutual localization is that rather than merely observing robots as bea-
cons each robot observes and is itself observed simultaneously [7]. Additionally, ensur-
ing that robots may observe team-mates and be observed themselves means that simulta-
neous mutual localization events can occur. These events allow superior relative pose de-
termination. Firstly, the mutual localization is robust tospurious readings because simple
checks on the validity of the mutual pose are available; for instance the separation of the
robots should be similar as measured by both observing robots. Secondly, the accuracy
in the pose does not deteriorate with separation, [7], a veryuseful property. Increasing
separation merely decreases the frequency of mutual localization events. This is accom-
plished by mounting retro-reflective cylinders above the laser scanner as shown in Fig.
1(a). The 3D laser scanner prototype has a blind spot directly in front of it with an angu-
lar width of 20◦ thus higher mounted beacons will be visible from further afield. Most
clutter in rooms is quite low, for example chairs and tables,so even when the line of sight
between the robots is interrupted; the beacons, being some way from the ground, may
still be detected by the laser scanners.

Mutual localization is accomplished by first projecting theobserved beacon’s 3D
position onto thexy-plane which is parallel to the floor of the room. Once projected onto
the horizontal plane the 2D mutual localization algorithm may be used. This method
assumes that the beacons are always the same height above thefloor, reasonable in the
case for many indoor environments with flat horizontal floors. Given the relative pose of
the mapping robot with respect to the observing robot multiple 3D laser scans may be
combined to produce a local map.
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Figure 1. Beacon positioning and geometry used to calculate the relative pose. AB is the stationary robot and
CD the mapping robot. D and B are the beacons with C and D the origins of the laser scanners.

The beacons are above the laser scanner and there is a small horizontal displacement
from the origin of the laser scanner. This displacement introduces the complications
evident in Fig. 1(b), where the laser scanners are represented as semi-circles with the
forward part of the scanner corresponding to the curve of thesemicircle and the beacons
as solid circles. The robots are at A and C, with C mapping whilst A remains stationary.
The pose of A may be constrained to the origin andx-axis without loss of generality. The
beacons, B and D, are attached to the robots at A and C respectively. The distances AB
and CD are both equal tod. The separation of the beacons is labelled ass1 ands2 because
s1 is the separation as observed by the robot at A ands2 is the separation as observed by
the robot at C, which in practice will not be identical. The robot at A observes the beacon
D at rangea and angleα whilst that at C observes the beacon B at rangeb and angleβ.
The beacon separation may be calculated from the robot observations by the cosine rule
for triangles. Comparison of the two valuess1 ands2 (which should be approximately
equal) allows erroneous localizations to be detected and rejected. Typical errors stem
from distractors in the environment or error sensitive geometric configurations.

To acquire the position of the robot at C it is best to considerthe geometry in the
complex plane rather than the more immediately apparent geometric methods involving
the sine and cosine rules. Using vectors in the complex planegives two expressions for
the position of C found by traversing the two available pathsfrom the origin to C. A
detailed explanation is given in [7]. Equating these gives the following expression forθ.

eıθ =
aeıα

− d

b − de−ıβ
(1)

Eliminatingeıθ and simplifying gives C in terms of the observed angles, ranges and the
parameterd.

C =
abeı(α+β)

− d2

beıβ
− d

(2)

The real and imaginary parts ofC give the Cartesian coordinates of the second robot. The
orientation isθ−β+π with θ determined from the argument of (1). The complex number
calculations are done in Java using the Java Math ExpressionParser (JEP) because Java
does not natively handle complex numbers. The robots are able to exchange information
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through wireless networking. Once the pose of robot C is acquired its scan data may be
used to update the centrally held occupancy map.

The map is a standard occupancy grid [8], where each cell contains the probability
that the particular space it represents contains an obstacle. The grid is initialized so that
all cells contain 0.5 representing complete uncertainty. Typically the resolution is 0.1m
and the size is 30 by 30m and the origin is the initial positionof the observing robot. New
sensor data is incorporated via the Bayesian update processdescribed in (3). Occupancy
grids are an effective map representation as they are robust, handle uncertainty well and
allow fusion of data from different sensors [9].

P (occupied) =

(

1 +
(1 − evidence)(1 − prior)

evidence× prior

)

−1

(3)

Due to the fidelity and narrow beam width of the laser scanner astraightforward
raytrace model was employed. When updating the occupancy grid all cells along the path
of the laser ray have their probabilities decreased whilst the cell containing the end point
of the ray has its probability increased.

2.2. Global Localization

Whilst producing local maps in a cooperative manner, one of the robots remains station-
ary acting as a reference frame for building the map. In orderto map areas larger than
the local map the stationary robot must move at some point. This is an opportunity for
odometry errors to adulterate the global map. Although these may be vastly reduced by
moving the reference robot under observation of the mappingrobot, these errors included
at each step, albeit small, still undergo unbounded accumulation. Without some form of
reference to the global map frame, mapping of large cyclic environments would prove
impossible. Thus global localization is a necessity.

Usually mobile robots operate on the floor, consequently the2D assumption may be
enforced for global localization. In most typical indoor environments moveable objects
tend to lie on the floor. Floor-level 2D maps (as most in previous 2D localization mapping
research have been) are unreliable and quickly become out ofdate when furniture is
moved and doors are opened or closed. To avoid these problems2D map data is extracted
as a horizontal cross-section just below the ceiling of the room. This volume of a room
changes infrequently and is more easily observed especially in cluttered environments.
The horizontal cross-section chosen was the volume from 2.3to 2.9m in height and the
resulting 2D occupancy grid is produced by simply summing the vertical columns within
this height range and re-normalizing.

A plethora of global localization algorithms given a prior map exist however in this
research an exhaustive search approach was implemented. This has a number of advan-
tages, the entire pose probability density function may be recorded and inspected, it is
very robust and suffers only from its slow execution speed. The impact of this on real-
time operation may be vastly reduced especially if a position estimate is available which
is almost always the case. The pose search algorithm may simply spiral search out from
the estimated position. It was found that the execution speed of an unoptimized algorithm
meant that global localization could take place on maps of size 20m by 20m with pose
resolution of 0.1m and 1◦ in the order of minutes on a 2GHz processor. For the imple-
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Figure 2. The 3D mapping process for two robots A and B

mentation of the exhaustive search algorithm the 3D sensor scanner is converted into a
2D occupancy grid by extracting the cross-section near the ceiling. A correlation metric
is then calculated iteratively for the sensor occupancy grid by stepping through various
poses with respect to the map. Typically, pose resolutions of 0.1m and 1◦ are used. The
pose with the best correlation metric is then chosen. An example position probability
distribution function is displayed in Fig. 5(b).

2.3. Concurrent Processing

Usually an exhaustive search algorithm of localization is unfeasible because it does not
run fast enough to provide continuous real-time pose updates. However in this imple-
mentation the pose updates are supplied by the mutual localization. The global localiza-
tion is run in parallel with the local map build process as depicted in Fig. 2. In Fig. 2 the
first robot, A, moves to the next best view (NBV). The NBV is thenext position which
is most likely to yield useful observations for updating themap and in these experiment
is calculated manually. Robot A is acting as the stationary robot providing a reference
frame for B whilst B maps the local area around A. When the local map is sufficiently
good it can be added to the global map. Whilst the local map around A’s new pose is
built the pose of A within the global map is calculated. This pose along with (3) enables
the merger of the local and global maps. The process is repeated until the global map is
of sufficient quality.

3. 3D Scanner Design

The 3D laser range scanner consists of a SICK LMS 200, rotating reflecting surface
prototype (Fig. 3(a)) and software to convert the range scans into 3D data. The mirror
rotation period is 40 seconds. The slow rotation speed contributes to a very low power
consumption of 0.01W. Rotating at the same speed as the motoris the far blocking arm
in Fig. 3(a). The purpose of this arm is to allow feed back of the angular velocity of the
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Figure 3. Rotating mirror mechanism and calculating 3D coordinates from range data

mirror to the robot. This blocking arm approach circumventsproblems synchronizing
angular velocity with the laser data.

The laser scanner scans full 180◦ scans with most of the range data from side angles
discarded. The furthest right hand scan points are blocked every half a second and this
information is used to calculate the angular velocity of themotor and consequently the
mirror. A particular advantage of this approach is ease of deployment in that the rotating
mirror mechanism can simply be placed in front of the laser scanner and no further
connections are required, even the power supply is self contained. The arm blocks are
easy to detect as falling edges in the side range data.

The LMS was configured to scan a 100◦ arc at 1◦ intervals and mm measurement
setting. These settings were chosen to minimize the number of scan points in order to
increase the complete scan frequency. The scan frequency islimited by the data rate and
at the moment is 0.05Hz. This data rate is 34.8kb/s, the maximum for the serial interface,
resulting in 13 horizontal scans per second. The SICK LMS 200can support a 500kb/s
data rate using a USB interface. At this data rate, full 3D 1◦ by 1◦ scans should be
possible at 0.5Hz.

The mirror is mounted in front of the scanner rather than rotating or nodding the
scanner itself. This has a number of advantages namely less power consumption and
simpler hardware setup. The disadvantages are a reduced scan angle to around 100◦, a
blind spot when the mirror is edge on and a requirement for more complex geometric
calculations (Fig. 3(b)) to correct for the separation between the mirror and the scanner.
In Fig 3(b) the effect of the mirror is to bend part of thexy-coordinate plane to a new
elevation illustrated in grey.

The following equations, which reference the values indicated in Fig. 3(b), indicate
the conversion between ther, θ andφ coordinates, measured by the laser scanner, and
3D cartesian coordinates.

x = ((r cos θ − d) cos φ + d, r sin θ, (r cos θ − d) sin θ) (4)

where the valued is the separation between the origin of the laser scanner andthe axis of
the rotating mirror. The range and bearing as measured by thelaser scanner arer andθ.
The angle of the plane (grey region in Fig. 3(b) to the horizontal introduced by reflecting
the laser ray from the rotating mirror in front of the scanneris indicated byφ.
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(a) (b)
Figure 4. Photograph and typical 3D scan of mapped room

(a) (b)
Figure 5. Global sub ceiling map and position probability density function both with a resolution of 0.1m. The
map is a thresholded occupancy probability grid of the space1-2.9m above the floor. The width of the room is
approximately 12m. Two pillars and the windows at the back are evident.

4. Experimental Results and Analysis

Results are visualized using a number of methods and software programs. To visualize
the data a 3D scene is generated consisting of cubes or spheres representing occupancy
and the results rendered using a ray tracer, Fig 4(b). This allows the production of high
quality images and movies with shadowing, luminosity and perspective, visual cues that
allow the brain to extract the 3D information more effectively from the 2D display media.
However, despite these efforts it still remains difficult toeffectively display 3D maps as
images. An example of such a 3D image is displayed in Fig. 4(b)and a photograph from
the corresponding view point is shown in Fig. 4(a). Each sphere in Fig. 4(b) represents
a laser range return and is colored by its distance from the view point, with those closer
being lighter.

Fig. 5 illustrates a typical global localization scenario;the occupancy grid, Fig. 5(a),
is represented by drawing a cube at every grid cell where the probability of occupancy
exceeds 0.9. Fig. 5(b) shows a postion probability density surface where the probability
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of each position is indicated by the height of the surface. The reliability and accuracy of
the pose may be ascertained by inspection of the position probability distribution. The
true position is easily discerned and the dominance and shape of the peak denotes the
reliability and error respectively.

5. Conclusion and Future Work

For decades mobile robots have been shackled by the 2D assumption, which has been
necessary due to the absence of suitable 3D sensors. Even today 3D sensing technology
is problematic and expensive. In this paper a rotating mirror mechanism has been added
to a standard SICK LMS 200 laser scanner which produces 3D scans. These 3D scans
coupled with mutual localization have produced full 3D environmental representations
at very low cost. The fidelity of these representations has been validated by performing
global localization within them.

Further work would include mounting the laser scanner so that it is facing up into
the mirror to allow fuller scans which might allow localization by range histograms.
Results from increasing the number of cooperating robots would be interesting. The 3D
occupancy grids produced by mutual localization, althoughinteresting for humans to
inspect, will mainly be used by other robots. Thus the globallocalization accuracy is
a good indicator of their fidelity and suitability for further use by other robots. Global
localization in these maps delivers poses accurate to 0.1m and 1◦.
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