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Abstract— Many real-world applications require mobile
robots to be able to implement 3D perception and mapping. This
paper proposes a novel mechanism for augmenting a traditional
2D laser range finder to produce 3D scans. The range data is
stored in occupancy lists which are aligned to produce 3D maps
by a multi-resolution particle filter. Experimental results are
presented to show the feasibility and good performance of the
proposed approach.

Index Terms— Particle filter, Localization, Mapping, 3D laser
scanner

I. INTRODUCTION

Extracting 3D information about the world surrounding a
mobile robot has proved difficult. The two main approaches,
vision and laser range finding, have been beset by problems.
Vision is often computationally intensive and suffers from
sensitivity to changes in illumination. Many of the difficulties
stem from having to solve the correspondence problem which
can be alleviated by structured light approaches, however the
data spatial density does not come close to that provided by
laser scanners. Non-visual localization and mapping has taken
place in 2D, mainly due to limitations of the sensors in the
case of laser range finders, or processor speed and algorithms
for that of stereoscopic vision.

Recently in a drive to test the benefits of 3D sensors
researchers have mounted 2D laser scanners on nodding
or rotating mechanisms to obtain 3D scans [6], [8], [9].
Alternatively, two laser scanners mounted with their scan
planes orthogonal [4] are also popular. It must be noted that
the orthogonal mounting technique can produce 3D maps
however it does not give the robot 3D sensory perception
which is necessary for reliable obstacle avoidance. Significant
attention is being focused on 3D laser mapping [2], [3], [7].

A completely different approach is undertaken by [13].
This scanner has a modulated infra-red illumination and
a CMOS/BCCD image sensor taking four samples of the
reflected infra-red illumination intensity to determine the
phase difference of the reflected data for each image pixel.
From this phase difference and the frequency of illumination
modulation the distance to image pixels can be ascertained
unambiguously up to 7.5m. This sensor delivers 19480 range
measurements at 30 FPS, with no moving parts, whilst
comparing favourably in accuracy to the SICK LMS 200. Its
main disadvantages are price, low availability and a relatively
narrow field of view, although the latter can be altered by the
lens arrangement.

There are numerous commercial 3D laser range finders
however these are often prohibitively expensive especially
when required for multiple robots. They tend to be designed
for surveying and so often have a narrow field of view and
sacrifice scan rate for high point density.

This multitude of approaches illustrates the rapidly increas-
ing interest in full 3D robotic sensory perception. The detec-
tion of negative and over-hanging obstacles greatly enhances
avoidance behaviour. Once 3D maps of environments have
been built they can be customized for and distributed to
different robots. For instance various 2D occupancy grids may
be built for robots of different sizes or with 2D sensors at dif-
ferent heights. Severely cluttered non-manifold environments
such as search and rescue situations may be reliably mapped.
Maps based upon the ceilings of rooms [12] will remain
accurate for longer and a clear view of the ceiling is usually
readily accessible to a robot even in crowded environments
[1]. An alternative approach taking advantage of full 3D
perception [14] uses virtual 2D scans produced by collapsing
the 3D data vertically into a plane and then taking the
furthest point for each 2D scan angle. This produces good 2D
representations in cluttered environments. The disadvantages
of 3D sensing technologies are slower scan acquisition time
and the geometric increase in data to be processed.

Section II contains a description of the hardware im-
provements that produce 3D scans from a laser scanner.
The mechanism for scan matching to produce maps and
global localisation is explained in Section III. A theoretical
analysis of the significance levels of overlap counts at varying
resolutions is undertaken in Section IV. Section V displays
the experimental results for assessing the accuracy of the 3D
laser scanner, the distribution of the overlap counts and map
building with the multi-resolution particle filter. The paper
ends with a summary and discussion of future work in Section
VI.

II. ENHANCED 3D LASER SCANNER

We have developed a novel 3D laser scanner based on
a SICK LMS 200, [5], [10], [11] which consists of the
LMS 200 facing upwards into a rotating mirror driven by
a stepper motor. This approach simplifies the hardware and
software implementation whilst producing a 3D laser scanner
suitable for real-time operation on medium sized (≈1m)
mobile robots. The high update rate (75Hz) of the LMS 200



Fig. 1. Pioneer 2 robot with rotating mirror mechanism enabling 3D scans.

means the 3D scanner delivers scans at 1Hz with a horizontal
resolution of 1◦ and vertical resolution of 5◦.

The processing of data produced by the scanner is similar
to that described in [10], however it is substantially simpler
to implement due to the accuracy of the open loop control
provided by the stepper motor driven by a frequency divided
quartz crystal oscillator. Stepper motors can be operated
over a range of speeds and are especially suited to low
speed operation. Directly coupling the motor to the mirror
eliminates backlash by removing the gear train that introduces
backlash. As long as the stepper motor’s maximum load
torque is not exceeded its rotation speed is solely determined
by the frequency of pulses it receives from the driver circuit.
Variations in load torque do not affect its rotation speed
and so closed loop control is no longer necessary and sub-
stantial hardware and software implementation complexity is
removed.

The stepper motor in this implementation was a 1.8◦ resolu-
tion that was half-stepped to give 400 steps per revolution. Al-
though the stepper motor driven by a quartz crystal oscillator
has an exceedingly consistent angular velocity the mirror still
needs to be approximately balanced. Significant off-centre
mass distribution will cause flexing to occur between the
motor connection and the mirror. This flexing may be reduced
by using stiffer materials and balancing the mirror to reduce
the variation in load torque. The system however is much less
sensitive to variations in load torque than a DC motor driven
system. A 12MHz oscillator is stepped down to produce a
highly stable and accurate 15ms clock signal.

The field of view is improved by placing the laser scanner
facing upwards. In this way the blind spot when the mirror
is edge on is rotated to point upwards rather than in front of
the robot. The observable volume is given by the following
constraints.

Fig. 2. Top and side views of the enhanced 3D laser scanner.

0.5m < r < 8m, 25◦ < θ < 155◦, 75◦ < φ < 105◦.

Data from a single scan of a small room is plotted in Fig.
8. The room is a cuboid and with flat ceiling, walls and floor.

The SICK LMS 200 is capable of operating at higher data
rates. The internal mirror rotates at 75Hz and this is the
natural data frequency if the RS232 serial communications
bottle-neck is removed. The SICK LMS supports a high-
speed serial connection RS422 which may be connected to a
standard USB port with a USB-RS422 converter. This allows
180◦ of range data at 1◦ resolution to be delivered to the
host computer at 75Hz. The horizontal resolution is fixed at
1◦ however the vertical resolution may be adjusted by varying
the speed of the external mirror rotation. Matching the vertical
resolution to the horizontal resolution gives scan times of
360/75 = 4.8 seconds. The resulting scans are high detail
which can be used for map building, however for obstacle
avoidance a faster mirror speed is more suitable and scan
frequencies of 1Hz are feasible.

Fig. 2 indicates the positioning of the blocking arms. By
blocking the range scan every half mirror rotation these arms
serve two main purposes. The first is to establish the angular
velocity of the mirror, although it is very consistent measuring
the angular velocity makes the system more flexible and aids
fault detection. The second is to establish the rotation of the
scan about the y-axis so that the resulting 3D scan is correctly
orientated. This does not have to be too accurate as this is
affected by the inclination of the surface that the robot is
traversing. In this manner the system does have an element
of closed-loop feedback once per cycle but most of the fine
control is an open-loop system thus significantly reducing
demands on the host hardware.

If the reflecting surface used is a standard single-sided
mirror then only one blocking arm should attached otherwise
there will be a 180◦ ambiguity in φ. With a double-sided
mirror and two blocking arms two 3D scans are returned for
every mirror revolution.

III. MULTI-RESOLUTION PARTICLE FILTER

Global localisation and scan matching are achieved by
an approach that is similar to a multi-resolution particle
filter. In this work a particle is considered as a pose with
an associated probability weight w. In the implementation
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Fig. 3. Flowchart of the particle filter global localisation and alignment
process.

these weights are not normalised and are integers and are
considered proportional to the likelihood of the corresponding
pose.

Data: OccupiedList map, OccupiedList scan, Integer f
Result: Set of weighted poses
generate uniform pose distribution set particleSet;
for f is 2i where i is 6 to 0 decrement 1 do

down-sample map and local scan by f ;
calculate overlaps for all poses in particleSet;
remove from particleSet all poses with certainty <
80% of the mode;
re-sample poses around remaining poses in
particleSet uniformly with width ε/2 spatially and
∆θ/2;

end
Algorithm 1: Multi-resolution particle filter overview algo-
rithm

In Algorithm 1 the re-sampling step is akin to sampling
importance re-sampling with a local uniform distribution.
Typically in particle filters the initial distribution is randomly
generated from a uniform distribution. In this implementation
the initial pose distribution is exhaustively generated for all
possible initial poses. This is made computationally possi-
ble by the down-sampling step and the overlap calculation
algorithm which ensures the smoothing of the probability
distribution function at low resolutions.

The implementation of the particle set must satisfy two

Fig. 4. Distribution of best orientation poses with w > 0.8wmax as a
function of 2D position with height indicating probability of pose.

criteria. It must only store unique poses at the current spatial
and angular resolutions and it must be able to iterate through
the particle poses in angular order. The latter is not a
requirement for success of the process but is for optimization
reasons. When calculating the overlaps one of the slowest
operations is the rotation step. By ordering the poses particles
by rotation the rotation on the local scan may be done only
once and then translated to poses at different positions with
identical orientation. This is implemented by using a treeset
structure which maintains the uniqueness and correct order of
elements and guarantees insertion times of O(log n).

A typical particle distribution is visualised in Fig. 4 where
the local scan (depicted in 3D) is globally aligned with the
map (projected onto the floor). Both the local scan and the
map are full 3D representations however they are shown as
2D projections in Fig. 4 for clarity. The map was built by
combining 20 scans with the multi-resolution particle filter
and then another scan was globally localised within this map.
The initial particle distribution is uniform with the spatial
separation of 1.24m. The particles are re-sampled around
the highest probability regions progressively sampling the
pose space at better resolutions. The final alignment is at a
resolution of 0.02m.

The solution is indicated by the high cluster of poses shown
in Fig. 4. The algorithm is similar for global localisation
as well as tracking with the only difference being the first
step of generating the initial particle distribution. For global
localisation the particle distribution is over the entire possible
pose space. The two main ways of generating the initial par-
ticle distribution are uniform and random. In other work with
particle filters the random initialisation is usually preferred.
For this algorithm it is important to use a uniform initial
particle distribution with the spatial and angular resolution of
the poses carefully chosen. In this way it is possible to be
sure of complete coverage of the pose space. Normally this
would be exceedingly costly however down-sampling makes
this possible. Other advantages of uniform initial particle
distribution are that it is deterministic and quick to generate.

The spatial ∆x and angular ∆θ resolution need to be



Fig. 5. The quantisation process for converting pointclouds to the occupied
voxel lattice. The original pointcloud data is represented by crosses. Two
different resolution grids are also shown.

matched and are dependent on the resolution ε of the oc-
cupancy lists and the scan range, R. The spatial separation
of the particles is dictated by the resolution of occupancy list
being processed. ∆x = ε The angular separation is

∆θ = ε/R, (1)

where R is the maximum range of points from the origin
of the local map which need to be reliably considered. This
ensures that successive rotations produce new local occupancy
lists at the current resolution. Because the particles are stored
in sets then the random initial particle distribution is still
guaranteed to produce unique particles.

An important aspect of this process is the down-sampling
of the occupancy lists. The 3D laser scanner returns 3D scans
as point clouds and these are converted into an occupancy
list of resolution ε = 0.02m. The resolution of 0.02m is
chosen because this is the limit of the accuracy of the 3D
laser scanner. The down-sampling process is described in
Algorithm 2 and Fig. 5.

Data: occupanyList and factor
Result: lower resolution occupiedList
if factor exists in downSample cache then

return corresponding downSampled occupiedList;
end
make new occupiedList with resolution of factor*this
resolution;
for all voxels in occupiedList do

add new voxel(Math.round(v.x/f), Math.round(v.y/f),
Math.round(v.z/f));

end
store factor with downSampled occupiedList;
Algorithm 2: Occupany list down-sample algorithm.

Once the occupancy lists have been down-sampled and the
particles selected the probabilities or weights for each particle
need to be estimated. This process is finely balanced between
giving an accurate weighting and computational speed as it

is carried out for each particle. The process is described in
Algorithm 3 and my be succinctly expressed as

o = |L ∩M |. (2)

The overlap count is o, the number of elements or cardinality
of set A is |A|, the map is M and the local transformed scan
is L. Thus o is not only a count of the overlapping voxels
but also an indicator of the probability of the associated pose
particle. A statistical analysis of the significance levels for o
in various situations is presented in Section IV.

Data: particleSet poseParticles, occupiedList map,
occupiedList local

Result: particleSet poseParticles with updated weights
for each particle in poseParticles do

o = 0;
if particle angle is different from previous then

calculate new rotated local L;
end
translate L by (px, py);
for each element in L do

if element is present in M then
increment o;

end
end
set particle weight to o;
if o > wmax then

omax = o;
end

end
Algorithm 3: Process for updating the weights of the
particle set.

It is assumed that |L| < |M | and so iteration is over the el-
ements of L. The particles are stored in a set sorted primarily
by their angle. Rotation operations on the local occupancy
list are slower than translation operations. Rotations in 2D
Cartesian coordinates require four multiplications and two ad-
ditions as opposed to translations which require two additions.
Sorting the list by rotation groups identical rotations together
hence ensuring rotations need to be performed once only.

Once the particle weights have been updated, particles with
a weight less than 80% of the maximum weight are removed.
New particles are then generated around the remaining high-
weight particles as described in Algorithm 4.

This new particle set is then submitted for the next round
of tests at better resolution. In this manner an order of 10,000
particles per second can be assessed on a standard 2GHz
computer. The precise rate depends on the resolution and
structure of the map and local occupancy lists.

IV. SCAN MATCHING PROBABILITY

Whilst aligning a scan with the map it is important to de-
termine the significance of a particular overlap value in order
to assess the reliability of that localisation. Determination of
the confidence in the alignment pose is required for reliable
map building; only those scans with high confidence value



Data: particleSet initialParticles
Result: particleSet with re-sampled particles
integers a, b, c;
create new particleSet P ;
for each particle in initialParticles do

for −1 ≤ a ≤ 1 do
for −1 ≤ b ≤ 1 do

for −1 ≤ c ≤ 1 do
create a particle with pose
(x + aε/2, y + bε/2, θ + c∆θ);
add particle to P ;

end
end

end
end
return P ;

Algorithm 4: Re-sampling at improved spatial and angular
resolution around high weight particles. This algorithm
will produce repeated particles for adjacent initial particles
however particles are placed in a set to ensure uniqueness.

should be added to the map. The shape of the probability
distribution is useful in establishing this significance. For
instance if the distribution is multi-modal and the peaks are
similar in height then there is doubt as to which modal peak
is correct. Likewise the sharpness of the peaks indicates the
accuracy of the corresponding modal poses. These measures
are all relative; they say nothing about the absolute value
of the overlap. This is addressed by the following analysis.
In order to determine significance of a given overlap the
probability of getting an overlap at least that high by pure
chance alone has to be considered.

Let the volume covered by the map be Mv , the overlap o,
the number of occupied voxels in the map and scan is N and
n respectively. The map and scan voxel sizes are both ε. The
total number of possible voxels in the map volume is V/ε3.
Thus the proportion of the map that is occupied is

Mε3

Mv
(3)

Assuming a random distribution of occupied voxels through-
out the map and that voxel occupancy is independent, Equa-
tion 3 expresses the probability of a single voxel picked at
random being occupied in the map. Given a scan of N voxels
what is the expected value of the overlap assuming that the
scan voxel occupancy probabilities are independent? This can
be re-expressed in standard probability terminology as picking
n voxels at random from the map without replacement.
This means that the overlap counts may be modelled as a
hypergeometric distribution. The mean of which is given by

x̄ =
Mo

N
. (4)

The variance is

σ2 =
n(o/N)(1− o/N)(N − n)

N − 1
. (5)
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Fig. 6. Probability distribution of overlap counts for various resolutions of
the map and local scan.

It is important to note that for simplicity the hypergeometric
distribution tends towards a normal distribution as N >>
n. The significance of the maximum overlap value may be
determined by calculating its probability of occurrence.

The actual distributions of overlaps for a number of resolu-
tions are shown in Fig. 6 which shows that the mean overlap
stays relatively constant regardless of resolution however the
standard deviation grows as the resolution becomes finer.
What is also clear is that the overlap count may be adequately
represented by a normal distribution down to resolution of
0.64m. The region of interest is the far right of this graph
where the significance of the maximum overlap may be
established. The maximum count for the 0.16 resolution scan
alignment shown in Fig. 4 is 379 which is very significant and
so the result may be regarded as reliable. It must be recalled
that one of the original assumptions was the independence of
voxel occupancy. This assumption becomes more valid as ε,
the voxel size, increases.

V. SCANNER ERROR

The random error for the 3D scanning mechanism was
found by scanning a room with flat ceiling and walls, Fig.
8. A subset of the data points associated with the ceiling
which was 3.2m above the origin of the 3D laser scanner
was extracted from the scan. This extract indicates that the
error in z is approximately 0.02m. Repeating this analysis
for the smooth walls of the room indicate a similar error in
x and y. The error is relatively independent of the distance
over the range of distances 0-8m implying that a simplified
sensor model is appropriate. In this simplified sensor model
the errors are 0.02m regardless of distance. This also places
a lower bound on the map resolution.

To establish the size of the systematic error numerous
dimensions of the experimental environment are compared to
the generated map and the mean error is 0.07m on dimensions
of 6m. The systematic error results would seem to indicate
that there is no point using map resolutions better than 0.07m
and experimentally we find the best localization and mapping
performance with resolutions of 0.08m, however it is worth
remembering that local regions of the scans are accurate to
0.02m.
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Fig. 7. Distribution of the distances to the corresponding closest points in
two sequential scans.

Fig. 8. Side view of a single scan for a room of dimensions 3 by 6 by
2.75. The grid cells are 1m.

Having established an estimate for the systematic error
of a scan the random error is now inspected. This is done
by analysing two consecutive scans in a static environment.
Ideally the scans should be identical because nothing in
the environment has changed between the scan times. The
differences between the two scans are due to random error
as any systematic distortions will be equally present in both
scans. For each point in the first scan the distance to the
closest point in the second scan is recorded. The distribution
of these corresponding closest point distances is graphed in
Fig. 7.

Although the mean closest point separation is 0.011m the
median is 0.006m and the mode is 0.004m. The random
error is remarkably small with very few separations venturing
above 0.02m. Thus it may be concluded that the majority of
the error comes from systematic errors or distortions within
the laser scan. In this case flexing between the stepper motor
axle and the mirror. From the point of view of mobile robotics
the data accuracy is significantly better than that acquired by
stereoscopic vision and comparable to that acquired by rotat-
ing the laser scanner. For medium sized robots in standard
human environments this 0.02m accuracy is adequate and
paves the way for equally accurate mapping and localisation.

VI. CONCLUSION AND FUTURE WORK

This work describes the enhancements made to a standard
SICK LMS 200 laser scanner to produce a full 3D sensor. This
sensor has medium power consumption, minimal hardware

requirements and may be easily deployed on standard Pioneer
2 and other robotics platforms with little or no modification.
This was achieved by mounting a rotating mirror above an
upward facing 2D scanner to divert the 2D scans to gather
range data from a volume rather than a single scan plane.
Knowledge of the mirror’s angular velocity and speed allows
this range data to be converted into 3D point clouds that
contain information regarding the obstacles surrounding the
robot. The addition of the external rotating mirror has a
negligible impact on the accuracy of the 2D laser scanner.
The 3D scans have an error of 0.02m, consist of up to 5000
data points with some blind spots and are produced at 1Hz.

The scans are fused with a multi-resolution particle filter to
produce 3D maps of the environment which allow localisation
to ±0.02m and sub-degree error.

Further work will include scaling up the experiments to
larger areas and the inclusion of pose corrections when loop
closing has been detected. The mapping and localisation
performance in dynamic environments will be assessed.
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