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Abstract Most current navigation algorithms in mobile robotics
produce 2D maps from data provided by 2D sensors. In large
part this is due to the availability of suitable 3D sensors and
difficulties of managing the large amount of data supplied
by 3D sensors. This paper presents a novel, multi-resolution
algorithm that aligns 3D range data stored in occupied voxel
lists so as to facilitate the construction of 3D maps. Multi-
resolution occupied voxel lists (MROL) are voxel based data
structures that efficiently represent 3D scan and map infor-
mation. The process described in this research can align a
sequence of scans to produce maps and localise a range sen-
sor within a prior global map. An office environment (200
square metres) is mapped in 3D at 0.02m resolution, result-
ing in a 200,000 voxel occupied voxel list. Global localisa-
tion within this map, with no prior pose estimate, is com-
pleted in 5 seconds on a 2GHz processor. The MROL based
sequential scan matching is compared to a standard itera-
tive closest point (ICP) implementation with an error in the
initial pose estimate of plus or minus 1m and 90 degrees.
MROL correctly scan matches 94% of scans to within 0.1m
as opposed to ICP with 30% within 0.1m.
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1 Introduction

Reliable localisation is a clear prerequisite of the mapping
process. Once accurate localisation has been achieved, one
can progress to building maps. However, mapping raises its
own issues, such as what is the best internal representation
or map format? And how can new sensor data best be in-
corporated into the map? If it is accepted that probabilis-
tic depictions are appropriate for both maps and poses then
information theory shows how the value of estimators can
be extracted from unknown probability distributions without
complete knowledge of these distributions. Moreover such
sample based approaches converge to the actual values sur-
prisingly quickly. Particle filters are an example of such an
approach and describe distributions by samples or particles
as in Dellaert et al (1999); Fox (2003); Fox et al (1999);
Gustafsson et al (2002); Jensfelt et al (2000); Lenser and
Veloso (2000).

Particle filters track a robot’s true pose by representing
it as a set of possibilities with each assigned a weight. This
weighted sample of possible poses tends towards a probabil-
ity distribution function as the number of particles increases.
The particle filter develops the pose distribution over time
by updating the poses of the individual particles according
to a prediction model. Information from observations is then
used to adjust the weights of the new particle set. The com-
putational overhead required by particle filters is orders of
magnitude less than that required by grid based implementa-
tions as they ensure calculations focus on significant regions
of the state space.

In the field of robotics navigation, much emphasis has
been placed upon the idea that localisation and mapping
have to be performed in parallel. Advocates of simultane-
ous localisation and mapping (SLAM) or concurrent local-
isation and mapping (CML) use sophisticated probabilistic
analysis to derive maps from uncertain location information.
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Efforts to separate the localisation and mapping processes
(Wang et al, 2007) go some way to reduce the computa-
tional burden of conventional SLAM and this becomes espe-
cially important when large numbers of landmarks are con-
sidered. In practice navigation usually depends on two types
of landmarks, the artificial (Hu and Gu, 2000) and the natu-
ral (Wang et al, 2002). The use of natural landmarks in nav-
igation confers a degree of robustness but can lead to errors
in situations where landmarks are few. Additionally some
knowledge of the local environment is necessary at the out-
set. Although approaches utilising artificial landmarks are
less flexible, their improved ability to locate landmarks sim-
plifies the process of map building.

In the past, navigation algorithms designed for mobile
robotics have usually exploited 2D mapping irrespective of
whether they use natural or artificial landmarks. This follows
from 3D navigation sensors being expensive and requiring
greater computational resources. It is far from easy to man-
age the large amounts of data that a 3D navigation sensor
generates and this paper seeks to address this problem. It
does so by presenting a novel, multi-resolution algorithm
for aligning the 2D range data that has been generated, and
then stored in occupied voxel lists, to produce 3D maps. The
scan and map data stored in occupied voxel lists are com-
bined by the sampling algorithm to produce the 3D map.
The map enables global localisation, without the need for a
prior estimate, over a 200m2 area to an accuracy of ±0.02m
and to within one degree. The algorithm accomplishes this
task in 5 seconds on a 2GHz processor. Although the pro-
cess described can both localise and generate maps without
recourse to odometry data, such data can be incorporated
into the process, thereby shortening the computation time
required by reducing the initial pose search volume.

The rest of the paper is organized as follows. Section 2
inspects the research that others have undertaken to rep-
resent environments digitally for mobile robots. Section 3
contains the methods for storing and merging 3D data. It
includes the representation of occupied voxel lists and con-
tains a detailed description of the multi-resolution, pseudo
particle filter solution for aligning multiple occupied voxel
lists in real-time. A theoretical analysis of the significance of
the overlap value returned by the scan matching algorithm
is also presented. Section 4 includes results of single robot
mapping experiments and scan matching at various resolu-
tions to test the theoretical work. Finally a brief conclusion,
with suggestions for future work, is given in Section 5.

2 Related Work

2.1 Environment Representations

The question of how best to represent the surroundings of a
robot in a manner that is easily stored, manipulated and pro-

cessed has received much attention and two main paradigms
have emerged that use either geometric or topological repre-
sentations. In this work the focus is on geometric mapping
and its associated paradigm.

Upon first sight of the laser range data returned by the
robot, one is drawn to consider geometric models to rep-
resent the environment as in Hager and Burschka (2000).
In this paper the authors developed a computationally effi-
cient algorithm for determining the rotation and translation
between consecutive laser scans. Other useful approaches
include González-Baños and Latombe (2002); Wetzler et al
(1994). Map modelling with geometric primitives tends to
be hard to implement and can be rather fragile especially
in environments containing features inadequately described
by the set of primitives. Upon consideration it became ap-
parent that probabilistic approaches not only yield the best
experimental results but seem readily scalable to problems
involving data from different sensors and robots.

Extensions to straight line representations utilise other
geometric primitives such as circles and conic sections (Lee,
1995; Vandorpe et al, 1996) to help describe a wider range
of environments. The resulting maps require little storage,
describe the environment well and are quick to process for
the purpose of path planning. However they are not as popu-
lar as occupancy grids or sampling based approaches as they
are difficult to update, express probabilities poorly and are
more complicated to implement.

Grid based approaches to 2D mapping involving occu-
pancy maps were first envisaged by Elfes (1987); Moravec
(1989) and are powerful as well as capable of handling a
large degree of uncertainty in position. This facility however
requires the storage and modification of an excessively large
state space containing all the possible positions and orienta-
tions of the robot throughout the environment. It seems that
this full representation of the location probability distribu-
tion is not always necessary Fox (1998). The ease of im-
plementing the grid based approach has encouraged many
researchers (Burgard et al, 1996, 1998; Konolige and Gut-
mann, 2000; Olson, 2000) to adopt them. A modified 2 1

2
dimensional representation for exterior environments is in-
troduced in Triebel et al (2006) and subsequently used by
Kümmerle et al (2008); Pfaff et al (2007). These multi-level
surface maps are a good compromise between computational
requirements and environment expression.

Quantitative measures of map quality and localisation
performance are notably absent from much of the literature
as observed by Lee (1995). Some efforts (Elfes, 1991; Lim
and Cho, 1992; Rocha, 2005; Rocha et al, 2005; Stachniss
and Burgard, 2003a,b) assess the map quality using an aver-
age entropy measure.

Mobile robot navigation has evolved in a number of di-
rections in the past couple of decades. Initial work with sin-
gle robot SLAM has advanced to the investigation of multi-
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ple robots operating in a cooperative manner, (Burgard et al,
2005; Rocha et al, 2005, 2008). Improvements in the sen-
sors deployed have encouraged some researchers to embark
upon 3D sensing using cameras or 3D laser range finders,
(Thrun and Montemerlo, 2006).

2.2 Geometric Mapping

Geometric mapping algorithms attempt to survey the envi-
ronment by producing detailed measurements, often from
range sensors. If, like most indoor environments, the sur-
roundings include many plane surfaces then the straight lines
appearing in 2D range scans point us towards polygonal
maps, González-Baños and Latombe (2002). Polygonal maps
are good for path planning algorithms due to their inher-
ent simplicity and because they have been extensively anal-
ysed as a result of their importance in the field of com-
puter graphics. Unfortunately not all environments contain
straight lines; cluttered environments such as disaster scenes
may not have enough straight lines for effective mapping
and navigation. These circumstances are more suited to grid
based approaches which can handle almost all environments
as they make no assumptions about the prevailing geometry.

Techniques involving probability grids have enjoyed much
success over the years and have capitalised on the expo-
nential growth in computer processing power. Some of the
drawbacks of these grid techniques, also referred to as prob-
abilistic grid maps, are detailed by Lee (1995). The most
serious of these, concerns the probability meaning assigned
to each cell and, especially, the assumption that the occu-
pancy probability of a given cell is independent of that of
neighbouring cells. A problem with cell probability updates
arises in the situation where the robot is stationary but con-
tinues to update the map. In these circumstances whatever
the detected state of an individual cell it continues to accu-
mulate probability weight until either the robot moves or the
map updates cease. This means the accuracy of such a map
is particularly vulnerable to systematic errors, such as spec-
ular reflection, inherent with sonar sensors. Although this
problem is diminished by the use of laser scanners, the as-
sumption of cell occupancy independence still leads to less
than optimal results. These problems are addressed by the
work on coverage maps of Stachniss and Burgard (2003a,b)
and Rocha et al (2005) in which partially occupied cells are
correctly represented.

One apparently valid concern is that the accuracy in the
pose estimate is fundamentally limited by the resolution of
the grid. However this is dispelled by Olson (1999) who
achieves a pose accuracy higher than the resolution of the
occupancy grid by the insertion of a fitted parameterised
surface in the region of the maximal pose likelihood. Re-
searches have attempted to reduce the computational resource
requirements of occupancy grids, even in 2D, by various

multi-resolution approaches, Moravec (1989); Olson (1999);
Yguel et al (2005).

Environmental representations using topology collapse
the states representing robot position into a set of discrete,
easily identifiable, locations or paths within the arena of op-
erations. The obvious advantage of this is the vast reduction
in computational resources required to store and manipu-
late the position probability distribution. The process of path
planning is also greatly simplified by this method as the re-
sulting networked nodes are fast to search. It should be noted
that this solution requires easily identifiable features in the
environment and, in addition, the algorithms developed for
this method are situation specific. Implementation examples
include Choset and Nagatani (2001); Kuipers and Beeson
(2002) and a Voronoı̈ based approach Victorino et al (2003).

2.3 3D Sensors

Recently considerable effort has been devoted to examining
the advantages provided by 3D sensors. To this end some
researchers have mounted 2D laser scanners on nodding or
rotating mechanisms in order to obtain 3D scans, Cole and
Newman (2006); Lingemann et al (2004); Nüchter et al (2005);
Pfaff et al (2007). Another popular approach has been to
mount two laser scanners so their scan planes are orthogo-
nal, Howard et al (2004). In the latter case though it must be
noted that whilst mounting the laser scanners in this way en-
ables 3D maps to be produced they do not give the robot 3D
sensory perception, something that is highly desirable for re-
liable obstacle avoidance. For these reason significant atten-
tion is being focused on laser mapping with 3D laser range
sensors, Hähnel et al (2002); Howard et al (2004); Monte-
merlo and Thrun (2004).

A completely different approach is taken in Weingarten
et al (2004). Here scans are obtained with modulated infra-
red light and an image sensor. Four samples of the inten-
sity of the reflected infra-red light are used to determine the
phase difference of the reflected data for each image pixel.
From this phase difference and the frequency of modulation
of the infra-red source, the distance to image pixels can be
ascertained unambiguously up to 7.5m. This sensor delivers
19480 range measurements at 30 frames per second (FPS),
with no moving parts, and compares favourably with the ac-
curacy of the SICK laser measurement system (LMS) 200.
The main drawback of this approach is the price and low
availability of the equipment. The relatively narrow field of
view is also a disadvantage though this can be improved by
altering the lens arrangement.

There are a small number of commercially produced 3D
laser range finders but they are very expensive and the cost
can become prohibitive if multiple robots are to be equipped.
Companies such as Riegl and Deltasphere sell 3D scanners
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that could be modified for robotic use but as they are de-
signed for surveying, and typically tripod mounted, they have
a narrow field of view and sacrifice scan rate for high point
density.

This multitude of custom 3D range scanners illustrates
the rapidly increasing interest in full 3D robotic sensory per-
ception. The benefits of full 3D mapping are abundant and
so the rapid expansion of this field is inevitable. The detec-
tion of negative and over-hanging obstacles greatly enhances
avoidance behaviour. Once 3D maps of environments have
been built they can be customised for and distributed to dif-
ferent robots. For instance various 2D occupancy grids may
be built for robots of different sizes or with 2D sensors at
different heights. Severely cluttered non-manifold environ-
ments such as search and rescue situations may be reliably
mapped. Maps based upon the ceilings of rooms (Jeong and
Lee, 2005) will remain accurate for longer and an unoc-
cluded view of the ceiling is usually readily accessible to
a robot even in crowded environments, Burgard et al (1999).
An alternative approach taking advantage of full 3D percep-
tion (Wulf et al, 2004) uses virtual 2D scans produced by
collapsing the 3D data vertically into a plane and then tak-
ing the furthest point for each 2D scan angle. This produces
good 2D representations in cluttered environments.

Finally, Strand et al (2007) describes a sensor that de-
livers full colour and associated range data, the scans of
which are merged by methods involving both octree spa-
tial decomposition and conventional ICP. The disadvantages
of 3D sensing technologies are slower scan acquisition time
and the geometric increase in data that need be processed.

3 3D Mapping Method

It is very important to have an indication of the complete-
ness and accuracy of the 3D representation that has been
produced. Most authors produce side by side comparisons
of photographs of the environment and the corresponding
maps. Whilst such comparisons give a rough, qualitative in-
dication of accuracy, a more rigorous, quantitative and reli-
able indicator is desirable. In this series of experiments the
results are tested in two ways. The first is by comparing the
product of the algorithm with maps built by manually align-
ing the 3D scans. The second is a relative measure of the
map quality produced by different algorithms, each using
the same data set, which can be calculated by (7) or alterna-
tively by the number of voxels in the resulting global map.
With a given set of scans, the algorithm that produces a map
with the lowest entropy or the lowest global map voxel count
is the best.

3.1 Occupied Voxel Lists

Ideally the map is a 3D probability density function and, as
a scalar field, it is a function of position p(x,y,z) describing
the probability density of occupancy at a particular position
in space. Practically however, the map is stored as a discrete
representation at sequential times with the most recent map
occupancy probabilities being

Pi jk =
∫ z+ε

z

∫ y+ε

y

∫ x+ε

x
p(x,y,z)dxdydz (1)

where the integers i, j,k are

i =
⌊ x

ε

⌋
, j =

⌊ y
ε

⌋
,k =

⌊ z
ε

⌋
. (2)

The storage and processing requirements for such rep-
resentations are demanding even in the case of moderately
sized environments and, consequently, conventional 2D oc-
cupancy grids cannot be readily extended into 3D. As an
illustration of the difficulty consider a typical room measur-
ing 10m by 10m by 4m mapped at a resolution of 0.05m.
In 2D this would require 40,000 cells to hold the mapping
information; for a 3D representation however an 80 fold in-
crease in the number of cells would be required. Such a large
increase has great import for both memory requirements and
performance and so compromises must be made if the map
is to be compressed without an unacceptable reduction in
accuracy.

Observations of the nature of the data typically gained
from 3D mapping indicate that important reductions in the
size of the representation can be achieved without signifi-
cant loss of information (i.e. lossy compression). The num-
ber of cells required depends on the disorder of the room and
increases with the number of observable surfaces. Clearly
however the number of cells needed is most sensitive to cell
size.

In navigable 3D environments there is a huge prepon-
derance of unoccupied cells and so the relative scarcity of
occupied cells means their observation is of greater signifi-
cance. It is therefore important that such observations should
be stored and manipulated as a matter of preference. The
importance of occupied cells in relation to unoccupied ones
is particularly acute when matching sensor scans with prior
maps. Their combination of abundance and low significance
means that unoccupied cells can usually be safely ignored.
Historically unoccupied cells have been retained in occu-
pancy grids because the grids were generally 2D, and there-
fore relatively small, and the sensors employed to make the
observations (usually sonar) were unreliable. A high level
of sensor unreliability meant it was unwise to discard cells
reported as being unoccupied. Laser scanners though are
not only very reliable but produce copious amounts of data
thereby making the following lossy compression approach
viable.
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Rather than holding the cell probabilities in a 3D array,
all the cells that have been observed to be occupied more
frequently than not are maintained in a list. Each entry in
the list contains the position of a voxel and an index of the
number of times that voxel has been observed to be occu-
pied. If the occupancy of a particular voxel falls below zero
it means the voxel has been observed to be empty more of-
ten than occupied and it is removed from the list. Such a
list is termed an occupied voxel list (Ryde and Hu, 2007) by
analogy with conventional occupancy grids.

This additive map update is fast and is consistent with
(10) if the map is regarded as storing a quantity proportional
to the log odds occupancy. Compared with a 3D array, not
only is there a considerable saving in storage and manipu-
lation overhead but there is no need for strict bounds on the
environment.

To get an idea of the benefits delivered by this lossy com-
pression consider a single 3D laser scan with radius 10m
and stored at a resolution of 0.02m, which is the smallest
sensible resolution as the laser scanner itself has an error of
±0.02m. Assuming a typical room height of 3m the number
of voxels required for an occupancy grid would be approx-
imately 100 million. A typical scan stored to a 0.02m reso-
lution in an occupied voxel list results in about 5000 voxels.
Evidently storing only occupied cells results in a compres-
sion factor of around 20,000. For all scans the additional
information stored in the occupancy grid may be generated
from that stored in the occupied voxel lists by ray tracing.
This is necessary for path planning algorithms that need to
know the free space volume just above the floor. The in-
formation can also be extracted from the map, as long as
the scan poses are available. The computer iterates through
nearby poses and, according to the sensor model, traces a
ray from the pose to the nearest occupied voxel in each di-
rection. The intervening, free, voxels are recorded in a con-
ventional 2D occupancy grid which can then be used for
path planning.

In this instance the representation chosen is a hash ta-
ble with the voxel’s integer position as the index key. The
value associated with each position’s index key is an inte-
ger count of the number of times the cell has been observed
to be occupied which, as shown in Section 3.2, is indicative
of the probability of occupancy under a number of assump-
tions. The hash structure means that the average time taken
to find the probability at a given position is independent of
list size and this procedure is the most common operation on
the map. Each point is quantized using (2) and mapped back
to real space by

(x,y,z) = (aε,bε,cε). (3)

Although there is a loss of precision in this process, re-
peated, alternate applications of (2) and its approximate in-
verse (3), leave the voxel coordinates unchanged. The inte-

gers a, b and c are hashed to produce the look up allowing
the occupied voxel list to be stored as a compact list that still
benefits from fast query times.

In this manner, the environment is represented as a dense
feature set rather than an occupancy grid. Each feature is a
voxel that is likely to produce a laser return and this repre-
sentation scales much better as the size of the environment
increases. Data points are recorded for voxels containing
surfaces in the environment and, as these surfaces are 2D,
the number of voxels required to represent them scales as the
square of the linear size of the environment. Occupied voxel
lists are superior to conventional feature sets in their gener-
ality because no feature extraction is required. This confers
flexibility on occupied voxel lists enabling them to repre-
sent any environment without losing information as a con-
sequence of featureless data.

Map quality may be determined by the information con-
tent as measured by the entropy (4), for example in Rocha
et al (2005).

With the entropy of the map,

H(P) =−∑
x∈P

Pi jk lnPi jk (4)

where Pi jk is the probability of occupancy for the voxel with
indices i, j,k. The summation is done over the entire volume
of the map. If the probability of occupancy of unlisted voxels
is P0 then the entropy of the occupied probability voxel list
is

H(P) =−
(

Mv

ε3 −|P|
)

P0 lnP0−∑
i, j,k

Pi jk lnPi jk (5)

where Mv is the volume of the corresponding occupancy
grid, ε is the voxel size and Pi jk is a particular voxel oc-
cupancy probability. The number of occupied voxels in the
list is |P|.

The occupied voxel list, M, stores the log odds of the
probability therefore the probability that a listed map voxel
is occupied is

Pi jk =
1

e−Mi jk +1
(6)

This results in the final expression for the occupied voxel
list entropy as

H(M) =
(
|M|− Mv

ε3

)
P0 lnP0 + ∑

i, j,k

ln
(
e−Mi jk +1

)
e−Mi jk +1

. (7)

The main disadvantage of this metric is that it depends
upon the dimensions of the probability array. Any increase
in the size of the probability array results in an increase in
the unmapped volume which, with its correspondingly high
entropy, leads to an increase in the map entropy measure.
An alternative method for assessing mapping performance
is to consider the number of voxels required to represent
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scans or maps at a particular resolution. Given a set of scans
voxelised to a particular resolution, count how many vox-
els make up the map resulting from a combination of these
scans. The algorithm that can generate the map with the
fewest voxels can considered superior. An example of this
assessment is included in Figure 5. In this way SLAM is re-
cast as a compression problem. From the map, the sensor
model and poses it should be possible to recreate a good
approximation to the original scan voxel data for a static en-
vironment. Those mapping algorithms which produce lower
global map voxel counts are better. This is because in or-
der to achieve a good compression on a thoroughly explored
environment, they must be able to encode repeated sections
of raw data due to either the similar sections of the envi-
ronment itself (perceptual aliasing) or due to data observed
from a similar position. For a thoroughly explored environ-
ment in which the robot has a finite pose access space the
map should converge to a finite number of voxels as the
robot will not be able to adopt a pose from which it can
perceive something new. Algorithms can then be compared
when only an approximate ground truth is available.

3.2 Map Updating

Mapping and localisation may be modelled as a partially ob-
servable Markov decision process (POMDP). As it would be
unwarranted to assume that the area under consideration can
be completely observed from any one vantage point, under
a first-order Markov assumption the map is assumed to con-
tain the information revealed by all observations up to that
point and so can be recursively updated.

For a particular map cell m and laser return cell l being
either occupied in the map m or free in the map ¬m then

p(m|l) =
(

1+
p(l|¬m)p(¬m)

p(l|m)p(m)

)−1

. (8)

The log odds approach to probabilities (Thrun et al, 2005)
simplifies the update step and enhances the expressive power
of the map which mostly contains very high probabilities
(cells with probabilities under a threshold are removed from
the map). The odds of an event A with probability p(A) are

o(A) =
p(A)

p(¬A)
=

p(A)
1− p(A)

. (9)

Thus (8) can be expressed in terms of log odds

logo(m|l) = log p(l|m)− log p(l|¬m)+ logo(m). (10)

3.3 Scan Matching Probability

As new range scans are produced they need to be incorpo-
rated into the global map. One of the ways of finding the

rotation and translation transformations necessary to merge
scans, and thus the change in pose between them, is scan
matching. This is also employed in localisation to determine
the pose of the robot by matching the current range data to
positions in a previously generated map.

The ideal matching algorithm returns not only an esti-
mate of the pose, but also a probability distribution function
describing the pose differences between successive scans.
This estimate of the pose can be stored alongside the range
data, together with the current map, and is composed of
these pose-scan pairs. Storing the map in this way allows
backward propagating corrections in the light of new ob-
servations. Unfortunately this violates the real-time require-
ment because, as more of these scans are taken, more data
has to be processed. Ways of overcoming this drawback in-
clude allowing the scan data to decay over time or simply
restricting processing to the time available.

As pointed out by Konolige and Gutmann (2000), when
exploring areas already covered by the map care has to be
taken when matching current poses with earlier ones and
their associated range data. When aligning a scan with the
map it is important to determine the significance of a par-
ticular overlap value in order to assess the reliability of that
localisation. Determination of the confidence in the align-
ment pose is required for robust map building; only those
scans with a high confidence value should be added to the
map.

There are a number of methods for establishing the cor-
relation metric between a scan at a hypothesised pose and
the map. One as in Thrun (2001), the likelihoods fields ap-
proach is also sometimes referred to as the end point model.
The model calculates the correlation as a function of the dis-
tance of the end point from the nearest obstacle in the envi-
ronment. Whilst not physically correct it has proved to pro-
vide an adequate metric for many SLAM algorithms. There
are two reasons for not incorporating this metric into the
MROL algorithm. The first is execution speed and the sec-
ond is that the reason it helps gradient descent type algo-
rithms, is by smoothing out the pose probability distribu-
tion. However for the MROL algorithm it is better to have
a sharper more discontinuous pose distribution as it tends to
help it to isolate those poses that are better at coarser reso-
lutions making it necessary to test fewer poses at the sub-
sequent finer resolutions. This is because the correct poses
stand out further and so at the pose culling stage more poses
are removed. In this manner the smoothness of the pose
probability distribution whilst required for many algorithms
is neither necessary or desirable for MROL alignment. The
shape of the probability distribution is useful in establish-
ing this significance. For instance if the distribution is multi-
modal and the peaks are similar in height then there is doubt
as to which modal peak is correct. Likewise the sharpness
of the peaks indicates the accuracy of the corresponding
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modal poses. These measures are all relative; they say noth-
ing about the absolute value of the overlap which is ad-
dressed in the following analysis.

In order to determine significance of a given overlap, the
probability of getting an overlap at least as high by chance
alone must be considered. Let the volume covered by the
map be Mv, the overlap o and the number of occupied vox-
els in the map and scan |M| and |N| respectively. The map
and scan voxel sizes are both ε . The total number of pos-
sible voxels in the map volume is |Mv| = Mv/ε3. Thus the
proportion of the map that is occupied is

|M|
|Mv|

=
|M|ε3

Mv
. (11)

Assuming the distribution of occupied voxels in the map
is random, any particular voxel’s chances of being occupied
are independent of that of its neighbours and (11) expresses
the probability of a single voxel picked at random being oc-
cupied. Given a scan of |N| voxels what is the expected value
of the overlap assuming that the scan voxel occupancy prob-
abilities are independent? This can be re-expressed in stan-
dard probability terminology as picking |N| voxels at ran-
dom from the map without replacement. This means that the
overlap counts may be modelled as a hypergeometric distri-
bution the mean of which is given by ō = |N||M|ε3/Mv, and
the variance by

σ
2 =
|N||M|
|Mv|

|Mv|− |N|
|Mv|−1

(
1− |M|
|Mv|

)
. (12)

As an aid to simplification it is important to note that the
hypergeometric distribution tends towards a normal distri-
bution as |N|/|Mv| → 0. The significance of the maximum
overlap value may be determined by calculating the prob-
ability of its occurrence using the difference of o in stan-
dard deviations (12) from the mean. Figure 6 presents over-
lap distributions at a range of resolutions for a single scan
matching.

3.4 Multi-Resolution Occupied Voxel Lists

Global localisation and scan matching are achieved by an
approach that is similar to a multi-resolution particle filter.
In this work a particle is considered as a pose with an as-
sociated probability weight w. In the implementation these
weights, which are not normalised, are integers and consid-
ered to be proportional to the likelihood of the correspond-
ing pose.

In Algorithm 1 the re-sampling step is akin to sampling
importance re-sampling with a local uniform distribution.
Typically in particle filters the initial distribution is randomly
generated from a uniform distribution. The pose distribution

is initialised by generating all poses at the coarsest resolu-
tion that lie within a region in pose space defined by an ini-
tial guess pose plus or minus a pose spread. The source of
the guess pose may be odometry, inertial readings or simply
the last pose of the robot. The spread pose is an indication of
the error associated with the initial guess pose. The number
of poses that need be generated at the initial coarse resolu-
tions is greatly reduced by using large voxels as illustrated
in Table 1. This is due to not only the reduction in transla-
tions that need to be tested but also the coarser representa-
tions which need to be rotated more before they differ at the
alignment range, in this case 8m, and so fewer rotations are
needed.

Algorithm 1 Multi-resolution sampling overview algorithm
OccupiedList map, OccupiedList scan, Integer factor f
generate uniform pose distribution sampleSet
for f is 2i where i is 6 to 0 decrement 1 do

down-sample map and local scan by f
calculate overlaps for all poses in sampleSet
remove from sampleSet all poses with certainty < 80% of the

mode
re-sample poses around remaining poses in sampleSet uniformly

with width ε/2 spatially and ∆θ/2
end for

The implementation of the particle set must satisfy two
criteria. It must store only unique poses at the current spa-
tial and angular resolutions and it must be able to iterate
through the particle poses in angular order. The latter though
is an optimisation consideration rather than a strict require-
ment for the success of the process. When calculating the
overlaps, one of the slowest operations is the rotation step.
Ordering the samples by orientation the rotation on the local
scan can be done once only and then translated to poses with
identical orientation at different positions. This is achieved
by using a treeset structure which maintains the uniqueness
and order of elements whilst guaranteeing insertion times of
O(logn).

A typical multi-resolution distribution is visualised in
Figure 1 where the local scan is globally aligned with the
map. Both the local scan and the map are full 3D repre-
sentations however, for the sake of clarity, they are shown
as 2D projections in Figure 1 with ceiling and floor vox-
els removed. The initial particle distribution is uniform with
a spatial separation of 1.28m. This initial resolution is de-
pendent on the number of downsample levels and the final
resolution, 1.28 = 0.02× 26. The particles are re-sampled
around the highest probability regions, progressively sam-
pling the pose space at better resolutions as explained in
Section 3.5. The final alignment is processed with a local
scan and map resolution of 0.02m. This resolution is cho-
sen because it is comparable to the random error inherent in
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Fig. 1 Visualisation of scan and map with tested poses with w > 0.8wmax. Distribution of best orientation poses as a function of 2D position with
height indicating probability of pose. The 3D scan consists of red voxels and the green voxels represent the map. Although the map is a full 3D
map it has been projected onto the xy-plane to improve clarity of presentation. The multi-resolution nature of the solution is conveyed by the width
of the pose blocks which give an indication of the 2D histogram of the pose distribution. Only those poses with w > 0.8wmax are shown.

the 3D laser scanner. The solution is indicated by the high
cluster of poses shown in Figure 1.

The algorithm is similar to that for global localisation
and tracking with the only difference being the first step of
generating the initial particle distribution. For global locali-
sation the particle distribution ranges over all possible pose
space. The two main ways of generating the initial particle
distribution are uniform and random. These two methods
each have their advantages and disadvantages and in other
work random initialisation has generally been preferred. How-
ever for this algorithm it is important to use a uniform initial
particle distribution with the spatial and angular resolution
of the poses carefully chosen. In this way it is possible to
be sure of complete coverage of the pose space. Normally
this would be prohibitively costly in terms of memory and
computation time, but down-sampling makes it practicable.
Other advantages of a uniform initial particle distribution are
that it is deterministic and quick to generate.

The spatial ∆x and angular ∆θ resolutions need to be
matched and are dependent upon the resolution ε of the oc-
cupied voxel lists and the scan range R. The spatial separa-
tion of the particles is dictated by the resolution of the oc-
cupied voxel list being processed. As ∆x = ε the angular
separation is

∆θ = ε/R (13)

where R is the maximum range of points under considera-
tion, measured from the origin of the local map, and ε is
the voxel size. By effecting angles of rotation greater than
(13) one ensures that successive rotations produce new local
occupied voxel lists at the current resolution.

Because the particles are stored in sets, then upon re-
finement the particle distribution is still guaranteed to con-

tain unique particles. Therefore no computational power is
wasted in calculating the weighting for duplicate samples
generated by pose refinement (as described in Algorithm 4).
An important aspect of this process is the down-sampling
of the occupied voxel lists. The 3D laser scanner returns 3D
scans as point clouds and these are converted into an occu-
pied voxel list of resolution ε = 0.02m.

The down-sampling process is described in Algorithm
2 and illustrated in Figure 2. In Figure 2 the point cloud
and grid are represented in 2D for diagrammatic simplic-
ity. In Algorithm 2 down-sampling is done at many resolu-
tions however, to aid clarity, only two resolution grids are
shown in Figure 2 and Figure 3. In Figure 2 the crosses rep-
resent laser return points and two resolution grids are super-
imposed. The number of points within each cell of the cor-
responding grid is labelled with numbers in the larger font
corresponding to the grid with the larger cells.

A visualisation of the 3D down-sampling of a typical
scan is depicted in Figure 3. This down-sampling mecha-
nism is chosen rather than the more conventional one, in
which voxels are simply subdivided. The main reason is due
to the problem of simply subdividing the voxels with no off-
set. If the space is divided in such a manner then two points
could lie on either side of a voxel boundary and, although
they are very close, they would never be considered to be
in the same voxel regardless of the voxel size. By down-
sampling with an offset, points that are close will be regis-
tered in the same voxel at some resolution.

Down-sampling can take time, especially in the case of
a large occupied voxel list representing a map which usu-
ally contains many more voxels than a local scan. In some
instances, for example repeated localisation within a map,
down-sampling needs to be performed only once for the map
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Fig. 2 The quantisation process for converting point clouds to the oc-
cupied voxel lattice. In the diagram there are two grids superimposed
upon one another with resolutions differing by a factor of two.

as multiple localisations using the map do not have to recal-
culate it. This is especially useful if there are a number of
scans to be merged into the map, in which case it is better to
test them all and add the one with the highest overlap first.

Algorithm 2 Occupied voxel list down-sample algorithm.
occupiedList L, integer factor f
new resolution ε = resolution L* f
if occupiedList resolution ε exists in cache then

return corresponding downSampled occupiedList
end if
new occupiedList l with resolution f *resolution of L
for all voxels in L do

add new voxel(x/f, y/f, z/f) to l
end for
store f with l in cache

Once the occupied voxel lists have been down-sampled
and the particles selected the probabilities or weights for
each particle are estimated. This estimation, as it is carried
out for each particle, is a fine balance between accurate weight-
ing and computational speed. The process is described in
Algorithm 3 and may be succinctly expressed as

o = |L∩M|. (14)

A single scan has a spatially uniform distribution of points.
There is a higher density of points closer to the origin and
so this has to be corrected by applying an R−2 weighting
factor in 3D and R−1 for 2D to the scan points during the
overlap calculation. The overlap count is o, the number of
elements or cardinality of set A is |A|, the map is M and the
local transformed scan is L. Thus o is not only a count of the
overlapping voxels but also an indicator of the probability
of the associated pose particle. A statistical analysis of the

significance levels for o in various situations is presented in
Section 3.3.

Algorithm 3 Process for updating the weights of the sample
set.

sampleSet poseSample, occupiedList M, occupiedList local
for each sample in poseSamples do

o = 0
if sample pose angle is different from previous then

calculate new rotated local L
end if
translate L by (px, py)
for each voxel in L do

if voxel is present in M then
increment o

end if
end for
set sample weight to o
if o > omax then

omax = o
end if

end for

It is assumed that |L|< |M| and so iteration is carried out
over the elements of L. The particles are stored in a set sorted
primarily by their angle. Transformations are performed by
rotation matrix multiplication for the rotations and compo-
nent wise addition for the translations. Rotation operations
on the local occupied voxel list are slower than translation
operations. Rotations in 2D Cartesian coordinates require
four multiplications and two additions compared with trans-
lations which require two additions. This processing becomes
even more demanding when the alignment algorithm is ex-
tended to allow rotations due to uneven floor surface. Sorting
the list by gathering groups with similar rotations together,
and accompanying this with a check to see if the rotation
of the next particle is the same, guarantees that rotations are
only performed once.

3.5 Pose Refinement

Once the particle weights have been updated, particles with
a weight less than the modal fraction for that resolution of
the maximum are removed. Example modal fractions are in
Table 1. New particles are then generated around the remain-
ing high-weight particles as described in Algorithm 4.

This new particle set is then submitted for the next round
of tests at better resolution. In this manner about 10,000 par-
ticles per second can be assessed on a 2GHz computer, the
precise rate depending upon the resolution and structure of
the map and the local occupied voxel lists. The rate may
be calculated for a given resolution by dividing the num-
ber of lookups per second by the product of the scan voxels
at that resolution and the poses. The lookups per second is
the number of times a single voxel can be transformed to a
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Fig. 3 Illustration of the down-sampling of a typical scan.
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Fig. 4 Discrete single variable refinement propagated through multiple resolutions. The two quantization methods considered bx/εc and bx/ε +
0.5c, of which the latter corresponds to conventional rounding.
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Algorithm 4 Re-sampling at improved spatial and angular
resolution around high weight samples. This algorithm will
produce repeated samples for adjacent initial samples, how-
ever samples are placed in a set to ensure uniqueness.

sampleSet initialSamples
integers a,b,c
create new sampleSet P
for each sample in initialSamples do

for −1≤ a≤ 1 do
for −1≤ b≤ 1 do

for −1≤ c≤ 1 do
new sample (x+aε/2,y+bε/2,θ + c∆θ)
add sample to P

end for
end for

end for
end for

new position and the resulting voxel presence checked in the
map.

The pose refinement process in one dimension as it prop-
agates through the multiple resolutions is illustrated in Fig-
ure 4 for two quantisation methods. The first quantisation
method, bx/εc, is quicker to compute. The second bx/ε +
0.5c is mathematically more convenient as it is symmetric
about x = 0. However there is a stark difference in the num-
ber of children each particle produces at the next resolution.
For a one dimensional variable the difference between two
and three child particles is small but for a pose with 6 de-
grees of freedom (DOF) this becomes 26 = 64 as compared
to 36 = 729. A problem with splitting into two is that for
poses constrained to a plane, typical in indoor robotic op-
erations, the returned poses will not be exactly aligned or
coincident with the xy-plane.

4 Experimental Results and Analysis

Experiments are performed in various indoor environments,
an office, a corridor and a lab.

Figure 5 plots the evolution of map voxel counts as each
scan is incorporated into the map. The counts for the cor-
rect mapping solution, resulting in the map in Figure 10, are
shown. Nearby is the plot for when the scan voxel count
is capped at 1000. This results in a fivefold speed increase
in the mapping of this data set. When the scan voxel count
exceeds this cap value at a particular resolution a random
sample of the cap value scan voxels is selected for align-
ment checking against the map. As can be seen from the
plots in Figure 5 this has very little impact on the accuracy
of the map produced. For context the data was processed
and errors deliberately induced into the final alignment of
the mapping algorithm and these can be clearly seen where
the incorrect map voxel counts grows faster than the correct
solution.

The actual distributions of overlaps for a number of res-
olutions are shown in Figure 6 in which the mean overlap
stays relatively constant regardless of resolution, however
the standard deviation grows as the resolution becomes finer.
What is also clear is that the overlap count may be ade-
quately represented by a normal distribution down to a res-
olution of 0.64m. The region of interest is the far right part
of this graph where the significance of the maximum over-
lap may be established. The maximum count for the 0.16m
resolution scan alignment shown in Figure 6 is 379 which
is very significant and means the result may be regarded as
reliable.

Independence of voxel occupancy was one of the origi-
nal assumptions underlying this treatment. This assumption
becomes increasingly valid as ε , the voxel size, increases.
The impact of this assumption is to increase the significance
level of the overlap by enlarging the spread of the distri-
bution. Clustered voxels are more likely to produce higher
overlaps. According to the distribution, assuming voxel in-
dependence, the maximum count of 379 for 0.16m has a
vanishingly small probability of occuring by chance alone
for random uniform spatial distributions of voxels. It is there-
fore safe to conclude that this is an actual match rather than
one arising by chance.

The results of mapping a typical indoor office environ-
ment are displayed in Figure 7 and Figure 8. The data is
gathered by the enhanced laser scanner developed in Ryde
and Hu (2008). The map is created by aligning 37 scans
without odometry. Once the map shown in Figure 8 is cre-
ated global localisation of different scans is performed within
this map. The robot is assumed to be completely lost and
therefore the entire area (approximately 200m2) is searched.
Locating the 7000 voxel scan within the 200,000 voxel map
takes 5 seconds on a 2GHz processor.

The high data quality along with the almost omnidirec-
tional field of view leads to good localisation and mapping
performance. The occupied voxel list map in Figure 8 has
a resolution of 0.02m and the position error is 0.03m. The
error in the orientation may be estimated by noting that the
misalignment between the corridor and the office is less than
1 degree. The alignment is of comparable quality to the man-
ual alignment technique making the goal of further improve-
ments in accuracy difficult.

4.1 Comparison with ICP

In order to test the effectiveness of the MROL algorithm, the
same data set is processed by both MROL and an ICP im-
plementation. The 3D ICP implementation is an open source
one from the Mobile Robotics Programming Toolkit (MRPT)
(González et al, 2009) version 0.6.5. The resulting inter-scan
pose transforms produced are compared against the ground
truth. The true inter-scan pose transforms are obtained by
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Fig. 5 Map voxel counts at a resolution 0.2m for the QCAT data set as a function of scan number. The voxel count for the correct solution as well
as one with deliberately induced errors are shown. The third data is for mapping with the local voxel count capped to 1000 voxels. Also plotted is
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Fig. 6 Probability distribution of overlap counts for various resolutions of the map and local scan.

manually aligning all scans. This Queensland Centre for Ad-
vance Technology (QCAT) data set consists of around 80 3D
scans taken in a stop and go manner inside an office envi-
ronment with scans being taken every 2m or so. The result-
ing maps from this data set are displayed in Figure 10 from
which it can be seen that the environment consists of a mix-
ture of empty corridors, cluttered rooms, a small loop, or-
thogonal and non-orthogonal walls. This variety makes the
data set a good test set for mapping algorithms. These maps
are generated using the MROL algorithm on the raw scans
using initial poses guesses which have plus or minus errors
of 0.5m and 45 degrees. The environment was also dynamic
during the experiment mainly due to the motion of people
but this does not seem to have a detrimental impact on the
effectiveness of the mapping approach presented.

The nature of ICP mean it is more suited for scan to scan
matching rather than scan to map matching for the compari-
son. Normally MROL is best executed in scan to map match-
ing mode. In this manner it can close small loops naturally

and is generally more reliable as the intersection of a scan
with a map is likely to be higher than that with the previous
scan alone. Due to this nature of ICP and in the interests of a
fair comparison both algorithms are executed in scan to scan
matching mode.

The point clouds from the 3D scans are voxelised to a
resolution of 0.05m. Both algorithms are given point lists
of these voxel coordinates. Interestingly it is observed that
ICP performs much better on the voxel coordinates than on
the original raw scan point clouds. It is believed that this
is due to the R−2 point density dependence typical of point
clouds originating from 3D laser scanners. In this way the
alignment tends to favour placing the two regions of dense
points in both scans near each other rather than the correct
alignment. Voxelising the point clouds in this way also ac-
celerates the ICP algorithm as it has less points to consider.

Rather than presenting a single metric for the accuracy
of the ICP versus MROL algorithms plots of the position and
orientation errors have been generated in Figure 9. For these
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Fig. 7 Corridor view demonstrating the mapping ability even in a relatively featureless corridor. The green spheres are the observation positions
and the map voxels (0.02m) are coloured by height.

Fig. 8 Overhead view of a 3D map containing a stair well, corridor and office at a resolution of 0.02m. The floor and ceiling points have been
removed for clarity. The positions of the robot are shown as green spheres. The points are coloured by height and the grid points are at 1m intervals.
No odometry is required to build this map.

graphs both algorithms were given the same initial guess
poses and the same point data. From this the inter-scan pose
transform was estimated by ICP and MROL with 3 and 4
degrees of freedom. The MROL 3DOF estimated the x, y
translations and the change in heading, whilst the MROL
4DOF estimated the z translation in addition. These plots
show the sorted errors and times in ascending order similar
to a cumulative frequency curve aiding a direct comparison
of the error and execution time distributions of the ICP and
MROL algorithms

As can be seen from these plots the MROL approach is
more reliable than ICP returning poses close to the correct
pose with only one misalignment out of 75. These graphs
reflect a relatively well known problem with ICP that it can
have a small region of convergence. If the initial pose esti-
mate is within this region of convergence the ICP result will
be very accurate. Once the initial pose estimate drifts outside
of the region of convergence ICP tends to fail abruptly. The
MROL approach does not have a region of convergence, as
such, as it starts by testing all poses uniformly at a coarse
resolution across the given pose range. The execution per-
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Fig. 9 Sorted position errors, orientation errors and execution times for both MROL and ICP algorithms sequential scan matching the QCAT data
set (Figure 10). The initial pose estimate error was ±1m in the x and y directions and ±90 degrees for the heading.

Fig. 10 Isometric and overhead views for the MROL generated map of the QCAT data set. Voxels are coloured by height and the grid points
separated by 1m.
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Res. Modal Map Scan Poses Poses Time
(m) Frac. Voxels Voxels Before After (s)
0.8 0.6 134 122 68 12 0.0030
0.4 0.6 362 384 136 11 0.011
0.2 0.6 800 982 147 14 0.028
0.1 0.7 1836 994 196 14 0.039
0.05 0.8 3625 996 231 6 0.046

Table 1 Example output for aligning within in a pose region of ±1m
and ±90 degrees. Pose counts are recorded for both the number of
poses tested and the remaining poses after rejection of poses with over-
laps less than the modal fraction.

formance of the MROL 3DOF compares favourably with
ICP being somewhat three fold faster. However as the num-
ber of degrees of freedom is increased the MROL algorithm
slows. This highlights perhaps the biggest disadvantage of
this MROL based approach; its execution time is sensitive to
the number of degrees of freedom that need to be estimated.
However it is often possible to estimate the roll and pitch
of a robot with reference to the acceleration due to gravity.
Thus only four degrees of freedom need to be calculated,
for which the MROL performance is acceptable. Figure 10
displays the map generated by the MROL algorithm for the
QCAT data set. Colouring by height shows how the architec-
tural structure may be separated from clutter and transient
objects such as humans in the environment which tend to
be lower heights. The map is generated by the MROL algo-
rithm matching each scan to the previous map and adding
that scan into the map as opposed to the results in Figure 9
which involves matching each scan to the previous scan. In
this way localisation accuracy is improved because there is
higher overlap between the scan and the map. Listed in Table
1 are various statistics for the MROL alignment of two typ-
ical 3D scans. The first column lists the voxel size for both
the map and scan. The modal fraction used for that resolu-
tion is also present. The numbers of voxels in the map and
scan respectively are shown along with the number of poses
before and after rejection by the modal fraction. Finally the
time taken analysing each resolution indicates the distribu-
tion of computational effort amongst the different resolu-
tions. The execution time at each resolution depends on the
number of poses that need to be tested and the number of
scan voxels. The time does not depend on the map voxel
count as the hash structure means that look ups take the same
amount of time irrespective of the number of map voxels. In
this case if the number of scan voxels exceeds 1000 then a
sample of around 1000 is selected. This is an optimisation
that is not necessary for correct operation of the algorithm
but enhances its operation speed with negligible impact on
accuracy as shown in Figure 5.

5 Conclusion

This paper concentrates on single robot mapping with a cus-
tom 3D laser sensor (Ryde and Hu, 2008) and offers two
main innovations. The first is the new way to represent 3D
probabilistic map data referred to as a multi-resolution oc-
cupied voxel list. Although previous work has extended 2D
occupancy grids to multi-resolution and, to some extent 3D,
our work applies this idea to occupied voxel lists which
themselves have never been formally described. The space
quantisation for converting point clouds to multi-resolution
occupied voxel lists is different in that it applies a half cell
offset before quantising at the next resolution.

The second innovation is the description of a method
similar to a multi-resolution particle filter for the rapid align-
ment of two occupied voxel lists. The main difference here
is that the sampling is uniform and exhaustive, and conse-
quently the subsequent behaviour is deterministic which im-
proves repeatability, reliability and testability. These two in-
novations have enabled a single mobile robot to move through
a relatively disordered environment and generate an internal
3D representation of the surroundings accurate to better than
0.02m.

The algorithm for aligning 3D occupied voxel lists is
presented along with a theoretical treatment that gives an es-
timate of the significance of particular overlap values. This
analysis is vital for determining whether scans should be
added to the map as well as in detecting loop closures. The
conclusion of this theoretical analysis is tested experimen-
tally for a range of occupied voxel list resolutions. It is found
that the agreement with experiment improves as the occu-
pied voxel list voxel size increases. It is postulated that the
reason for this is the increasing validity of the assumption of
voxel independence with growing voxel size.

This paper also addresses the justification for equating
occupancy with the integer number of times the voxel has
been observed to contain a scan point. This is done by as-
suming voxel independence starting from the Bayesian up-
date and applying the Markov assumption. The resulting oc-
cupancy probability update equation is re-expressed in terms
of log odds probability and from this the validity of an ad-
ditive voxel update is apparent. Under these conditions the
occupied voxel list integer values must be considered as pro-
portional to the log odds of the occupancy probability.

Experiments testing the validity of this approach to 3D
mapping are conducted in a variety of indoor environments,
some of which are extremely cluttered and others feature-
less. The idea of extracting cross-sections from the 3D map
data is presented with an illustration of the reduction in envi-
ronmental complexity as compared to that for a floor based
robot. It is shown that maps of indoor areas above a certain
height are good representations of the architectural structure
of the surroundings. It is proposed that such maps are more
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suitable for localisation over the longer term since they ex-
clude most moving objects.

Finally measures for establishing the mapping perfor-
mance of an algorithm were presented. The entropy of oc-
cupied voxel lists is derived. The second measure presented
is the measure of the voxel count of the global map at a
given resolution. When the accessible environment is thor-
oughly covered this is a quantitative measure of map quality
with lower global map voxel counts indicating better per-
formance. Recasting the SLAM problem in this way as one
of compression allows the comparison of different mapping
algorithms and methods.

Future work is likely to entail further speeding up the
MROL based algorithm by implementing the rate limiting
steps in C or in a parallel manner on a graphics processing
unit. The maintenance of the map over time also needs to be
considered especially for dynamic environments. The com-
parison with ICP indicates a possible direction of a hybrid
MROL-ICP approach in which the coarse alignment is done
with MROL and the fine adjustment with ICP. Finally in or-
der to produce fully automatic mapping path planning over
MROL a solution to the next best view problem would need
to be implemented to enable autonomous exploration.
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González-Baños H, Latombe J (2002) Navigation strate-
gies for exploring indoor environments. The International
Journal of Robotics Research 21(10-11):829–848

Gustafsson F, Gunnarsson F, Bergman N, Forssell U, Jans-
son J, Karlsson R, Nordlund P (2002) Particle filters for
positioning, navigation and tracking. IEEE Transactions
on Signal Processing

Hager G, Burschka D (2000) Laser-based position tracking
and map generation. In: Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
pp 149–155

Hähnel D, Schulz D, Burgard W (2002) Map building with
mobile robots in populated environments. In: Proceed-
ings of the IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS)

Howard A, Wolf D, Sukhatme G (2004) Towards 3D map-
ping in large urban environments. In: Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Sendai, Japan, vol 1, pp 419–424

Hu H, Gu D (2000) Landmark-based navigation of industrial
mobile robots. Industrial Robot: An International Journal
27(6):458–467

Jensfelt P, Austin D, Wijk O, Andersson M (2000) Fea-
ture based condensation for mobile robot localization.
In: Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pp 2531–2537



17

Jeong W, Lee K (2005) CV-SLAM: a new ceiling vision-
based slam technique. In: Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems (IROS), pp 3195–3200

Konolige K, Gutmann S (2000) Incremental mapping
of large cyclic environments. International Symposium
on Computer Intelligence in Robotics and Automation
(CIRA) pp 318–325

Kuipers B, Beeson P (2002) Bootstrap learning for place
recognition. In: Proceedings of the AAAI Conference on
Artificial Intelligence, Edmonton, Canada, pp 174–180
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