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Abstract— The characteristics of a variety of 3D lattices
are assessed for their performance when applied to typical
robotics problems. The lattices studied are the Cubic, Body
Centred Cubic (BCC), Face Centred Cubic (FCC), hexagonal
prismatic and finally the Mean Centred Cuboidal (MCC). An
algorithm for generic quantization to any low dimensional
lattice is presented allowing this analysis to be easily extended
to other 3D lattices of interest.

Tests are undertaken on uniform sampled random data and
laser range data from mobile robot platforms including an
autonomous skid steer loader. The improvements in accuracy,
memory requirements and consistency under rotation for the
alternative lattices over the cubic lattice are typically 5-10%.

The radial distribution of lattice points is studied through
the distribution of points assigned to the same lattice cell and
that in neighbouring cells. For instance only 12 neighbouring
cells need checking for the FCC lattice as opposed to the
cubic lattice which requires 26. Not only are fewer checks
required but the distance variation associated with points in
adjacent voxels of the FCC lattice is substantially lower than
that of a cubic lattice. For the FCC lattice these point distances
have a 30% smaller standard deviation and a 40% smaller
range. These results make algorithms, such as collision checking
and scan/map matching, which often involve many proximity
checks, significantly faster and more accurate.

I. INTRODUCTION

Many algorithms employed in robotics use quantization.
Indeed in a manner of speaking all data is quantized or
digitised once it is represented internally to a computer. Due
to memory and processor limitations quantization at a coarser
level is often done, for example occupancy grids [1]–[3]
representing 2D maps and occupied voxel lists [4] for 3D
maps.

The theory behind the lattice quantization approaches has
been thoroughly investigated for vector quantization and
extensive literature is available, [5]–[8].

Occupied voxel lists are similar to occupancy grids, how-
ever the important difference is that they are a list containing
only those voxels that have been observed to be occupied,
rather than a grid structure containing the occupancy of all
voxels. It is done in this manner because 2D occupancy grids
do not scale well to 3D, consuming an inordinate amount
of memory. For both occupancy grids and occupied voxel
lists incoming data points from sensors have to be assigned
to the appropriate cells in a process referred to as quanti-
zation. Occupancy voxel lists are a compact and efficient
(in terms of update and query) representation suitable for
visualisation, SLAM, localisation, point cloud alignment and
collision avoidance. Although the occupied voxel lists do
not intrinsically differentiate between unoccupied cells and
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those that have yet to be observed, as discussed in [9] such
information can be generated from an occupied voxel list
map and the associated robot poses used to build the map.
Alternatively the free space voxels can be also stored as a
voxel list, probably at a coarser resolution due to memory
constraints.

One of the advantages of the alternative lattices presented
here is that they are compatible with existing algorithms,
such as iterative closest point (ICP), and data structures [9].
In this vein occupied voxel lists have been combined with
the procedures for quantizing to non-cubic lattices.

Once the process of converting from continuous data to
the corresponding nearest discrete lattice points has been
implemented the quantized lattice points can then be pro-
cessed by other algorithms. In the case of ICP the alignment
of two scans may be simply carried out on the quantized
lattice points rather than the raw point clouds. There are
advantages for doing this, namely a reduction in the number
of points that need processing if there are many points in
close proximity to each other, and the possibility of filtering
erroneous points.

The quantization error, alternatively known as the distor-
tion, is an illuminating metric and consequently its variation
with 3D rotation assessed in this paper. We also present
voxel count distributions, which are indicative of the storage
required for the occupied voxel list. This testing is done on
both random and real 3D laser range data.

From these experiments it is evident that there is a
consistent improvement in terms of accuracy, reliability
and consistency under rotation of the FCC lattice over the
conventional cubic lattice.

This builds upon the investigation undertaken in [10],
specifically by developing a more general lattice quantization
algorithm that works for all low dimensional lattices. This en-
ables the testing of numerous 3D lattices such as cubic, FCC,
BCC, MCC and hexagonal prismatic. The mean centred
cuboid lattice is presented, tested and its Voronoi cell shown.
These lattices are tested with both random points and actual
data from a robot (Fig. 2) to ascertain their performance
with full 6DOF trajectory and map data. Additionally, the
pose accuracy of 3D laser scan matching with the different
lattices is presented.

Finally an analysis of the adjacent voxels for each lattice
is undertaken. This is of interest because given an occupied
voxel list of an operating arena, not only might one need
to know whether a given voxel is unoccupied but it is also
necessary to know if any of the adjacent voxels are occupied.
Two points could be very close but be in different voxels
because they lie either side of a voxel boundary. However,



Fig. 1. Voronoi cells for the lattices cubic, body centred cubic (BCC), face centred cubic (FCC), mean centred cuboidal (MCC) and hexagonal prismatic.
The polyhedra are cube, truncated octahedron, rhombic dodecahedron, MCC Voronoi cell and hexgonal prism.

for some queries we need to know that there is at least
some minimum clearance such as collision avoidance, path
planning and scan matching.

Section II provides background to the lattices studied and
the methods for quantizing data to them. A brief description
of the experiments performed and the experimental method
are contained in Section III. The results from these experi-
ments and the discussion of them is combined into Section
IV. Finally the paper is concluded in Section V.

II. GENERIC LOW DIMENSIONAL LATTICE QUANTIZATION

The NP-hard nature of the closest lattice point problem
is widely discussed [11], [12] and such lattice problems
have even been suggested for cryptographic purpose [13].
However for low dimensions quantization to an arbitrary
lattice is practical. Consider the lattice Λ with basis vectors
encapsulated in the generator matrix G. For a vector of
lattice indices ~w the Cartesian position vector, ~x, is defined
~x = G~w, conversely if ~x is coincident with a lattice point
then the integer indices of the lattice point may be determined
thus, ~w = G−1~x.

For the nearest lattice point problem it might seem possible
to calculate the nearest lattice point as

~̂w = bG−1~xe (1)

with b~xe returning the nearest integer to ~x.
This however is incorrect and results in the indices being

‘off-by-one’ in one or more dimensions [10]. An extension to
this provides the correct result. The distances from ~x to the
lattice point obtained through (1) as well as adjacent lattice
points to this are calculated and the minimum selected. This
minimum distance corresponds to the lattice point nearest to
~x.

If the matrix of off-by-one vectors for the lattice in
question is ∆ then the generic quantization algorithm is

Q(~x) = argmin
i

(∣∣∣∣∣∣G · ( ~̂w + ∆i

)
− ~x
∣∣∣∣∣∣) . (2)

The generic low dimensional algorithm summarised in (2)
is much faster than a complete search over a restricted lattice
but is still slower than algorithms developed for specific
lattices [14], [15]. Its advantage is that it works for any lattice
basis in low dimensions such as 2D and 3D.

The lattice displacement vectors for the adjacent voxels
relative to a given voxel are presented here for a number of
3D lattices.

∆cubic =

−1 −1 −1 −1 1
−1 −1 −1 0 . . . 1
−1 0 1 −1 1

 (3)

∆fcc = ±

 1 0 1 0 0 1
−2 −1 −1 0 −1 −1
−1 −1 −1 −1 0 0

 (4)

∆bcc = ±

 1 0 1 0 1 0 −1
1 0 0 1 1 −1 0
−2 −1 −1 −1 −1 0 0

 (5)

∆mcc = ±

−1 0 −1 0 −1 0 −1
−1 −1 0 0 −1 −1 0
−1 −1 −1 −1 0 0 0

 (6)

∆hex = ±

 0 −1 0 1 0 1 −1 0 −1
−1 0 0 0 1 1 −1 −1 0
−1 −1 −1 −1 −1 −1 0 0 0


(7)

A. Candidate Lattices

Equipped with the generic quantization (2) and given the
generator matrix, quantization to a wide variety of interesting
3D lattices can be tested.

The Voronoi cells for each of the lattices are rendered in
Fig. 1. The Voronoi cell is the polyhedron that contains the
volume associated with each lattice point. If these polyhedra
were placed with their centres at the lattice points then the
resulting structure would be space filling. These interesting
lattices have various properties that make them worthy of
consideration and are listed below. The normalised (unit
determinant) generator matrix is listed for each lattice.

1) Simple Cubic, Cubic: The simple cubic lattice is the
most straightforward lattice that is conventionally used in
robotics and other fields.

Gcubic =

1 0 0
0 1 0
0 0 1

 (8)



2) Body Centred Cubic, BCC: This lattice can be envis-
aged as a standard cubic lattice with an additional lattice
point situated at the body centre of each cube.

GBCC =

1.2599 0 0.6300
0 1.2599 0.6300
0 0 0.6300

 (9)

3) Face Centred Cubic, FCC: This can be visualised in
a similar manner to the BCC lattice but instead of the extra
body centre point there are additional points at the centre of
each of the six faces.

GFCC =

1.5874 0.7937 0
0 −0.7937 0.7937
0 0 −0.7937

 (10)

4) Mean Centred Cuboidal, MCC: Recently proved to be
an optimal quantizer in [16] this lattice has the characteristic
of being isodual [17] in that it is congruent to its dual or
reciprocal lattice. It can be thought of as a hybrid of the
BCC and FCC lattices.

GMCC =

1.0987 −0.4551 −0.1885
0 1 −0.5858
0 0 0.9102

 (11)

5) Hexagonal prismatic, Hex: This lattice is a 2D hexag-
onal lattice that is extended to 3D as a hexagonal prism. The
lattice is considered because of the nature of the environment
in which most robots are operating. Most environments have
a definite up and down direction defined by the local gravity
vector. This influences the structure of the environment and
resulting data received by robot sensors. The local gravity
is readily determined via an accelerometer when stationary.
Thus data such as maps can be appropriately aligned verti-
cally with a lattice in a global coordinate frame. Therefore,
rotational invariance is only required about axes aligned with
the local gravity for which the hexagonal prismatic lattice is
suitable.

GHex =

1.1776 −0.5888 0
0 1.0198 0
0 0 0.8327

 (12)

B. Lattice Characteristics

In an effort to ensure fair comparisons between the lattices
it is important to normalise the size of the lattice voxels. This
is because in order to fully cover all space with the lattice
map the maximum number of voxels required is the volume
of the space over the primitive unit cell volume. This analysis
neglects the edge effects.

For an arbitrary basis defined by the generator matrix G
the primitive cell volume is the volume of the parallelepiped
defined by the basis vectors. This volume is given by the
determinant of G and is equal to the Voronoi cell volume.

Another characteristic of a lattice is the distortion as a
result of quantizing to the lattice which is defined as

E = 1
n

∑
i

||Q(~xi)− ~xi|| , (13)

with Q(~x) a general lattice quantization function, as in (2),
and ~xi the position vector of the ith data point from n such
points. The voxel count is the number of unique tuples after
quantization and corresponds to the number of lattice points
that have at least one data point in their Voronoi cell.

III. EXPERIMENTS

Two main experiments are performed. The first establishes
that the predicted desirable properties are in fact present in
the data from single 3D scans. These scans are typical of ones
acquired on mobile robotic platforms from rotating 2D laser
scanners, 2D laser scanners with external rotating mirrors,
3D laser scanners and flash light detection and ranging
(LIDAR) systems. The common aspect to all these sensors
is that they deliver range data over some field of view which
can be represented as a point cloud. Any data structure that
this point cloud is converted to should have certain desired
properties, such as rotational invariance, accurate represen-
tation of the raw data, lower storage requirements and good
computational performance. The computational requirements
include fast conversion from the raw data format and efficient
support of operations that will be typically performed on the
data structure.

The second experiment tests the performance of mapping
with the various lattices. The lattices tested are simple cubic,
the body centred cubic (BCC) and the face centred cubic
(FCC). The mapping algorithm is a based on multi-resolution
occupied voxel lists [9].

A. Uniform Random Rotations

As the fairness of the comparisons depends on uniformly
distributed random 3D rotations some discussion is given
to ensuring this is done correctly, [18], [19]. The need
for uniform random sampling is also appreciated by other
robotics researchers [20]–[22]. In this work we generate
random rotation matrices with the method described by
[18]. The example scan data is rotated randomly in 3D by
application of random rotation matrices before quantizing to
the various lattices. The same sample of random rotation
matrices is used for each lattice type. In this way a fair
test of the lattices is performed without biasing due to the
rotational and translational symmetries present resulting from
the interaction between the structure of the environment and
the lattice patterns.

B. Skid steer loader (Bobcat)

Experiments are also conducted on the platform depicted
in Fig. 2 which is suitable for testing the performance of the
lattice quantizers under 6DOF pose changes. This platform is
equipped with numerous sensors however the ones relevant
to the experiments conducted are three laser range finders,
one of which is continuously rotating, and an INS/GPS.
The laser range finders are standard SICK LMS 200’s and
the INS/GPS is a Novatel SPAN-CPT combined GPS and
inertial navigation solution capable of providing 6DOF pose
(position and attitude) at 100Hz. A position error of 0.03m
is observed with RTK GPS.



Fig. 2. Autonomous skid steer loader performing an earth moving task.
Laser data from both the side lasers and top rotating laser scanner are
combined into occupied voxel list maps based on various lattices.
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Fig. 3. The ordered distances of lattice points from the central lattice point.
Each lattice has its curve terminated after the first layer which corresponds
to only adjacent voxels.

The pose from the INS is used to transform the laser range
returns, measured in the coordinate frame of the robot into
the global GPS coordinate frame (East, North, Up). These
transformed points are then quantized and added to a global
map which is implemented as an occupied voxel list. The
various lattice quantizations are tested on the same data and
the results presented in Section IV.

Various metrics for quantization on 6DOF data obtained
from a skid steer loader operating an autonomous mission
are presented in Table I.

C. Radial distribution of lattice points

Fig. 3 depicts the variation in lattice point distances from a
reference lattice point for the lattices in question for cells of
equal volume. This plot is best explained by reference to the
familiar cubic lattice. Considering the neighbours of a cubic
cell of a cubic lattice there are expected 33−1 = 26 adjacent
cubes. The nearest neighbours are those associated with the
faces of the cube of which there are six. This is evident in
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Fig. 4. Distribution of point distances from the Voronoi cell centre for
points uniformly sampled across a normalized single cell volume (first set
of peaks) and for points in adjacent cells (second set).

Fig. 3 which has six points at a distance of one. The next
nearest adjacent cells are those which share an edge with
the central cube. Consequently as expected there are twelve
lattice points at the next distance. Finally there are those
cubic cells that are adjacent by virtual of sharing a corner
and these eight lattice points are also apparent at the end of
the cubic curve in Fig. 3. This is in stark contrast to the FCC
line on Fig. 3 with the adjacent lattice points terminating after
twelve with all being equidistant. The Voronoi cell for FCC
(rhombic dodecahedron) means that the structure packs such
that all adjacent voxels are adjacent through a face and so this
results in the 12 equidistant nearest neighbours. This is the
only 3D lattice to achieve this ideal neighbour arrangement.

The implications of Fig. 3 are borne out in the distributions
generated for Fig. 4. This figure plots the distribution of
distances from a lattice point to arbitrary points selected at
random from the volume of a single cell as well as those
encompassed by adjacent voxels.

Fig. 4 highlights the reduction in quantization error of the
lattices FCC, BCC and MCC for the distribution of points
within a single lattice cell.

The expected cubic probability increase is observed ini-
tially for all lattices because the sample volume increases
with the cube of the radius. For the cubic lattice this increase
terminates at 0.5 when the sample volume is clipped by the
Voronoi cube face. This is similar for the other lattices each
terminating at a slightly different point as a result of the
differing Voronoi cell geometries.

Also contained within Fig. 4 are the distributions (from
random data) of point distances for points in adjacent cells
for each lattice. These distributions illustrate the significant
improvement of the alternative lattices over cubic lattices for
approximating proximity.

IV. RESULTS AND DISCUSSION

A. Properties of Single Scans

Fig. 5 contains the cumulative distribution curves for the
distortion and total number of lattice point voxels listed after
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Fig. 5. Cumulative distribution curves for the quantization distortion and
occupied voxel counts of 3D range scan data. The data are quantized
to cubic, FCC, BCC, MCC and Hexagonal prismatic lattices of identical
primitive unit cell volume.

quantization for various random rotations of the points of a
single 3D range scan.

Although the cumulative frequency distortion curves in
Fig. 5 are for real data the distortion is independent of
whether the points are uniformly randomly distributed or
distributed as the data of a real scan, if the data is randomly
rotated. The errors introduced by quantization are clearly
reduced by quantizing to the FCC and BCC lattices in
preference to the cubic lattice as is apparent from the shift
of the cumulative frequency curve to lower distortions.

When comparing the voxel counts in Fig. 5 it is apparent
that although the lattice type makes only a slight difference to
the voxel count for random data there is a larger improvement
over the simple cubic lattice for real data for the FCC and
BCC lattices. It is worth noting that although the BCC and
FCC generally produce lower voxel counts in rare instances
the cubic lattice is better. This is when the planar structures in
the scan align with the coordinate axes. It is expected that this
same effect is not present in the random data which has no
such structure that benefits from coincidental alignment. Not
only do these alternative lattices deliver lower voxel counts
but also they deliver more consistent counts with reduced
distortion.
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Fig. 6. Box plot of the scan matching position errors from 3D laser
range data scans of an indoor environment. The whiskers are 1.5 times the
interquartile range.

TABLE I
6DOF QUANTIZATION RESULTS FOR 3D MAPS TAKEN FROM A SKID

STEER LOADER. 19399 LASER RANGE POINTS IN TOTAL WERE ADDED

TO THE LATTICE MAP.

Lattice cell vol Voxel MSE/ distance
name m3 Count dimension error (m)
cubic 0.125 3139 0.0226 0.2606
fcc 0.125 3197 0.0197 0.2432
bcc 0.125 3150 0.0195 0.2421
mcc 0.125 3078 0.0186 0.2365
hex 0.125 2904 0.0218 0.2560

B. Lattice Mapping Performance

For the lattice mapping experiments, scan matching is
performed on real 3D laser data, acquired by a robot in an
indoor office environment.

The relative pose between successive scans is determined
via the multi-resolution occupied voxel list data structure and
matching algorithm as described in [9]. The position errors
are presented in Fig. 6 which indicates the lower position
errors and better outlier performance for the FCC lattice over
its cubic counterpart.

During the experiments it was noticed that cubic quan-
tization can perform well in certain situations. For instance
when the robot is travelling straight along a corridor the walls
and floor are aligned with the robot’s local coordinate frame
and in this case cubic quantization is efficient. However the
cubic lattice effectiveness is lost when the robot is not aligned
with the corridor, is travelling on uneven ground or in less
structured environments.

Various results for the lattices tested on data acquired from
an autonomous skid steer loader are listed in Table I. In this
case the MCC lattice performs the best with a low voxel
count and lowest distance error per point.

V. CONCLUSION

The generic lattice quantization algorithm presented herein
allows novel approaches, such as tuning or selection of the



lattice to a particular environment. For instance some envi-
ronments might be suited to a hexagonal prismatic lattice due
to their mostly planar nature and often uniform horizontal
cross-section.

We established a generic algorithm feasible for low dimen-
sions (≤ 3) quantization for the study of the performance of
lattices of these dimensions. Quantization performance has
been tested on both uniform data and field data collected
from a mobile robotics platform.

Analysis of neighbours in the lattices is presented. A graph
showing both the number of adjacent voxels and their centre
distances is presented. Along with this are the lattice index
deltas associated with these neighbouring voxels. These are
necessary for many algorithms requiring proximity checks.
The impact of these lattice adjacency patterns on uniformly
sampled point data is also depicted, by plotting the distribu-
tion of point distances grouped by points in the same cell and
those in the neighbouring cell volume. Knowing what voxels
are adjacent and the probability distribution associated with
their volumes are necessary steps towards path planning and
collision checking on these lattices and are perhaps where
the significant benefits to these lattices lie.

Both distortions (quantization error) and voxel counts are
generally lower and more consistent with BCC, FCC and
MCC quantization. Improvements in representation accuracy
(minimal distortion) and reduction in voxel count are typi-
cally of the order of 5-10%. Another benefit is the ease with
which the alternative lattice quantization process (Section
II) can be combined with existing robotics algorithms and
data structures such as occupancy grids, occupied voxel lists
and ICP whilst still benefiting from superior quantisation
accuracy as is evident in Fig. 6.

Finally, the FCC, BCC and MCC lattices are comparably
better when compared to the equivalent cubic lattice. How-
ever, when considering the arrangement of adjacent cells, the
FCC lattice is significantly superior to all other lattices. The
adjacent cells in the FCC lattice, are fewer (12), equidistant
and their volume has a tighter (40% smaller range) radial
distribution.

A. Future Work

It is felt that the generic quantization algorithm for any
lattice in low dimensions employed here has a number of
opportunities for improvements in efficiency. The current
algorithm relies on testing all ‘off-by-one’ lattice points. It is
noticed that the actual off-by-one vectors are a subset of this
for a particular lattice. Prediction of this subset, for example
(4), given the lattice basis would accelerate quantization
especially for higher dimensions (>3). Secondly the position
of the point relative to the cell centre gives an indication
of which proximate lattice points would need to be tested.
Further optimisation approaches would also be sought.

The isodual nature of the MCC will be further investigated.
This lattice is optimal in a number of measures and is
comparable in accuracy to FCC and BCC.

As the gap in quantization performance between a cubic
lattice and optimal lattices increases with dimensionality

it would be interesting to test those optimal lattices in
higher dimensions; higher dimensional data such as pose
(6DOF) and image metrics. An example with pose would be
determining whether a new pose is proximate to any pose in
a previous history of poses. This is useful for detecting loop
closure and for ensuring that only independent observations
are added to the map. For real-time algorithms this query
would have to be constant in time regardless of the number
of historical poses. Such is possible with occupied voxels on
various lattices. The more consistent distribution of nearest
neighbours for the lattices is likely to improve the output of
cell based path planning algorithms.
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