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Chapter 1

Programming Basics

1.1 Scientific Computing

I want to begin this course with a brief look back at the history of computa-
tional science. I think the physical sciences have always recognized the value of
experience better than mathematics. The hallmark of physical science is its in-
teraction with the physical world, and it is long experience with this world that
informs and guides theory, and now computation. Computational mathematics,
or computational science, stands between the worlds of mathematics and phys-
ical science, and thus must deal with these real world constraints. The speed of
light, capacitive coupling, leakage current, and the limits of photolithography
all constrain the kinds of computations we can do efficiently. And these trade-
offs do change depending on advances in materials science. In the 1960s and
1970s when many foundational numerical algorithms were developed, machines
had very little memory compared to computing power, whereas today memory
limitations impact very few algorithms. Our assumptions and rules of thumbs
must be rethought for each generation of computing hardware.

For pure mathematicians, the sine non qua of technical communication is
the journal paper, although people like Terence Tao and Timothy Gowers have
clearly shown that blogging and the polymath project can play a significant role.
However, more then 40 years ago, computational mathematicians created a new
way to disseminate their results, namely the high quality numerical library. It is
now a commonplace that a great part of your interaction with physical sciences,
engineering, and other fields can be mediated by software you produce and
maintain. I will argue that the most effective form of software communication
is the library.

1.1.1 Libraries

The main impact of computational mathematics is in design and analysis of
algorithms for simulation and data analysis. This is where elements of com-
puter science enter in, since software is the transmission mechanism from math-
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10 CHAPTER 1. PROGRAMMING BASICS

ematicians and computational scientists to rest of the research community. The
description of an algorithm present in a paper is usually schematic so that im-
portant pieces of the (local) convergence or complexity proof can be matched
to algorithmic operations. Many thing remain unspecified, either because they
are incidental to the main point (precise language and data structure choices),
cumbersome to describe (exact line search and continuation strategies), difficult
to reproduce (optimizations for large, expensive machines), or a host of other
reasons. In the end, it is nearly impossible to reproduce results from a computa-
tional publication without the original source, test inputs, and outputs to serve
as a reference. The best way to assure that others have access to this material
and that it does not place an undue burden on the author, is to move most
operations into supported community code, reducing the author contribution to
an easily manageable set.

The best way to create robust, efficient and scalable, maintainable scientific
codes, is to use libraries. The primary job of software design is to contain imple-
mentation complexity, and libraries provide a systematic, hierarchical strategy
for this. They can hide the details associated with different hardware archi-
tectures. For example, the MPI libraries (Forum 2012; W. Gropp, Lusk, and
Skjellum 1994; W. Gropp and et. al. n.d.) we will work with later in the course
hide the details of network interfaces and machine data representations behind
generic interfaces. PETSc (Balay, Abhyankar, Adams, Benson, Brown, Brune,
Buschelman, E. Constantinescu, et al. 2022; Balay, Abhyankar, Adams, Benson,
Brown, Brune, Buschelman, E. M. Constantinescu, et al. 2022) hides complex
data structures used for sparse matrix implementations on parallel architectures.

Libraries not only hide complexity for the individual user, but they serve to
accumulate best practices in the field. There are very often complex tradeoffs
associated with algorithmic choices, so that no best algorithm exists (Nachtigal,
Reddy, and Trefethen 1992) and determining the best algorithm for a particular
problem is costly or undecideable. Thus determining effective and robust de-
faults can save large amounts of time and computing. For example, by default
PETSc uses classical Gram-Schmidt orthogonalization with selective reorthog-
onalization (Björck 1994) rather than the more robust but far less scalable
modified Gram-Schmidt. Moreover, the capabilities of an application using a
generic library interface can increase without any code changes. An application
using PETSc would benefit from the addition of a new matrix format for specific
hardware, Krylov solver, or Implicit-Explicit (IMEX) time integration without
any changes to the application itself.

This last point about improvement is the edge of the elusive concept of ex-
tensiblity. It is not enough to make a fantastic, working code. Users will need
the ability to change your approach to fit their problem, or a new hardware or
software environment, or to interoperate with another library. A library must
separate its core concepts cleanly so that they can be recombined in novel ways
to produce more powerful and complex algorithms. For example, in PETSc both
multigrid solvers and block solvers exist separately, but they can be combined,
even recursively and hierarchically, to produce optimal solvers for complex, mul-
tiphysics problems (Brown et al. 2012). The parallel structured grid abstraction,
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DMDA, has been reused as the infrastructure underlying both parallel finite
volume methods in PyCLAW (Ketcheson et al. 2012; Mandli, Ketcheson, et al.
2012) and parallel isogeometric analysis in PetIGA (Nathan Collier, Lisandro
Dalcin, and V. M. Calo 2013; N. Collier, L. Dalcin, and V. Calo 2014).

A library is a bundle of code presenting a uniform interface to the user.
Larger libraries, such as PETSc, present many layers of interfaces, often hierar-
chically, and use their own interface internally when refering to other parts of
the library. In order to make the library consistent across architectures, envi-
ronments, and builds, it should have a consistent Application Binary Interface
(ABI) across different builds, for example debugging and optimized.

Bill Gropp gives a thoughtful list of mistakes to avoid when designing a
library (W. D. Gropp 1999):

• Namespace pollution and monolithic library structure

• Printing error messages or exiting

• Requiring interactive input or main()

• Requiring running on all processes

• Lack of portability, testing, documentation, examples

• Ignorance of standards

A short timeline of early numerical libraries is given below:

71 Handbook for Automatic Computation: Linear Algebra, J. H. Wilkinson
and C. Reinch

73 EISPACK, Brian Smith et.al.

79 BLAS, Lawson, Hanson, Kincaid and Krogh

90 LAPACK, many contributors

91 PETSc, Gropp and Smith

All of these packages had their genesis in the Mathematics and Computer Sci-
ence Division (MCS) (Yood 2005) of Argonne National Laboratory.

1.1.2 Knowledge and Creativity

The purpose of computing is insight, not numbers.

— Richard Hamming, Numerical Methods for Scientists and Engineers

Controlling complexity is the essence of computer programming.

— Brian Kernighan

Factual recall and canned examples are not as impressive or important as
they once were. Richard Feynman could get an invitation to the Manhattan

http://www.amazon.com/Handbook-Automatic-Computation-Vol-Mathematischen/dp/0387054146
http://www.netlib.org/blas/
http://www.netlib.org/blas/
http://www.netlib.org/lapack/
http://www.mcs.anl.gov/petsc/
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Project largely on the strength of his uncanny ability to calculate mentally, but
today Wolfram Alpha can fill that role. The ability to make new connections,
to draw together disparate sources of information and integrate them, and to
propose a new synthesis are more valuable skills today.

In this course, we will rely on internet resources to provide much of the
factual background and tutorial examples. However, we have not obviated the
need for memorization. It is still quite important to hold a firm mental grasp
on collections of information in order to make new connections, but initially
locating the information, supplementing it, and refreshing yourself have become
much easier with the advent of large, decentralized information storage and
efficient search.

We are concerned with Why rather than How, which has been satisfactorily
explained in the Numerical Analysis course. In his book Code, Lawrence Lessig
demonstrates the parallels between programming and constitutional law. Both
establish ground rules within which a system works. When a court decides
a question of constitutional law, they look for an underlying principle which
controls the decision. This is exactly the model which we use to compress our
understanding of a multitude of situations with similar characteristics, as well
as make predictions about new situations. In this course, I want to give you the
tools to answer questions such as:

• Which numerical method should I use, and why?

• Is this method accurate for this problem?

• Can my method be made more efficient on this hardware? More scalable?

• Will my method work on this related problem? Will it perform as well?

• Can I write my code such that I can experiment with a range of methods?

• Can I experiment with a range of models?

1.2 Version Control

A mistake most beginning git users make is thinking git is a complete revision control
system; it is not. Git, plus an organized mailing list that people actually respond to
action items on, plus a rigid set of stylized bookkeeping done by each developer, plus a
tyrannical manager of the entire software development process is a complete revision
control system.

— Barry Smith, PETSc Mailing List

The essence of this class is not to compute things, but rather to learn how
to choose the computational method. This class will teach you how to make
informed decisions. This is a skill you will also need when it comes time to set a
research agenda, choose productive collaborators, and pick tools which minimize
work and maximize scientific output. The aim of this lecture is not to show you



1.2. VERSION CONTROL 13

how to use Git. There are many excellent web resources for that purpose. This
lecture will convince you that Git is the right tool for computational research,
among many other things.

1.2.1 Why use Version Control?

Version control is a representation of a groupoid (Wikipedia 2015). The elements
of the groupoid are the things being versioned, such as source files, and the group
operation (which is a partial function), are the changes or diffs that map one
element to another, such as a textual change to a source file.

A version control system (VCS) allows the user to recall any specific version,
which can be thought of as a vertex in a change graph, whose edges represent
diffs. We can restore the previous state of a file or set of files, compare changes
over time, see who last modified something that might be causing a problem,
or trace a set of changes marked for a specific purpose (a branch). It greatly
improves the robustness of our storage, since we can recover from accidental
changes or deletions even long after the fact, but it can also improve the robust-
ness of our analyses since we can restore the exact state of any computation we
performed. In addition, this is all possible with very little overhead.

1.2.2 Why use Distributed Version Control?

The original VCSes used a central server to allow communication among many
developers. Each developer in turn would be allowed to modify the master copy.
This model has severe problems with availability, reliability, and scalability.
Using a distributed VCS, such as Git, Mercurial or Darcs, clients do not check
out the latest snapshot of the files, but rather fully independent copies of the
repository which communicate among themselves by exchanging sets of changes
(the groupoid operation). This removes the server as a single point of failure,
since each repository contains all the history data, and as a bottleneck for
query and store operations, since there is not central repository through which
all communication must flow. Moreover, the repository is fully functional in
isolation, such as on an airplane.

In a distributed VCS, each repository is a fully autonomous participant, and
thus you can assemble much more complex arrangements among them than the
simple star graph of centralized systems. For example, we can create hierarchical
workflows which successive migrate changes up the chain as testing is completed,
or more general graphs which allow staging areas to combine changes from
different developers before merging to the main development line.

1.2.3 Why use Git?

Choosing among VCSes has much in common with choosing among numerical
algorithms for a given problem. The accuracy guarantees for VCSes are largely
the same, as often happens with algorithms, and thus we are led to also consider
its performance, flexibility, and extensibility. Git is quite fast compared to other

https://docs.google.com/drawings/d/1kMHa7O6FB5iiJG5QPTWqlMne1xv17A6jOXXyQ_74kaE/edit?usp=sharing
https://git.wiki.kernel.org/index.php/GitBenchmarks
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VCSes, as well as being scalable to large projects with many contributors, such
as the Linux kernel. It has good integration with other tools, such as Emacs
and web browsers, and there is a very active tool developer community based
on the Git model.

An area where the flexibility of Git really pays off is developer collaboration.
The lightweight branching model in Git makes it easy to start a new line of
development, incorporate changes from another branch, and manage a complex
library workflow. Moreover, once a branch is deleted, it leaves no permanent
trace so that history can be cleanly maintained.

1.2.4 How do I learn Git?

One virtue of Git is that is has outstanding, freely available documentation.
A comprehensive manual, complete with tutorial, exists online at http://git-
scm.com/documentation. In addition, the difficult subject of branching and
merging is covered by an interactive, graphical web application which is really
fantasic and easy to use. There is even a brief history of Git.

I will assign a few simple exercises to start you off with Git, however the
best way to learn anything is to do something truly useful with it. I recommend
picking a smaller, but important and fun task to manage with Git. For exam-
ple, writing a paper, organizing your personal library, or keeping track of your
homework assignments in this class. The online tutorials and documentation
can provide all the technical help necessary to get such an effort off the ground.

1.2.5 How do I submit a Pull Request?

When many developers are collaborating on a project, especially when they are
geographically distributed, it becomes more difficult to coordinate the work,
and you need new, higher level organizational mechanisms. A pull request is a
way both to alert other developers that a particular branch should be merged
into the main development line, and to discuss/amend that branch. There are
good introductions to pull requests on both Bitbucket and Github.

However, the shortcomings of the Git interface are apparent when dealing
with pull requests. Git itself provides no facility for managing or enforcing policy
decisions, such as which branches are appropriate for merging what kinds of
changes. These policies are now merely documented, such as the PETSc policy
for integrating pull requests. This relies in turn on the organization of branches
in PETSc shown in Fig. 1.1.

1.2.6 Why use a multi-branch workflow?

The integration workflow known as gitworkflows is a multi-branch organization
developed to accomodate incoming patches from many distributed contributors.
It is nicely explained on the gitworkflows(7) manpage, although the explanation
is couched in the language of a patch-based system rather than a pull-request
system. The maintainer gets a patch series on the mailing list and pipes the

https://docs.google.com/drawings/d/1kMHa7O6FB5iiJG5QPTWqlMne1xv17A6jOXXyQ_74kaE/edit?usp=sharing
http://git-scm.com/documentation
http://git-scm.com/documentation
http://pcottle.github.io/learnGitBranching/
https://www.atlassian.com/git/articles/10-years-of-git
https://www.atlassian.com/git/tutorials/making-a-pull-request/
https://help.github.com/articles/using-pull-requests/
https://bitbucket.org/petsc/petsc/wiki/developer-instructions-git#markdown-header-integrating-pull-requests-for-petsc-developersintegrators-only
https://docs.google.com/drawings/d/1kMHa7O6FB5iiJG5QPTWqlMne1xv17A6jOXXyQ_74kaE/edit
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mailbox through ’git am’ to apply that patch series into local branches. The
local branch should start from master for new features, and maint for bug fixes
relevant to the last release. Patches frequently go through several revisions
before being finalized, but in the meantime, the maintainer puts promising-
looking series into named topic branches and merges those into a throw-away
integration branch called pu (proposed updates). Patches there will probably be
reworked before they become permanent history, and pu gets rebuilt frequently
(every day or two). This organization provides an easy way for people to try
out a system with all the intermediate work from other developers. A throw-
away merge into pu lets a developer find out if their work might conflict with
someone else’s work without having to monitor the mailing list. You can see
the maintainer branches from Git at https://github.com/gitster/git/branches.

Only the maint, master, next, and pu branches are in normal repositories. When
a topic branch is thought to be complete (perhaps after being re-rolled or fixed
up in review), it is merged to next where it undergoes testing. If this is successful,
then the topic branch is merged to master, a step often called “graduation”. If
all branches graduate in a release cycle, then

'git log master..next'

which shows what is in next, but not in master, would show only merge commits
from when the topics were tested.

Mailing list review and integration is an effective workflow for mature
projects in which all participants are competent with their tools. However,
it takes considerable discipline to structure commits as to be easily reviewable
in discrete units and requires using sophisticated email clients. In PETSc, we
follow the same principle of testing in next before graduating to master, but we
do not designate a sole integrator. Instead, we all push our topic branches to
the same repository, which means that running git fetch automatically gets all
current development branches. Pushing a branch to the shared repository with-
out merging it into next offers the opportunity for passive review. PETSc also
accepts pull requests which are merged to named topic branches, and thereafter
look like normal development. A group of core PETSc developers have histori-
cally done all the integration, where this means merging to any of next, master, or
maint, but that circle is expanding. If named topic branches reside on a central
server, as is done for PETSc or https://github.com/gitster/git, then

comm -12 <(git branch -r --no-merged master | sort) <(git branch -r --merged next | sort)

shows the name of all the topic branches that have not yet graduated. This can
be used in combination with the decorated log command below which locates
change sets in next but not in master.

git log --graph --decorate --oneline --topo-order --no-merges master..next

Another popular organization is known as git-flow, which does away with
the integration branches, next and pu, keeping just a develop branch (like master

above) and master (like maint above). However, this means that new features do
not interact before they are merged to develop. Instead of having topic branches
tested together in next, an integrator has to be make the difficult decision of

https://github.com/gitster/git/branches
https://github.com/gitster/git
http://nvie.com/posts/a-successful-git-branching-model/
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Figure 1.1: This shows the PETSc development branch organization, together
with the associated workflow.

whether a topic branch that has only been tested in isolation should be merged
into develop, or in the case of bugfixes master. This generally means that a git-
flow develop is less stable than a gitworkflows master, so it’s more common to be
working on a new feature and find bugs that were there when you started. This
is disruptive to development and its unpleasant for advanced users who often
follow the development branch rather than discrete releases. Also any decision
to merge a topic branch comes with the pressure that any bugs introduced in
the merge (possibly through indirect semantic conflicts with other work) will
disrupt developers starting new work between the merge and the time a fix is
provided.

In PETSc, we have chosen to use a maint/master/next model, eliding pu, since
it is simple, produces clean history, and places less burden on the integrator to
never make mistakes. No changes make it to master or maint without first being
tested in combination with other new features in next. Since all new development
starts from either maint, in the case of bug fixes, or master for features, bugs in next

only affect the integration process, not the development of new code. Starting
named topic branches from a stable state is important so that the developer
knows that any new bugs have been introduced only in that branch, which
prevents needing to merge from upstream in order to fix bugs introduced prior
to the branch.
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1.3 Configuring and Building

Much like the languages themselves, the mechanics of compiling source and
linking executables is dealt with exhaustively online, and many sources are
cited on the webpage. I would like to discuss the reasons behind different build
architectures and how they help us manage the complexity inherent in writing
and maintaining portable code.

1.3.1 What is a build?

The build stage compiles source to object files, stores them somehow (usually
in archives), and links shared libraries and executables. These are mechanical
operations that reduce to applying a construction rule to sets of files. The make
tool is great at this job. However, other parts of make are not as useful, and we
should distinguish the two.

Make uses a single predicate, older than, to decide whether to apply a rule.
This is a disaster. A useful upgrade to make would expand the list of available
predicates, including things like md5sum has changed and flags have changed.
There have been attempts to use make to determine whether a file has changed,
for example by using stamp files. However, it cannot be done without severe
contortions which make it much harder to see what make is doing and maintain
the system. Right now, we can combine make with the ccache utility to minimize
recompiling and relinking.

1.3.2 Why is configure necessary?

The configure program is designed to assemble all information and precondi-
tions necessary for the build stage. This is a far more complicated task, heavily
dependent on the local hardware and software environment. It is also the source
of nearly every build problem. The most crucial aspect of a configure system is
not performance, scalability, or even functionality, it is debuggability. Configu-
ration failure is at least as common as success, due to broken tools, operating
system upgrades, hardware incompatibilities, user error, and a host of other
reasons. Problem diagnosis is the single biggest bottleneck for development and
maintenance time. Unfortunately, current systems are built to optimize the
successful case rather than the unsuccessful. In PETSc, we have developed the
BuildSystem package (BS) to remedy the shortcomings of configuration systems
such as Autoconf, CMake, and SCons.

First, BS provides consistent namespacing for tests and test results. Tests
are encapsulated in modules, which also hold the test results. Thus you get
the normal Python namespacing of results. Anyone familiar with Autoconf will
recall the painful, manual namespacing using text prefixes inside the flat, global
namespace. Also, this consistent hierarchical organization allows external com-
mand lines to be built up in a disciplined fashion, rather than the usual practice
of dumping all flags into global reservoirs such as the INCLUDE and LIBS variables.
This encapsulation makes it much easier to see which tests are responsible for

http://www.gnu.org/software/make/
https://ccache.samba.org/
https://www.bitbucket.org/petsc/BuildSystem
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donating offending flags and switches when tests fail, since errors can occur far
away from the initial inclusion of a flag.

1.3.3 Why use PETSc BuildSystem?

PETSc provides a fully functional configure model implemented in Python,
named BuildSystem (BS), which has also been used as the configuration tool for
other open sources packages. As more than a few configuration tools currently
exist, it is instructive to consider why PETSc would choose to create another
from scratch. Below we list features and design considerations which lead us to
prefer BuildSystem to the alternatives.

Namespacing BS wraps collections of related tests in Python modules, which
also hold the test results. Thus results are accessed using normal Python names-
pacing. As rudimentary as this sounds, no namespacing beyond the use of vari-
able name prefixes is present in SCons, CMake, or Autoconf. Instead, a flat
namespace is used, mirroring the situation in C. This tendency appears again
when composing command lines for extenral tools, such as the compiler and
linker. In the traditional configure tools, options are aggregated in a single
bucket variable, such as INCLUDE or LIBS, whereas in BS you trace the provenance
of a flag before it is added to the command line. CMake also makes the unfor-
tunate decision to force all link options to resolve to full paths, which causes
havoc with compiler-private libraries.

Explicit control flow The BS configure modules mention above, containing
one configure object per module, are organized explicitly into a directed acyclic
graph (DAG). The user indicates dependence, an edge in the dependence graph,
with a single call, requires('path.to.other.test', self), which not only
structures the DAG, but returns the configure object. The caller can then use
this object to access the results of the tests run by the dependency, achieving
test and result encapsulation simply.

Multi-languages tests BS maintains an explicit language stack, so that the
current language can be manipulated by the test environment. A compile or
link can be run using any language, complete with the proper compilers, flags,
libraries, etc with a single call. This kind of automation is crucial for cross-
language tests, which are very thinly supported in current tools. In fact, the
design of these tools inhibits this kind of check. The check_function_exists() call
in Autoconf and CMake looks only for the presence of a particular symbol in a
library, and fails in C++ and on Windows, whereas the equivalent BS test can
also take a declaration. The try_compile() test in Autoconf and CMake requires
the entire list of libraries be present in the LIBS variable, providing no good way
to obtain libraries from other tests in a modular fashion. As another example,
if the user has a dependent library that requires libstdc++, but they are working
with a C project, no straightforward method exists to add this dependency.
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Subpackages The most complicated, but perhaps the most useful part of BS
is the support for dependent packages. It provides an object scaffolding for
including a 3rd party package (more than 60 are now available) so that PETSc
downloads, builds, and tests the package for inclusion. The native configure
and build system for the package is used, and special support exists for GNU
and CMake packages. No similar system exists in the other tools, which rely on
static declarations, such as pkg-config or FindPackage.cmake files, that are not tested
and often become obsolete. They also require that any dependent packages use
the same configuration and build system.

Batch environments Most systems, such as Autoconf and CMake, do not ac-
tually run tests in a batch environment, but rather require a direct specification,
in CMake a “platform file”. This requires a human expert to write and maintain
the platform file. Alternatively, Buildsystem submits a dynamically generated
set of tests to the batch system, enabling automatic cross-configuration and
cross-compilation.

Caching Caching often seems like an attractive option since configuration
can be quite time-consuming, and both Autoconf and CMake enable caching
by default. However, no system has the ability to reliably invalidate the cache
when the environment for the configuration changes. For example, a compiler or
library dependency may be upgraded on the system. Moreover, dependencies
between cached variables are not tracked, so that even if some variables are
correctly updated after an upgrade, others which depend on them may not be.
Moreover, CMake mixes together information which is discovered automatically
with that explicitly provided by the user, which is often not tested.

1.3.4 Dealing with Errors

The most crucial piece of an effective configure system is good error reporting
and recovery. Most of the configuration process involves errors, either in com-
piling, linking, or execution, but it can be extremely difficult to uncover the
ultimate source of an error. For example, the configuration process might have
checked the system BLAS library, and then tried to evaluate a package that
depends on BLAS such as PETSc. It receives a link error and fails complaining
about a problem with PETSc. However, close examination of the link error
shows that BLAS with compiled without position-independent code, e.g. using
the -fPIC flag, but PETSc was built using the flag since it was intended for a
shared library. This is sometimes hard to detect because many 32-bit systems
silently proceeed, but most 64-bit systems fail in this case.

When test command lines are built up from options gleaned from many prior
tests, it is imperative that the system keep track of which tests were responible
for a given flag or a given decision in the configure process. This failure to
preserve the chain of reasoning is not unique to configure, but is ubiquitous
in software and hardware interfaces. When your Wifi receiver fails to connect
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to a hub, or your cable modem to the ISP router, you are very often not told
the specific reason, but rather given a generic error message which does not
help distinguish between the many possible failure modes. It is essential for
robust systems that error reports allow the user to track back all the way to
the decision or test which produced a given problem, although it might involve
voluminous logging. Thus the system must either be designed so that it creates
actionable diagnostics when it fails or it must have unfailingly good support so
that human inervention can resolve the problem. The longevity of Autoconf I
think can be explained by the ability of expert users to gain access to enough
information, possibly by adding set -x to scripts and other invasive practices, to
act to resolve problems. This ability has been nearly lost in follow-on systems
such as SCons and CMake.

Concision is also an important attribute, as the cognitive load is usually
larger for larger code bases. The addition of logic to Autoconf and CMake is
often quite cumbersome as they do not employ a modern, higher level language.
For example, the Trilinos/TriBITS package from Sandia National Laboratory
is quite similar to PETSc in the kinds of computations it performs. It contains
175,000 lines of CMakescript used to configure and build the project, whereas
PETSc contains less than 30,000 lines of Python code to handle configuration
and regression testing and one GNU Makefile of 130 lines.

1.3.5 How do I use make simply and effectively?

We would like a rational, scalable paradigm for building a large, collaborative
project. I think this naturally leads to design which centralizes the rules, but
distributes the data. A possible answer to this is the recursive build structure
employed in PETSc before release 3.5, where makefiles in each source direc-
tory are called recursively. Then a developer only modifies the local makefile.
However, the arguments given in Recursive Make Considered Harmful are quite
convincing. In particular, recursive make does not maintain a consistent DAG
so that all dependencies can be checked. PETSc has now moved to a system
which uses the old makefile in each directory to list the source files to be built,
and then a toplevel makefile. For our example we will use a cleaner version
developed for the IBAMR package (Bhalla et al. 2013), using a small local.mk file
in each subdirectory.

For example, a local makefile lists source files that should be included in the
build

srcs-core.c += $(call thisdir, \
fas.c \
fasfunc.c \
fasgalerkin.c \
)

where core specifies that these objects will be fed into the libcore library, and
the .c suffix indicates the build rules which should be used. The thisdir function
gives the current directory, so that we get the full path for the source files. For
non-terminal directories, we indicate that the inclusion should recurse into the
subdirectories,

http://aegis.sourceforge.net/auug97.pdf
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include $(call incsubdirs, interface impls utils)

After placing local.mk in each subdirectory which will assemble the source
list, we want to construct the toplevel control.

IBAMR_ARCH := $(if $(IBAMR_ARCH),$(IBAMR_ARCH),build)

all : $(IBAMR_ARCH)/conf/configure.log $(IBAMR_ARCH)/gmakefile
$(MAKE) -C $(IBAMR_ARCH) -f gmakefile
@echo "Build complete in $(IBAMR_ARCH).  Use make test to test."

$(IBAMR_ARCH)/conf/configure.log:
./configure.new --IBAMR_ARCH=$(IBAMR_ARCH) --download-muparser \

--download-eigen --download-silo --download-hdf5 --download-samrai \
--with-mpi-dir=$(PETSC_DIR)/$(PETSC_ARCH)

$(IBAMR_ARCH)/gmakefile: ./config/gmakegen.py
$(MAKE) -C $(IBAMR_ARCH) -f bootstrap.mk gmakefile

test : all
$(MAKE) -C $(IBAMR_ARCH) test

clean :
$(MAKE) -C $(IBAMR_ARCH) clean

.PHONY: all test clean

We notice that two environment variables are used to control the placement of
the build, IBAMR_DIR specifies the root of the sourse tree, and IBAMR_ARCH specifies
the build directory for this configuration. Also, we need two files created by
the configure process, a bootstrap.mk which enables us to access the configure
information,

gmakefile: ../config/gmakegen.py
$(PYTHON) ../config/gmakegen.py

include conf/ibamrvariables

and the $PETSC_ARCH/conf/ibamrvariables file which holds the specialized make vari-
ables output by the configure process. The gmakegen.py generates a makefile,
gmakefile, which just has simple toplevel information, and then includes the con-
trol file. The current IBAMR version is shown below, which handles package
dependecies. This information could, of course, be put into the ibamrvariables file,
but this divison is sometimes cleaner.

PYTHON = ${HOME}/MacSoftware/bin/python2.7

PETSC_DIR = /PETSc3/petsc/petsc-pylith
PETSC_ARCH = arch-next-ibamr-debug
include ${PETSC_DIR}/conf/variables

SAMRAI_DIR = /PETSc3/fluids/IBAMR

BOOST_DIR = /PETSc3/fluids/IBAMR/IBAMR/ibtk/contrib/boost

EIGEN_DIR = /PETSc3/fluids/IBAMR/IBAMR/ibtk/contrib/eigen-3.2.1

MUPARSER_DIR = /PETSc3/fluids/IBAMR/IBAMR/ibtk/contrib/muparser_v2_2_3

IBAMR_DIR = /PETSc3/fluids/IBAMR/IBAMR
IBAMR_ARCH = arch-next-ibamr-debug
IBAMR_INCLUDES = -I${IBAMR_DIR}/${IBAMR_ARCH}/include -I${IBAMR_DIR}/include \
-I${IBAMR_DIR}/ibtk/include -I${SAMRAI_DIR}/include -I${BOOST_DIR} \
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-I${EIGEN_DIR} -I${MUPARSER_DIR}/include
CFLAGS += ${IBAMR_INCLUDES} -DNDIM=2
include ${IBAMR_DIR}/${IBAMR_ARCH}/conf/ibamrvariables

include ${IBAMR_DIR}/base.mk

Our last requirement is the base.mk file which contains toplevel control infor-
mation. Since it is somewhat long, we will explain it in stages. First we start by
configuring make itself, setting up our directory structure, and working around
a Cygwin bug when debugging the build process.

.SECONDEXPANSION: # to expand $$(@D)/.DIR

.SUFFIXES: # Clear .SUFFIXES because we don't use implicit rules

.DELETE_ON_ERROR: # Delete likely-corrupt target file if rule fails

OBJDIR := $(abspath obj)
LIBDIR := $(abspath lib)
BINDIR ?= bin
INCDIR ?= include

##### Workarounds for Broken Architectures #####
# old cygwin versions
ifeq ($(PETSC_CYGWIN_BROKEN_PIPE),1)
ifeq ($(shell basename $(AR)),ar)
V ?=1

endif
endif
ifeq ($(V),)
quiet_HELP := "Use \"$(MAKE) V=1\" to see the verbose compile lines.\n"
quiet = @printf $(quiet_HELP)$(eval quiet_HELP:=)"  %10s %s\n" "$1$2" "$@"; $($1)

else ifeq ($(V),0) # Same, but do not print any help
quiet = @printf "  %10s %s\n" "$1$2" "$@"; $($1)

else # Show the full command line
quiet = $($1)

endif

Next we setup the library versioning by extracting the version number from a
header written by the configure process (or possibly consrtucted by hand).

##### Versioning #####
IBAMR_VERSION_MAJOR := $(shell awk '/\#define IBAMR_VERSION_MAJOR/{print $$3;}' \
./include/ibamrversion.h)

IBAMR_VERSION_MINOR := $(shell awk '/\#define IBAMR_VERSION_MINOR/{print $$3;}' \
./include/ibamrversion.h)

IBAMR_VERSION_SUBMINOR := $(shell awk '/\#define IBAMR_VERSION_SUBMINOR/{print $$3;}' \
./include/ibamrversion.h)

IBAMR_VERSION_RELEASE := $(shell awk '/\#define IBAMR_VERSION_RELEASE/{print $$3;}' \
./include/ibamrversion.h)

ifeq ($(IBAMR_VERSION_RELEASE),0)
IBAMR_VERSION_MINOR := 0$(IBAMR_VERSION_MINOR)

endif
libibamr_abi_version := $(IBAMR_VERSION_MAJOR).$(IBAMR_VERSION_MINOR)
libibamr_lib_version := $(libibamr_abi_version).$(IBAMR_VERSION_SUBMINOR)

We then define some functions for name manipulation. Note that the thisdir

and incsubdirs functions we saw before are defined here.

##### Functions #####
# Function to name shared library $(call SONAME_FUNCTION,libfoo,abiversion)
SONAME_FUNCTION ?= $(1).$(SL_LINKER_SUFFIX).$(2)
soname_function = $(call SONAME_FUNCTION,$(1),$(libibamr_abi_version))
libname_function = $(call SONAME_FUNCTION,$(1),$(libibamr_lib_version))
# Function to link shared library
# $(call SL_LINKER_FUNCTION,libfoo,abiversion,libversion)
SL_LINKER_FUNCTION ?= -shared -Wl,-soname,$(call SONAME_FUNCTION,$(notdir $(1)),$(2))
basename_all = $(basename $(basename $(basename $(basename $(1)))))
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sl_linker_args = $(call SL_LINKER_FUNCTION,$(call basename_all,$@),\
$(libibamr_abi_version),$(libibamr_lib_version))

# Function to prefix directory that contains most recently-parsed
# makefile (current) if that directory is not ./
thisdir = $(addprefix $(dir $(lastword $(MAKEFILE_LIST))),$(1))
# Function to include makefile from subdirectories
incsubdirs = $(addsuffix /local.mk,$(call thisdir,$(1)))
# Function to change source filenames to object filenames
srctoobj = $(patsubst $(SRCDIR)/%.c,$(OBJDIR)/%.o,$(filter-out $(OBJDIR)/%,$(1)))

We must name the libraries to be built, distinguishing between static and shared
builds. Here we will build a single library, libibamr.

##### Libraries #####
libibamr_shared := $(LIBDIR)/libibamr.$(SL_LINKER_SUFFIX)
libibamr_soname := $(call soname_function,$(LIBDIR)/libibamr)
libibamr_libname := $(call libname_function,$(LIBDIR)/libibamr)
libibamr_static := $(LIBDIR)/libibamr.$(AR_LIB_SUFFIX)
libibamr := $(if $(filter-out no,$(BUILDSHAREDLIB)),$(libibamr_shared) \

$(libibamr_soname),$(libibamr_static))

Then for each package, or unit in the library, we must define the source list.
Here we have two packages, core and ibtk. We are defining them for C++, but
we could use C, Fortran, or any other language extension.

##### Must define these, or thisdir does not work ######
srcs-core.cpp :=
srcs-ibtk.cpp :=

Finally, we are ready to define the source lists by recursively including all the
local.mk files.

##### Inclusions #####
# Recursively include files for all targets, need to be defined before source rules
include $(IBAMR_DIR)/local.mk

After all the setup, we can define the compilation rules using make variables
from conf/ibamrvariables determined by the congiure process.

##### Rules #####
all : $(libibamr)

# make print VAR=the-variable
print:

@echo $($(VAR))

IBAMR_COMPILE.c = $(call quiet,$(cc_name)) -c $(PCC_FLAGS) $(CFLAGS) $(CCPPFLAGS) \
$(C_DEPFLAGS)

IBAMR_COMPILE.cxx = $(call quiet,CXX) -c $(CXX_FLAGS) $(CFLAGS) $(CCPPFLAGS) \
$(CXX_DEPFLAGS)

IBAMR_COMPILE.cu = $(call quiet,CUDAC) -c $(CUDAC_FLAGS) \
--compiler-options="$(PCC_FLAGS) $(CXXFLAGS) $(CCPPFLAGS)"

IBAMR_GENDEPS.cu = $(call quiet,CUDAC,.dep) --generate-dependencies $(CUDAC_FLAGS) \
--compiler-options="$(PCC_FLAGS) $(CXXFLAGS) $(CCPPFLAGS)"

IBAMR_COMPILE.F = $(call quiet,FC) -c $(FC_FLAGS) $(FFLAGS) $(FCPPFLAGS) \
$(FC_DEPFLAGS)

Now we define a set a packages, supported languages, and the complete object
list for the library. Then the library link rule is straightforward, as is the
archiving rule (putting object files into a .a file), however there is some fixup to
support the Cygwin OS.

pkgs := ibtk core
langs := c cu cpp F
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concatlang = $(foreach lang, $(langs), $(srcs-$(1).$(lang):%.$(lang)=$(OBJDIR)/%.o))
srcs.o := $(foreach pkg, $(pkgs), $(call concatlang,$(pkg)))

$(libibamr_libname) : $(srcs.o) | $$(@D)/.DIR
$(call quiet,CLINKER) $(sl_linker_args) -o $@ $^ $(PETSC_EXTERNAL_LIB_BASIC)

ifneq ($(DSYMUTIL),true)
$(call quiet,DSYMUTIL) $@

endif

$(libibamr_static) : obj := $(srcs.o)

define ARCHIVE_RECIPE_WIN32FE_LIB
@$(RM) $@ $@.args
@cygpath -w $^ > $@.args
$(call quiet,AR) $(AR_FLAGS) $@ @$@.args
@$(RM) $@.args

endef

define ARCHIVE_RECIPE_DEFAULT
@$(RM) $@
$(call quiet,AR) $(AR_FLAGS) $@ $^
$(call quiet,RANLIB) $@

endef

%.$(AR_LIB_SUFFIX) : $$(obj) | $$(@D)/.DIR
$(if $(findstring win32fe lib,$(AR)),$(ARCHIVE_RECIPE_WIN32FE_LIB),\

$(ARCHIVE_RECIPE_DEFAULT))

We can now declare the dependence relations, including a switch to allow relink-
ing everything. There is a significant optimization at the end for dependencies
arising from *.d files. These are produces by the compiler to automatically track
dependecies arising in the source code.

# The package libraries technically depend on each other (not just in an order-only
# way), but only ABI changes like new or removed symbols requires relinking the
# dependent libraries. ABI should only occur when a header is changed, which would
# trigger recompilation and relinking anyway.
# RELINK=1 causes dependent libraries to be relinked anyway.
ifeq ($(RELINK),1)
libdep_true = $$(libdep)
libdep_order =

else
libdep_true =
libdep_order = $$(libdep)

endif
$(libpetscpkgs_libname) : $(libdep_true) | $(libdep_order) $$(@D)/.DIR

$(call quiet,CLINKER) $(sl_linker_args) -o $@ $^ $(PETSC_EXTERNAL_LIB_BASIC)
ifneq ($(DSYMUTIL),true)

$(call quiet,DSYMUTIL) $@
endif

%.$(SL_LINKER_SUFFIX) : $(call libname_function,%)
@ln -sf $(notdir $<) $@

$(call soname_function,%) : $(call libname_function,%)
@ln -sf $(notdir $<) $@

$(OBJDIR)/%.o : %.c | $$(@D)/.DIR
$(IBAMR_COMPILE.c) $(abspath $<) -o $@

$(OBJDIR)/%.o : %.cpp | $$(@D)/.DIR
$(IBAMR_COMPILE.cxx) $(abspath $<) -o $@

$(OBJDIR)/%.o : %.cu | $$(@D)/.DIR
# Compile first so that if there is an error, it comes from a normal compile

$(IBAMR_COMPILE.cu) $(abspath $<) -o $@
# Generate the dependencies for later
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@$(IBAMR_GENDEPS.cu) $(abspath $<) -o $(@:%.o=%.d)

$(OBJDIR)/%.o : %.F | $$(@D)/.DIR
ifeq ($(FC_MODULE_OUTPUT_FLAG),)

cd $(MODDIR) && $(FC) -c $(FC_FLAGS) $(FFLAGS) $(FCPPFLAGS) $(FC_DEPFLAGS) \
$(abspath $<) -o $(abspath $@)

else
$(IBAMR_COMPILE.F) $(abspath $<) -o $@ $(FC_MODULE_OUTPUT_FLAG)$(MODDIR)

endif

%/.DIR :
@mkdir -p $(@D)
@touch $@

.PRECIOUS: %/.DIR

allobj.d := $(srcs.o:%.o=%.d)
# Tell make that allobj.d are all up to date. Without this, the include
# below has quadratic complexity, taking more than one second for a
# do-nothing build of PETSc (much worse for larger projects)
$(allobj.d) : ;

-include $(allobj.d)

GNU make is installed on virtually every UNIX system in existence. More-
over, compatible make clones exist on most other systems as well. This unbiq-
uity, and its efficiency, make it a very attractive option. However, the fact that
it recognizes only a single predicate, “older than”, is a significant drawback.
In order to remedy this, most practitioners replace the compiler, say cc, with
ccache, as ccache cc, by providing that combination to configure. The ccache
program hashes the entire command string and file, so that rebuilds are only
performed when an actual change is made.

1.3.6 What about pkg-config?

An alternative to using the PETSc make files for variable definition is the pkg-
config program. PETSc writes out a pkg-config file, which can then be read by
the program, which gives the users access to the variables. Here is a sample
makefile using pkg-config to access the variables

PETSc.pc := $(PETSC_DIR)/$(PETSC_ARCH)/lib/pkgconfig/PETSc.pc

CC := $(shell pkg-config --variable=ccompiler $(PETSc.pc))
CXX := $(shell pkg-config --variable=cxxcompiler $(PETSc.pc))
FC := $(shell pkg-config --variable=fcompiler $(PETSc.pc))
CFLAGS := $(shell pkg-config --variable=cflags_extra $(PETSc.pc)) $(shell pkg-config --cflags-only-other $(PETSc.pc))
CPPFLAGS := $(shell pkg-config --cflags-only-I $(PETSc.pc))
LDFLAGS := $(shell pkg-config --libs-only-L --libs-only-other $(PETSc.pc))
LDFLAGS += $(patsubst -L%, $(shell pkg-config --variable=ldflag_rpath $(PETSc.pc))%, $(shell pkg-config --libs-only-L $(PETSc.pc)))
LDLIBS := $(shell pkg-config --libs-only-l $(PETSc.pc)) -lm

print:
@echo CC=$(CC)
@echo CFLAGS=$(CFLAGS)
@echo CPPFLAGS=$(CPPFLAGS)
@echo LDFLAGS=$(LDFLAGS)
@echo LDLIBS=$(LDLIBS)

The only minor sophistication here is the use of patsubst to replace -L with the
rpath flags for shared libraries.

https://ccache.samba.org/
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1.3.7 How do I debug?

All debugging comes down to a search for problematic code, configuration, or
input. Effective debugging cuts down on the possible search space as much as
possible. Categorizing bugs can help with this, as can employing effective tools.

The most common type of bug in C is probably the memory overwrite, often
generating an SEGV or SIGILL signal. If the error is proximate to the ultimate
cause, then running in the debugger is the best way to deal with this situation.
For example, suppose that a NULL pointer is passed into your routine instead
of a valid pointer. A write to this location (0x0) causes a SEGV which the
debugger will catch and take you directly to the offending line. Using a stack
trace, you can easily locate the origin of the NULL pointer. The debugger will
also allow you to print the value of local variables, step through the code, and
call arbitrary functions.

However, it is often the case that errors are far removed from their ultimate
cause. For example, suppose that a memory overwrite occurs not into space
owned by the kernel, such as NULL, but into memory owned by the application
itself. This could result in invalid values, such as array indices, which then
cause a subsequent SEGV. Finding the original overwrite which corrupted the
index using the debugger can be quite challenging. For this type of problem,
and many others, the best tool is valgrind. It will flag any out of bounds read
or write, as well as other common errors such as a conditional dependent on an
uninitialized value.

Valgrind has an extensible module interface, allowing it to encompass many
different tools:

Tool Use
Memcheck Check for memory overwrite and illegal use
Callgrind Generate call graphs
Cachegrind Monitor cache usage
Helgrind Check for thread race conditions
Massif Monitor memory usage

The most commonly used tool for debugging, Memcheck, will catch illegal reads
and writes to memory, uninitialized values, illegal frees, overlapping copies, and
memory leaks. We can try a simple experiment

# Get the tutorial repository
git clone http://bitbucket.org/knepley/simplepetsctutorial.git
git checkout b354cfc
make
# Memcheck is the default tool
valgrind --trace-children=yes --suppressions=bin/simple.supp ./bin/ex5 -use_coords
# Try it for multiple processes
valgrind --trace-children=yes --suppressions=bin/simple.supp \
$PETSC_DIR/$PETSC_ARCH/bin/mpiexec -n 2 ./bin/ex5 -use_coords

which generates the following error,

==13697== Invalid read of size 8
==13697== at 0x100005263: MyInitialGuess(AppCtx*, _p_Vec*) (myStuff.c:45)
==13697== by 0x100004447: main (ex5.c:202)
==13697== Address 0x103dc6fa0 is 0 bytes after a block of size 48 alloc'd

http://www.valgrind.org
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==13697==    at 0x10001ED75: malloc (vg_replace_malloc.c:236)
==13697==    by 0x1005CABC4: PetscMallocAlign(unsigned long, ...) (mal.c:37)
==13697==    by 0x1009CC07D: VecGetArray2d(_p_Vec*, ...) (rvector.c:1739)
==13697==    by 0x10030D980: DMDAVecGetArray(_p_DM*, _p_Vec*, void*) (dagetarray.c:72)
==13697==    by 0x100005102: MyInitialGuess(AppCtx*, _p_Vec*) (myStuff.c:38)
==13697==    by 0x100004447: main (ex5.c:202)
==13697==
==13697== Invalid read of size 8
==13697==    at 0x100005273: MyInitialGuess(AppCtx*, _p_Vec*) (myStuff.c:45)
==13697==    by 0x100004447: main (ex5.c:202)
==13697==  Address 0x18 is not stack'd, malloc'd or (recently) free'd
==13697==
==13698== Use of uninitialised value of size 8
==13698== at 0x10000529D: MyInitialGuess(AppCtx*, _p_Vec*) (myStuff.c:45)
==13698== by 0x100004447: main (ex5.c:202)
==13698==
==13698== Invalid read of size 8
==13698== at 0x10000529D: MyInitialGuess(AppCtx*, _p_Vec*) (myStuff.c:45)
==13698== by 0x100004447: main (ex5.c:202)
==13698== Address 0x6f5c300000018 is not stack'd, malloc'd or (recently) free'd

due to indexing outside of an array. We are trying to retrieve the coordinates
for a ghost point rather than an owned point, and thus we have to use properly
ghosted coordinates.

git checkout 1a1c683
make
valgrind --trace-children=yes --suppressions=bin/simple.supp \
$PETSC_DIR/$PETSC_ARCH/bin/mpiexec -n 2 ./bin/ex5 -use_coords

Note that the --trace-children=yes flag is used to follow all child processes. This
is very useful when running with MPI, as it typically forks before running the
executable. In order to make the output more readable, a suppressions file can
be used to remove output for errors or warnings which we do not wish to see.
This file can be generated automatically by piping the output of the following
command.

valgrind --trace-children=yes --gen-suppressions=all ./bin/ex5 -ksp_rtol 1.0e-9

The Massif tool for memory logging is similarly easy to use

# Memcheck is the default tool
valgrind --tool=massif --trace-children=yes --massif-out-file=ex5.massif \
./bin/ex5 -da_grid_x 100 -da_grid_y 100 -ksp_rtol 1.0e-9

# Turn on stack profiling
valgrind --tool=massif --trace-children=yes --massif-out-file=ex5.massif --stacks=yes \
./bin/ex5 -da_grid_x 100 -da_grid_y 100 -ksp_rtol 1.0e-9

# Visualize output
ms_print --threshold=10.0 ex5.massif

At a much coarser level, PETSc will provide a list of all unfreed memory, along
with stack traces for context, with the option -malloc_dump.

In addition to debugging for correctness, we will also debug performance
problems. The massif tool, incorporated into valgrind, can generate a view
of the heap over time, allowing the user to pinpoint large allocations or un-
freed memory. The output of callgrind can be rendered graphically using the
gprof2dot tool

gprof2dot.py -f callgrind callgrind.out.x | dot -Tsvg -o output.svg

There are tools dedicated to performance analysis, such as callgrind and
cachegrind inside valgrind and many more are suggested here. However these

http://valgrind.org/docs/manual/ms-manual.html
https://github.com/jrfonseca/gprof2dot
http://valgrind.org/docs/manual/cl-manual.html
http://valgrind.org/docs/manual/cg-manual.html
http://stackoverflow.com/questions/375913/what-can-i-use-to-profile-c-code-in-linux
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tools tend to provide very low level data, and obscure the larger performance
patterns in the code. These low level tools should be complemented with a high
level, coarse grained timing of functional units, incorporating figures of merit
for parallelism such as message sizes and number of reductions. PETSc provides
a logging suite for this purpose which allows custom events, user specified event
aggregation, and counter for parallel operations (Balay, Abhyankar, Adams,
Benson, Brown, Brune, Buschelman, E. Constantinescu, et al. 2022).

Most debugging depends on taking a discplined, step-by-step approach to
tracking down errors. Ruthlessly simplify the problem being run, as well as the
environment, and remove extraneous detail in the computation. As a simple
checklist for debugging, always

• Run in serial,

• Reduce the problem size,

• Run with valgrind, and

• Run the code with a manufactured solution so that you can calculate an
error.

Simple Example We will illustrate the use of these debugging tools with
a simple example based upon SNES ex5. We first clone the repository for the
example,

git clone https://bitbucket.org/knepley/simplepetscexample.git example
cd example

and then skip forward after a user modification which introduces a bug

git checkout 857854f

We can examine the changeset

> git log -1
commit 857854fffca425a1c2673a5a0b4c229a4a12e3fb
Author: Matthew G. Knepley <knepley@gmail.com>
Date: Thu Aug 13 05:07:20 2015 -0500

Added MyInitialGuess() which uses coordinates
- Added logging
- Moved declarations to a header

which gives us an idea where the bug may lie.
Now we build the executable, after checking that PETSC_DIR is properly defined

in our environment,

make

and we can run the example using the new code,

> ./bin/ex5 -snes_monitor -use_coords
0 SNES Function norm 9.875766933286e-01
1 SNES Function norm 7.968273013801e-01
2 SNES Function norm 2.649139987149e-01
3 SNES Function norm 1.130203891627e-01
4 SNES Function norm 9.649349335803e-03
5 SNES Function norm 6.634259652040e-05
6 SNES Function norm 4.669629893639e-09
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with no errors. However, when we run in parallel

> mpiexec -n 2 ./bin/ex5 -snes_monitor -use_coords
[0]PETSC ERROR: ------------------------------------------------------------------------
[0]PETSC ERROR: Caught signal number 11 SEGV: Segmentation Violation, probably memory access out of range
[0]PETSC ERROR: Try option -start_in_debugger or -on_error_attach_debugger
[0]PETSC ERROR: or see http://www.mcs.anl.gov/petsc/documentation/faq.html#valgrind
[0]PETSC ERROR: or try http://valgrind.org on GNU/linux and Apple Mac OS X to find memory corruption errors
[0]PETSC ERROR: likely location of problem given in stack below
[1]PETSC ERROR: ------------------------------------------------------------------------
[1]PETSC ERROR: Caught signal number 11 SEGV: Segmentation Violation, probably memory access out of range
[1]PETSC ERROR: Try option -start_in_debugger or -on_error_attach_debugger
[1]PETSC ERROR: or see http://www.mcs.anl.gov/petsc/documentation/faq.html#valgrind
[1]PETSC ERROR: or try http://valgrind.org on GNU/linux and Apple Mac OS X to find memory corruption errors
[1]PETSC ERROR: likely location of problem given in stack below
[1]PETSC ERROR: --------------------- Stack Frames ------------------------------------
[1]PETSC ERROR: Note: The EXACT line numbers in the stack are not available,
[1]PETSC ERROR: INSTEAD the line number of the start of the function
[1]PETSC ERROR: is given.
[1]PETSC ERROR: [1] MyInitialGuess line 24 /PETSc3/classes/CAAM519/simplepetscexample/src/myStuff.c
[1]PETSC ERROR: --------------------- Error Message --------------------------------------------------------------
[1]PETSC ERROR: Signal received
[1]PETSC ERROR: See http://www.mcs.anl.gov/petsc/documentation/faq.html for trouble shooting.
[1]PETSC ERROR: Petsc Development GIT revision: v3.7.2-669-gecdcb5d GIT Date: 2016-06-16 08:48:26 -0500
[1]PETSC ERROR: ./bin/ex5 on a arch-c-exodus-master named localhost by knepley Thu Aug 18 11:48:08 2016
[1]PETSC ERROR: Configure options --with-shared-libraries
[1]PETSC ERROR: #1 User provided function() line 0 in unknown file
application called MPI_Abort(MPI_COMM_WORLD, 59) - process 1
[cli_1]: aborting job:

we encounter an SEGV signal, probably arising from a memory overwrite. Here
we are somewhat lucky that our memory overwrite has occurred in a protected
memory region. We could have written into another part of memroy owned by
the process and silently carried on with wrong data.

With a segfault (SEGV), we can often use a debugger, such as gdb, to track
down the cause. PETSc can automatically spawn a debugger in a different
window and attach it to the running process. When running on the Mac I use
lldb,

mpiexec -n 2 ./bin/ex5 -snes_monitor -use_coords -start_in_debugger lldb

which spawns two X-windows running the debugger, one for each process. If we
continue in both windows, we hit the offending line

(lldb) cont
Process 67390 resuming
Process 67390 stopped
* thread #1: tid = 0x1c17b8f, 0x0000000108d0ef6c ex5`MyInitialGuess(da=0x00007ff98589b260,
user=0x00007fff56ef9760, X=0x00007ff9850b0a60) + 1884
at myStuff.c:45, queue = 'com.apple.main-thread', stop reason = EXC_BAD_ACCESS (code=1, address=0xf0e0d0e1)
42 /* boundary conditions are all zero Dirichlet */
43 x[j][i] = 0.0;
44 } else {

-> 45 x[j][i] = temp1*sqrt(2.0*PetscMin(coords[j][i+1].x + coords[j][i-1].x, coords[j+1][i].y + coords[j-1][i].y));
46 }
47 }
48 }

Now it seems likely that there is a problem with the indexing into the coords
array, and indeed this is the problem. We can see the fix by looking at the
following changeset

> git log -1 bc2dc5b -u
commit bc2dc5b2c576306274f8e722190042e899e0a7b3
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Author: Matthew G. Knepley <knepley@gmail.com>
Date: Thu Aug 13 05:08:45 2015 -0500

Fixed memory error after debugging

diff --git a/src/myStuff.c b/src/myStuff.c
index 3995123..123c670 100644
--- a/src/myStuff.c
+++ b/src/myStuff.c
@@ -32,7 +32,7 @@ PetscErrorCode MyInitialGuess(DM da, AppCtx *user, Vec X) {

temp1 = lambda/(lambda + 1.0);

ierr = DMGetCoordinateDM(da,&cda);CHKERRQ(ierr);
- ierr = DMGetCoordinates(da,&c);CHKERRQ(ierr);
+ ierr = DMGetCoordinatesLocal(da,&c);CHKERRQ(ierr);

ierr = DMDAGetCorners(da,&xs,&ys,PETSC_NULL,&xm,&ym,PETSC_NULL);CHKERRQ(ierr)
ierr = DMDAVecGetArray(da,X,&x);CHKERRQ(ierr);
ierr = DMDAVecGetArray(cda,c,&coords);CHKERRQ(ierr);

which replaces the global vector from DMGetCoordinates() with the local vector
from DMGetCoordinatesLocal() which contains ghost values. Now the indices
i± 1 and j ± 1 do not fall outside the local patch.

We could also have found this problem using valgrind. We must be careful
to use the trace-children option since MPI spawns additional processes after the
initial fork. Running

valgrind --trace-children=yes mpiexec -n 2 ./bin/ex5 -snes_monitor -use_coords

does work but there is a lot of extraneous output. We can filter this using a
suppressions file,

> git checkout 6583927
> valgrind --trace-children=yes --suppressions=./binsimple/supp mpiexec -n 2 ./bin/ex5 -snes_monitor -use_coords
==68238== Memcheck, a memory error detector
==68238== Copyright (C) 2002-2013, and GNU GPL'd, by Julian Seward et al.
==68238== Using Valgrind-3.10.1 and LibVEX; rerun with -h for copyright info
==68238== Command: ./bin/ex5 -snes_monitor -use_coords
==68238==
==68238== Invalid read of size 8
==68238==    at 0x100008F61: MyInitialGuess (myStuff.c:45)
==68238==    by 0x100001FB5: main (ex5.c:148)
==68238==  Address 0x10013f9f0 is 0 bytes after a block of size 48 alloc'd
==68238== at 0x47E1: malloc (vg_replace_malloc.c:300)
==68238== by 0xF0B31: PetscMallocAlign (mal.c:34)
==68238== by 0x3D19F0: VecGetArray2d (rvector.c:2235)
==68238== by 0xCF715C: DMDAVecGetArray (dagetarray.c:75)
==68238== by 0x100008E07: MyInitialGuess (myStuff.c:38)
==68238== by 0x100001FB5: main (ex5.c:148)

and we see that an invalid read has occurred at the same problematic line of
code. In addition, we see that the invalid read is looking at memory allocated
by the DMDAVecGetArray() call. It is quite useful to see what memory is the
target of an invalid read or write.

We can also use massif to look at the memory allocation of this run, although
it appears that we must generate one massif output file for every process,

mpiexec -n 2 valgrind --tool=massif ./bin/ex5 -snes_monitor -da_grid_x 100 -da_grid_y 100

produces output files named massif.out.<procid>. We can process these using msprint

or pymassif, although the latter does not seem to be well supported. In Figure ref-
fig:ex5massif, we see the massif graphical output, giving a timeline for alloca-



1.4. PROBLEMS 31
8/18/2016 pymassif: TOP

file:///PETSc3/petsc/massif-view/trunk/pysrc/pymassif/test/td_top.html 1/1

TOP

Loading...

 
This page was generated by pymassif on Thu Aug 18 13:52:42 2016

Memory Usage Summary

0

1

2

3

4

M
em

or
y 

(M
B

)

Figure 1.2: Massif output from a parallel run of ex5

tions. In the browser we could mouse-over each snapshot to get the allocation
location.

1.4 Problems

Problem I.1 Following the online directions, install the latest release of
PETSc.

Problem I.2 Clone my sample repository of PETSc code onto your lo-
cal machine, https://bitbucket.org/knepley/simplepetscexample. Checkout the
ChangeSet with comment “Initial checkin of source”.

Problem I.3 Create a repository on Bitbucket in which you will store writ-
ing assignments for this course. Commit the LATEX paragraph you write for
Problem II.1 and push it to the repository hosted at Bitbucket.

Problem I.4 Write a makefile that compiles the code in the sample repository
from Problem 2 and commit it to your local repository.

Problem I.5 The simple Python script below, in the repository as bin/plotPerf.py,
runs the sample ex5 from Problem 2 for a range of problem sizes and plots the

http://www.mcs.anl.gov/petsc/documentation/installation.html
https://bitbucket.org/knepley/simplepetscexample
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timing.

#! /usr/bin/env python
import os

sizes = []
times = []
for k in range(5):
Nx = 10 ∗ 2∗∗k
modname = 'perf%d' % k
options = ['−da grid x', str(Nx), '−da grid y', str(Nx), '−log view',

':%s.py:ascii info detail' % modname]
os.system('./bin/ex5 '+' '.join(options))
perfmod = import (modname)
sizes.append(Nx ∗∗ 2)
times.append(perfmod.Stages['Main Stage']['SNESSolve'][0]['time'])

print zip(sizes, times)

from pylab import legend, plot, loglog, show, title, xlabel, ylabel
plot(sizes, times)
title('SNES ex5')
xlabel('Problem Size $N$')
ylabel('Time (s)')
show()

loglog(sizes, times)
title('SNES ex5')
xlabel('Problem Size $N$')
ylabel('Time (s)')
show()

Notice that the logging information is output in a Python module named perf1.py

for k = 1. Each time we output a module, it must have a different name since
Python caches module contents by name.

Modify this Python script to report the linear solver time (KSPSolve) in-
stead of the nonlinear solve time (SNESSolve), and plot it for the GMRES/ILU
(-ksp_type gmres -pc_type ilu) and GMRES/GAMG (-ksp_type gmres -pc_type gamg) solvers
on the same graph. For extra credit, look at the performance as the number of
processes increases.

Problem I.6 Modify the script from Problem 5 to report the assembly time
(SNESFunctionEval and SNESJacobianEval), of both the residual and Jacobian, instead
of the nonlinear solve time (SNESSolve), and plot it for the GMRES/ILU and
GMRES/GAMG solvers on the same graph.
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Chapter 2

Finding and Relating
Information

2.1 Self-Teaching

The internet has become a repository of mathematical and scientific knowledge
every bit as important as books, journals, professors, and colleagues. Its reach
is much broader than any single source or even collection of sources, and free
preprint services such as arXiv provide an invaluable opportunity to keep abreast
of the latest research in a large number of fields. This is especially important for
computational science since interdisciplinary understanding is an integral part
of the field.

Mathematics in particular, perhaps due to the unanimity in the field, has
outstanding web resources, including Wikipedia, Math Geneaology, MathOver-
flow and its companion SciComp. Wikipedia especially posssess not just sets of
facts, but in depth treatments of advanced topics, complete with diagrams and
sample code, that rival and sometimes surpass textbooks. As a tool for nav-
igating the literature, Google Scholar is now unequaled. Bibliographic chains
can be followed with a few clicks, and now full BibTEX entries are also available
directly.

The internet, and in particular Google and Google Scholar, should be your
first stop for:

• Resolving compile and link errors,

• Finding packages containing headers or libraries you are missing,

• Finding package documentation or examples,

• Getting BibTEX for missing references,

• Achieving a given effect in LATEX (see http://tex.stackexchange.com/),

• Achieving a given effect in TikZ,
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in addition to all the mathematical and computational resources.

2.2 TEX and LATEX

TEX (Knuth and Bibby 1986), and in particular LATEX (Lamport 1986), is the
most important piece of technology for scientific communication. It enables the
digital interchange and archiving of scientific communications, including pa-
pers, books, reports, posters, talks, etc. In addition, the TEXBook (Knuth and
Bibby 1986) is the most outstanding achievements in literature on programming.
While LATEX is an excellent typesetting system, some high-level organizational
principles can aid writing and maintaining documents, especially those shared
with others.

Use a professional style For writing articles and notes, I recommend the
SIAM style. It has a bibliographic style which automatically creates links and
great math support. It also makes any eventual submission to a journal much
easier. I recommend segregating the main text into a separate file so that
different styles can be tried in an outer file. For example, I usually submit to a
journal, and then put my paper on the arXiv.

Use a preamble I \input a file named preamble.tex which holds all the TEX
code common to my various documents. It includes packages, defines text styles
(e.g. for urls), sets colors and fonts, defines custom commands, and defines my
listing package styles for typesetting code. I also recommend using AMS math
package amsmath.

The best way to create PDF from LATEX is to use pdflatex,

pdflatex essay.tex
bibtex essay
pdflatex essay.tex
pdflatex essay.tex

where the repetition is necessay to assure that the metadata stored in auxiliary
files is consistent. This sequence has traditionally been put into a makefile.
However, the process can be handled in a more elegant way by using the latexmk

program,

latexmk -pdf essay.tex

If you rely on TEX source or BibTEX files in other locations, you can use

TEXINPUTS=${TEXINPUTS}:/path/to/tex BIBINPUTS=${BIBINPUTS}:/path/to/bib
latexmk -pdf essay.tex

2.3 Problems

Problem II.1 It is quite likely that no matter what profession you choose to
pursue after this course, expository writing will form a large part of your work-
load. Please write a paragraph or two describing what you hope to learn from

http://www.arxiv.org
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this course, suggestions for upcoming units, or broader thoughts on scientific
computing and its progress as a discipline. Typeset your work in LATEX and
include at least one citation using BibTEX.

Problem II.2 Create a PDF file from your essay source and submit it by
email with the subject [CAAM 519] Essay I.

Problem II.3 Using any internet resources available, answer the following
questions, providing proper citation for the information you provide:

1. Give the generating function for the sequence 1, 1, 2, 2, 3, 5, 5, 7, 10, 15, 15, 20, 27, 37, . . ..

2. Give an asymptotic expansion for the Gamma function Γ(z) as z → ∞
with error term.

3. On Ubuntu systems, why can you get the error ImportError: No module named _md5

when using import hashlib in Python?

4. Does the popular nonlinear solver deserve to be called the Newton-Raphson
method? Why or why not?

5. Who is Leonid Kantorovich?

6. How do I solve the semiconductor equations?

Problem II.4 Using any internet resources available, answer the following
questions, providing proper citation for the information you provide:

1. What relation generates the sequence 8, 12, 16, 24, 32, 36, 48, 96, 128, 160, 192, 288, 768, . . .?

2. Give an asymptotic expansion for the complete elliptic integral E(k) =∫ π/2
0

√
1− k2 sin2 θ dθ as k → 1.

3. In Linux, if you receive a linker error with the text “relocation R_X86_64_32S against symbol

. . .”, what has happened?

4. Has Hilbert’s 13th Problem been solved? If so, who solved it and when.

5. Who invented the Python language? What language did this person work
on prior to Python?

6. If I am simulating an incompressible flow, what discretization would be
“mass conservative” for these equations?

Problem II.5 Make a contribution to Wikipedia and send the link to your
edit.
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Chapter 3

PETSc Introduction

Change alone is unchanging

— Heraclitus, 544–483 BC

3.1 Numerical Libraries

For pure mathematicians, the sine non qua of technical communication is the
journal paper, although people like Terence Tao and Timothy Gowers have
clearly shown that blogging and the polymath project can play a significant role.
However, more then 40 years ago, computational mathematicians created a new
way to disseminate their results, namely high quality numerical libraries. It is
now a commonplace that a great part of your interaction with physical sciences,
engineering, and other fields can be mediated by software you produce and
maintain. I will argue that the most effective form of software communication
is the library. In fact, the best way to create robust, efficient and scalable,
maintainable scientific codes, is to use libraries.

Why Libraries? The library organization has advantages over a monolithic
application code, although any well-designed application can be sufficiently
library-like to accomplish these. Libraries hide hardware details from the user.
For example, the MPI library hides network details, although the user can spec-
ify different harware configurations (shared memory vs. socket connections)
on startup. More generally, libraries hide implementation complexity from the
user. PETSc has more than 50 matrix formats, many optimized for particu-
lar computer acrchitectures, but the user interacts with a single Mat interface.
As before, the user can obtain control over the implementation by selecting a
particular concrete class, such as a block matrix, but will still be shielded from
the particular algorithms and data structures needed for that type. Beyond
encapsulation, libraries accumulate best practice decisions from experts in the
field, another form of algorithm hiding. For example, when orthogonlizing a set

39
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of vectors, PETSc defaults to classical Gram-Schmidt orthogonalization with
selective reorthogonalization rather than modified Gram-Schmidt as it is faster
in practice on modern architectures. Over time, this can lead to improvements
in user code without code changes. The addition of optimized matrix formats
and improved time-stepping algorithms to PETSc greatly improved user perfor-
mance with precisely the same application code as before.

Why is it not just good enough to make a fantastic working code? Exten-
sibility! Users need the ability to change your approach to fit their problem.
For example, PETSc decided on a block sovler interface that allowed division
of a problem into sets (analysis) and combination of solves (synthesis) using
additive, multiplicative, or Schur complement means. Since it did not mandate
dividing the problem at the top level, it could be used for traditional CFD block
sovlers (May and Moresi 2008; Zhong et al. 2015), but also for multigrid with
block smoothers (Brown et al. 2012). Since the multigrid interface was exten-
sible, Dave May could design a system to gradually reduce the process set for
multigrid levels without changing existing code (May, Sanan, et al. 2016). The
structured grid interface (DMDA) has enabled an implementation of Isogeometric
Analysis (Collier, Dalcin, and Calo 2013; Dalcin et al. 2016).

Early Numerical Libraries Most of the early numerical libraries had their
genesis in the Mathematics and Computer Science division (MCS) at Argonne
National Laboratory (ANL). In 1971, James H. Wilkinson and Carl Reinch
released a set of ALGOL routines as the Handbook for Automatic Computation:
Linear Algebra. Wilkinson had a long-standing relationship with ANL, and
would often visit for long periods. This collaboration led directly, in 1973, to
the EISPACK project led by Brian Smith at ANL. EISPACK was a library of
routines written in Fortran to solve the serial eigenproblem for dense matrices.
This was followed in 1979, also at ANL, by the BLAS libraries, or Basic Linear
Algebra Subroutines. It is one of the foundational libraries for computational
science and still widely used today, although it has received a substantial update
through the BLIS project Van Zee and van de Geijn 2015. In 1990, a large group
of numerical analysts produced the LAPACK library for high level dense linear
algebra operations, such as QR factorization and structured updates. And in
1991, again at ANL, Bill Gropp and Barry Smith produced the PETSc library,
designed to solve sparse systems of algebraic equation in parallel, usually those
arising from the discretization of PDEs.

3.2 Numerical Linear Algebra

3.2.1 Introduction

Numerical linear algebra is one of the most developed parts of numerical analy-
sis. It is also the solid foundation of numerical computing. The basic outline of
linear algebra has been clear since at least Grassman’s 1862 treatment (Fearnley-
Sander 1979). A vector space V over a field F is defined by the axioms in

https://bitbucket.org/dalcinl/petiga
https://bitbucket.org/dalcinl/petiga
http://www.mcs.anl.gov
http://www.anl.gov
http://www.amazon.com/Handbook-Automatic-Computation-Vol-Mathematischen/dp/0387054146
http://www.amazon.com/Handbook-Automatic-Computation-Vol-Mathematischen/dp/0387054146
http://www.netlib.org/blas/
http://www.netlib.org/blas/
http://www.netlib.org/lapack/
http://www.mcs.anl.gov/petsc/
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Axiom Signification
Associativity of addition u+ (v + w) = (u+ v) + w
Commutativity of addition u+ v = v + u
Vector identity element ∃0 ∈ V | v + 0 = v ∀v ∈ V
Vector inverse element ∀v ∈ V, ∃ − v ∈ V | v + (−v) = 0
Distributivity for vector addition a(u+ v) = au+ av
Distributivity for field addition (a+ b)v = av + bv
Scalar and field multiplication a(bv) = (ab)v
Scalar identity element 1v = v

Table 3.1: The definition of a vector space (Wikipedia 2015)

Table 3.2.1, and in everything we do F will be either the real or complex num-
bers. In addition, linear algebra studies mappings between vector spaces that
preserve the vector-space structure. Given two vector spaces V and W , a linear
operator is a map A : V → W that is compatible with vector addition and
scalar multiplication,

A(u+ v) = Au+Av, A(av) = aAv ∀u, v ∈ V, a ∈ F. (3.1)

This should have been covered in detail in your linear algebra courses.
There are two principal jobs in scientific computing: design of the interface

in order to control complexity, and efficiency of the implementation. In this unit
we will try to indicate why the current interface has become the standard, and
what pieces of it are likely to continue going forward. In a later unit, we will
analyze the runtime performance of various implementations. However, none of
this can be accomplished without the ability to run a linear algebra code.

3.2.2 PETSc

There are many well-known packages which support numerical linear alge-
bra, including BLAS/LAPACK (Lawson et al. 1979; E. Anderson et al. 1990),
Hypre (Falgout 2017; Falgout n.d.), Trilinos (Heroux and Willenbring 2003;
Heroux et al. n.d.), DUNE (Bastian et al. 2015), Eigen (Jacob and Guennebaud
2015), and Elemental (Poulson et al. 2013; Poulson 2015). We will use the
PETSc libraries (Balay, Abhyankar, Adams, Benson, Brown, Brune, Buschel-
man, E. Constantinescu, et al. 2022; Balay, Abhyankar, Adams, Benson, Brown,
Brune, Buschelman, E. M. Constantinescu, et al. 2022; Balay, W. D. Gropp, et
al. 1997) for a number of reasons. PETSc supports scalable, distributed sparse
linear algebra, which will be our focus since we will be concerned with larger
problems that cannot be contained in a single machine memory and mainly
with PDE or graph problems which have a sparse structure. For dense linear
algebra problems, we will use Elemental. PETSc is designed as a hierarchical
set of library interfaces, and uses C to enhance both portability and language
interoperability. A discussion of tradeoffs involved in language choice can be
found in (Knepley 2012).
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PETSc is intended to be a complete development environment for both algo-
rithms and applications, and should replace the prevalent workflow where a user
develops a toy program in Matlab or Mathematica and then completely recodes
it for a high performance, parallel environment. The user initially develops a
desktop code to test physics, boundary conditions, algorithmic convergence, and
analysis, but the same code can be moved to a large parallel platform, and opti-
mized usually using only command line options. Since the algorithms and data
structures not hardwired, but rather chosen at runtime, they can be changed to
fit the problem and machine architecture without a costly development process.
This kind of composable and extensible interface is the key to successful library
development. PETSc also incorporates automatic profiling, which can be out-
put to the screen using -log view and as a Python module using -log view

ascii:log.py:ascii info detail.

We will begin with the simplest PETSc program:

static char help[] = "Simple PETSc program";

int main(int argc, char ∗∗argv)
{
PetscErrorCode ierr;

ierr = PetscInitialize(&argc, &argv, NULL, help);CHKERRQ(ierr);
ierr = PetscPrintf(PETSC COMM WORLD, "Hello World!\n");CHKERRQ(ierr);
ierr = PetscFinalize();
}

All PETSc functions return an error code, of type PetscErrorCode, which can
be checked using the macro CHKERRQ. This propagates the error up the call stack,
giving the user this information and the ability to recover. Libraries should
never print errors directly to the screen or abort suddenly (W. D. Gropp 1999).
Hereafter, we will suppress this in code samples, but it should be understood
that every call returns an error code and it is checked.

PETSc depends on the Message Passing Interface (MPI) standard (Forum
2012; W. Gropp, Lusk, and Skjellum 1994) for parallelism. However, it al-
lows most users to ignore most of MPI. Each PETSc object has an associated
MPI communicator (comm), which we can think of as a process scope. The
comm determines which processes are involved with that object, and we can
also use it to hold data particular to that group of processes such as an outpt
object. We begin with the top and bottom of the lattice of possible process
sets. PETSC COMM WORLD is the set of all processes and PETSC COMM SELF is the
process set consisting of only the current process. Other communicators can be
formed by set operations such as union and difference. The PetscInitialize()
and PetscFinialize() calls also automatically initialize and shutdown MPI.
The PetscPrintf() call takes a communicator, and only prints from the first
process in the group, eliminating the problem of jumbled output from many
cooperating processes.
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Function Name Operation
VecAXPY(Vec y, PetscScalar a, Vec x) y = y + a ∗ x
VecAYPX(Vec y, PetscScalar a, Vec x) y = x+ a ∗ y
VecWAYPX(Vec w, PetscScalar a, Vec x, Vec y) w = y + a ∗ x
VecScale(Vec x, PetscScalar a) x = a ∗ x
VecCopy(Vec y, Vec x) y = x
VecPointwiseMult(Vec w, Vec x, Vec y) wi = xi ∗ yi
VecMax(Vec x, PetscInt *idx, PetscScalar *r) r = max ri
VecShift(Vec x, PetscScalar r) xi = xi + r
VecAbs(Vec x) xi = |xi|
VecNorm(Vec x, NormType type, PetscReal *r) r = ||x||

3.2.3 Vectors

A vector is a member of a vector space, as defined in Section 3.2.1. They are
the fundamental objects representing solutions, right-hand sides, material co-
efficients, and in general any discrete function in our problems. The vector is
defined by its interface, rather than by its data structure, and this is the heart
of object-oriented programming. The opposite choice was made by BLAS/LA-
PACK, making it unable to effectively adapt to changing architectures and
problems. Common operations for PETSc vectors are shown in Table 3.2.3.

A vector can be created in the same way as all other PETSc objects. First,
a generic creation function, or constructor, is called which gives the object a
communicator. This call is collective in the sense that all processes in that com-
municator must call it. Thus, each process is the communicator is attached to
this particular object. Next, the object is customized using API calls. In the
case of vectors, we must set the size, but for other objects, such as solvers, this
can be quite involved. The two sizes used are the local, meaning the number
of entries stored by this particular process, and global, meaning the total num-
ber of entries, size for the vector. The global size can be PETSC DETERMINE, in
which case it is automatically calculated by PETSc. Alternatively, the local size
can be PETSC DETERMINE and PETSc will choose an even distribution for the
vector across processes. At least one of the entires, however, must be a num-
ber. Lastly, we can allow customization from the command-line by calling the
SetFromOptions() function for that class. The full sequence is shown below.

Vec x;

VecCreate(comm, &x);
VecSetSizes(x, n, N);
VecSetFromOptions(x);

Note that the default object implementation type is set by the SetFromOptions(x)
call, and can be customized using an option like -vec type viennacl. This can
be accomplished through the API using VecSetType(x, VECMPI). However, it
is rare to create a vector from scratch. Much more often, we are creating a
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vector compatible with an input vector, using VecDuplicate(x, &y), or with
an input matrix, using MatCreateVecs(A, &x, &y), or as we will see in later
lectures compatible with a given discretized domain. When we are finished with
an object, it must be destroyed in order to release the resources it allocated,

VecDestroy(&x);

For the default PETSc vectors, each process locally owns a subvector of
contiguous global data, although this is not a requirement. This restriction
allows no-copy access to the raw value storage using,

Vec x;
PetscScalar ∗a;
const PetscScalar ∗ca;

VecGetArrayRead(x, &ca);
/∗ Use values in calculation ∗/
VecRestoreArrayRead(x, &ca);

VecGetArray(x, &a);
/∗ Change values in vector ∗/
VecRestoreArray(x, &a);

This direct access is also available in F77, F90, Python, and Julia. Implemen-
tations which do not require continuity, for example the SAMRAI (Hornung
and S. R. Kohn 2002; S. Kohn et al. n.d.) adaptive mesh refinement framework,
must copy-in and copy-out to provide this interface.

3.2.4 Matrices

Matrices are finite dimensional linear operators, which satisfy the requirements
in (3.1). They are the fundamental objects used for representing stiffness matri-
ces, Jacobians, linear measurements, etc. Just as with vectors, they are defined
by their interface rather than storage scheme. However, in the case of matrices,
this distinction is much more crucial. While the flat data structure for vectors
can perform well almost anywhere, matrices need a variety of data structures
to match both the architecture and the problems, such as AIJ, Block AIJ, Sym-
metric AIJ, Block Matrix, Jagged Diagonal, etc. Matrix creation proceeds just
as it did for a vector, except now we must give local and global sizes for both
the rows and columns.

Mat A;

MatCreate(comm, &A);
MatSetSizes(A, m, n, M, N);
MatSetFromOptions(A);
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Note that it is very common for each process to locally own a contiguous set
of m rows, however, this is not a requirement. In the same way as the vector
VecGetArray() call, this allows the optimization of the MatGetRow() call.

Now values can be inserted into the matrix using calls to MatSetValues(),
which inserts a logically dense block of values. An example is shown below.

PetscInt nrows = 2;
PetscInt ncols = 3;
PetscInt rows[2] = {15, 18};
PetscInt cols[3] = {1, 5, 7};
PetscScalar vals[6] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0};

MatSetValues(A, nrows, rows, ncols, cols, vals, ADD VALUES);

This call adds nrows ∗ ncols values into the matrix (insertion would use
INSERT VALUES), where the values are indexed in a two-dimensional fashion,

1 5 7
15 1.0 2.0 3.0
18 4.0 5.0 6.0

The user may make as many calls to MatSetValues() as required, and then
calls

MatAssemblyBegin(A, MAT FINAL ASSEMBLY);
MatAssemblyEnd(A, MAT FINAL ASSEMBLY);

This will automatically communicate any values not owned by this process to
the owning process so that the user need not think about parallel decompositions
when creating the matrix. If you wish to mingle calls using INSERT VALUES with
ADD VALUES, you must separate the calls using

MatAssemblyBegin(A, MAT FLUSH ASSEMBLY);
MatAssemblyEnd(A, MAT FLUSH ASSEMBLY);

The above sequence is enough to create a matrix since PETSc sparse matrices
are dynamic data structures that can add additional nonzeros freely. However
dynamically adding nonzeros requires additional memory allocations, along with
memory copies, which can kill performance. Thus it is very common to optimize
matrix creation by telling the it how many entries will be input. This is because
memory allocation can be quite expensive, so we would like to minimize the
number of malloc() calls, and also we used packed data structures for maximum
performance, which complicates the job of dynamic allocation. The call below
allows the matrix to be allocated with a single call and is applicable also to
symmetric storage formats since it can separately specify the upper triangle,
although the user may just pass NULL if this information is not available.

PetscInt bs; /∗ Matrix block size ∗/
PetscInt ∗dnz; /∗ Nonzeros in the diagonal block for each row ∗/
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proc 5
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proc 0
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offdiagonal blocks

Figure 3.1: The layout of a parallel sparse matrix using AIJ storage.

PetscInt ∗onz; /∗ Nonzeros not in the diagonal block for each row ∗/
PetscInt ∗dnzu; /∗ Like dnz, but only for the upper triangle ∗/
PetscInt ∗onzu; /∗ Like onz, but only for the upper triangle ∗/

MatXAIJPreallocation(A, bs, dnz, onz, dnzu, onzu);

In Figure 3.1, we show the layout of a parallel sparse matrix, indicating the
diagonal and off-diagonal portions. The easiest solution for most codes is to
replicate the matrix assembly code, removing the computation but preserving
the indexing code and storing the columns for each row in order to get the preal-
location information. In almost every case, this time is negligible. Alternatively,
this information can be determined from the structure of the problem (mesh and
discretization), which is how the PETSc DM object preallocates operators.

After the matrix is created and the values are inserted, we are ready to use
it. In Table 3.2, we show common matrix analogous to the vector case. Below is
a complete code which will multiply the constant vector by a diagonal matrix,

#include <petsc.h>

int main(int argc, char ∗∗argv)
{
Mat A;
Vec x, y;
PetscInt N = 10;
PetscErrorCode ierr;

PetscInitialize(&argc, &argv, NULL, NULL);
MatCreate(PETSC COMM WORLD, &A);
MatSetSizes(A, PETSC DETERMINE, N, PETSC DETERMINE, N);
MatSetFromOptions(A);
MatSetUp(A);
MatAssemblyBegin(A, MAT FINAL ASSEMBLY);
MatAssemblyEnd(A, MAT FINAL ASSEMBLY);
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Function Name Operation
MatAXPY(Mat A, PetscScalar a, Mat B) A = B + a ∗A
MatScale(Mat A, PetscScalar a) A = a ∗A
MatDiagonalScale(Mat, Vec l, Vec r) A = diag(l)Adiag(r)
MatCopy(Mat B, Mat A) B = A
MatTranspose(Mat A, MatReuse reuse, Mat *B) B = AT

MatMult(Mat A, Vec x, Vec y) y = Ax
MatMultTranspose(Mat A, Vec x, Vec y) y = ATx
MatMatMult(Mat A, Mat B, . . . , Mat *C) C = AB
MatNorm(Mat A, NormType type, PetscReal *r) r = ||A||

Table 3.2: The PETSc interface for common matrix operations.

MatShift(A, 2.0);
PetscObjectViewFromOptions((PetscObject) A, NULL, "−A mat view");
MatCreateVecs(A, &x, &y);
VecSet(x, 1.0);
PetscObjectViewFromOptions((PetscObject) x, NULL, "−x vec view");
MatMult(A, x, y);
PetscObjectViewFromOptions((PetscObject) y, NULL, "−y vec view");
VecDestroy(&x);
VecDestroy(&y);
MatDestroy(&A);
PetscFinalize();
return 0;
}

3.3 Correctness and Performance Debugging

The overwhelming amount of time spent developing computational software is
spent in design and debugging. That is why you should always be willing to
throw away your code, just not your design documents or tests. Even a package
as large as PETSc should be reproducible in a few months with good developer
documentation and tests. We will focus on design in Section 3.4, whereas this
lecture concerns both correctness and performance debugging. Performance
debugging is often relegated to an afterthought, but it is crucially important
for computational libraries. Existing code should always be profiled prior to
changing an algorithm or adding functionality in order to establish a baseline
for comparison, and performance differences should be flagged in regression tests
in the same way as accuracy differences.
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3.3.1 Debugging

Simply the best tool today for memory profiling and debugging is valgrind (Se-
ward 2012). It checks memory access, cache performance, memory usage, and
many other things through plugins. Usage of valgrind has virtually eliminated
memory errors in PETSc. It also interoperates with MPI, although you will
need to run with the --trace-children=yes option. Valgrind should be run
regularly on every code you develop.

Valgrind, however, introduces enough overhead that it is inconvenient to use
on every run. Thus PETSc provides simple utilities for debugging. It generates
a stack trace on error or signal, exactly as a debugger would, and can option-
ally call a user-defined error handler. In addition, when using PetscMalloc()
and PetscFree(), it puts sentinels at the beginning and end of memory allo-
cations to try and detect corruption. The CHKMEMQ macro forces a check of all
allocated memory. One way to locate memory overwrites without appealing to
valgrind is to bracket them with CHKMEMQ statements. This interface can also
detect memory leaks, and prints any unfreed memory on PetscFinalize() with
-malloc dump.

PETSc integrates the debugger so that it can be launched automatically
at the start of the run, using -start in debugger, or when an error occurs,
using -on error attach debugger. In parallel, a debugging xterm is spawned
and connected to each process automatically. A debugging xterm can be con-
nected to only a few processes using -debugger nodes 0,1,5 where the ar-
gument is a list of process MPI ranks. It is often necessary to set the xterm
display in order to have it function in a cluster environment using -display

khan.mcs.anl.gov:0.0.

3.3.2 Profiling

PETSc has and integrated profiling system which is completely extensi-
ble by the user. A comprehensive report can be output during Petsc-
Finalize() with the -log view option. Alternatively, the user may call
PetscLogViewFromOptions() to output the report at any time. Viewing op-
tions in PETSc have a standard argument structure

-log view type:filename:format:filemode

where any of the arguments may be omitted. If the format is ascii info detail,
then a Python module containing the data will be output. Using the API, the
user may call PetscLogBegin() initially and then PetscLogView() to generate
this report at any time.

PETSc profiling is organized into events which designate a particular window
of execution. All events are created using PetscLogEventRegister() so that
user-defined events are on equal footing with default PETSc events. The event
window is defined by calls to PetscLogEventBegin() and PetscLogEventEnd(),
during which it records elapsed time, number of calls, executed flops, MPI mes-
sages, MPI message length, and MPI reductions. Memory usage is currently

http://www.valgrind.org
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associated only with an object, so it does not appear. Flops may be logged
manually using PetscLogFlops() since there is no portable way to do this
automatically. If an event is defined multiple times then these measures are
aggregated. Events may be nested and will aggregate in a nested fashion.

The separation into event, however, may be too coarse. For example, sup-
pose I have two linear solves, one of which is much larger than the other (say
velocity and pressure). Then the MatMult event information averaged between
the two would be hopelessly garbled. We would really like to aggregate informa-
tion for the two solves separately, which is exactly what a PetscLogStage does.
We can create a new stage using PetscLogStageRegister(), and the stage win-
dow is defined using PetscLogStagePush() and PetscLogStagePop(). Event
statistics are aggregated within the current stage only. Stages may be nested,
but will not aggregate in a nested fashion. Using our hypothetical above as an
example, we might have

Mat A, C;
Vec vx, vy, px, py;
PetscLogStage stageVel, stagePres;

PetscLogStageRegister(&stageVel, "Velocity Stage");
PetscLogStageRegister(&stagePres, "Pressure Stage");
PetscLogStagePush(stageVel);
/∗ Carry out velocity solve ∗/
MatMult(A, vx, vy);
PetscLogStagePop();
PetscLogStagePush(stagePres);
/∗ Carry out pressure solve ∗/
MatMult(C, px, py);
PetscLogStagePop();

where now the MatMult event will be listed twice in the profiling report, once
for each stage.

3.4 PETSc Design

There are two paramount issues for the design of computational libraries: con-
trol of complexity and performance. Design of the interface largely controls the
complexity, but bad design can prevent performant implementations. For in-
stance, an interface operating on a single element at a time rather than batches
can prevent both vectorization and tiling. Below, we will mainly talk about
control of complexity as it has received far too little attention in this domain.

I think the notion of hierarchy is essential to managing a large system and
reducing the complexity of its component parts. The use of abstraction to un-
derstand a group of related concepts as a single entity at a higher level allows us
to create simple systems whose individual pieces are nevertheless quite complex.
Mathematics operates in just this fashion creating a simpler notions not only
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of entities (group, ring, ultrafilter), but also of proof strategies (compactness
proof, tensor product trick). While most practitioners try to design algorithms
in this way, it is easy to lose sight of this principle when designing the interface.

PETSc explicitly uses a hierarchy of interfaces, internally as well as exter-
nally, and encourages users to interact with the library in the same way. For
example, a user could interact only with a nonlinear solver, or could extract
the linear solver and preconditioner objects, could override domain subsolvers
within a decomposition preconditioner, could provide a different matrix action
to the solver, or even write a different vector implementation, depending on
their focus (engineering design, algorithm development, architectural optimiza-
tion). In fact, I can extract pieces of a solver and recombine them to form a
new higher level object, say a solver for delay differential equations.

Constrast this with the common situation for compilers. The user interacts
only through command line options, and has no access to the lower level pieces.
I cannot choose to access only the use-definition chain to see what variables
are live in a code block I have just written. I cannot easily repurpose parts to
the compiler to participate in a small code generation engine I have written to
reorder operations at a high level for better vectorization, although the LLVM
project is attempting to change this. The monolithic interface for compilers
greatly limits their use in library software and the incorporation of compiler
techniques.

3.4.1 Language Choice

I have discussed the relative merits of many languages in (Knepley 2012).

C++ The advertised gains from using C++ are largely illusory, and more
than outweighed by its significant drawbacks. The structure of object-
orientation in C++ necessitates the introduction of a huge number of new types
at the interface level, leading to complicated, fragile code with typecasts ev-
erywhere. This also brings in the name mangling which sabotages language
interoperability. The final insult is the tenfold increase in compile time over C.

Templates do seem to offer genuine advances when dealing with multiple
types, especially basic types. However, the mechanism in C++ is clunky. It
discards type safety, vastly complicates interoperability with the opaque instan-
tiation mechanism, and the error messages are horrendously long and inpene-
trable. Moreover, code reuse very often does not happen beyond basic types
since variant methods are needed for other complex types and it functions more
like dispatch. Also for complex types, such as meshes, iterators turn out to be
a bad design.

Python Python is a flexible language with a good module system, dynamic
typing, metaprogramming tools, and an extensive libraries of modules. How-
ever, for scientific computing there are still some significant hurdles. Python
cannot perform tight loops efficiently in native mode, so scientific computing
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almost always requires a form of code generation, provided by packages like
Cython. However, this immediately brings in the issue of cross-language de-
bugging. There are some good steps toward this, but it is still very hard. In
addition, this introduces indecision about where to place code, in C or in Python,
and moving between implementations is still significant work.

Julia Julia is a very promising language. Importantly, they seem to have
gotten the foreign function interface right. I would encourage students to ex-
periment with this language. However, the language is very young and does not
have the large collection of debugging and profiling tools available for C. This
is likely to change over time.

Wish List A small, lightweight system which implemented generics only for
basic types, that had smooth conversions at the interface level, and managed
multiple versions of the storage seamlessly. Moreover, it would need the same
fleixble language interoperability that C enjoys.

3.5 Problems

Problem III.1 Consider the fixed point problem

x = Gx x ∈ B (3.2)

where B is some Banach space. It is very common to solve these problems using
an iterative method

xi+1 =M (xi, . . . , xi−m) (3.3)

where xi+1 is the next approximate solution, {xi, . . . , xi−m} are previous ap-
proximate solutions, and M is some function defining the method. In (D. G.
Anderson 1965), Anderson proposed an iterative method for systems of nonlin-
ear equations, in which the next approximate solution xi+1 is chosen to satisfy a
minimzation problem involving k prior solutions. However, we will restrict our-
selves to the case of no prior solutions, or what is called simple mixing (Fang
and Saad 2009),

xi+1 = xi + βfi, (3.4)

where fi is the residual vector at the ith iterate. In ex5 from Problem 2,
implement a simple mixing solver using the SNESSHELL type in PETSc. Compare
the convergence of simple mixing to Newton’s method for the default initial
guess. Plot a work-precision diagram for this solve. The x-axis should show
the total work, and as a proxy we will use the runtime. The y-axis shows the
precision of the result, and here we will use the problem size as a proxy for the
precision, an acceptable approach for this well-conditioned problem.

http://julialang.org/
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Problem III.2 The QR decomposition is a representation of a matrix A in
terms of an orthogonal matrix Q and an upper triangular matrix R,

A = QR. (3.5)

It is described in detail on Wikipedia, and also in many textbooks (Trefethen
and Bau, III 1997). Implement the QR decomposition in PETSc for arbitrary
matrix dimension using the Gram-Schmdit process. In your code, include a test
of the routine for some matrix A which reports ||A−QR||.

Extra Credit: Implement QR using Householder reflectors or Givens rota-
tions.

Extra Extra Credit: Implement the TSQR Algorithm.
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Chapter 4

Parallelism

The more any quantitative social indicator is used for social decision-making, the
more subject it will be to corruption pressures and the more apt it will be to distort
and corrupt the social processes it is intended to monitor.

— Donald T. Campbell

4.1 MPI Basics

The Message Passing Interface (MPI) is an interface standard, specified in sev-
eral languages, for distributed memory communication, although it has exten-
sions for shared memory. MPI, which originated at Argonne National Labora-
tory (ANL), is one of the most successful scientific software projects in history.
The first implementation of the standard, MPICH, was done by Bill Gropp
and Rusty Lusk at ANL. MPI succeeded both because message passing is a
very clear conceptual model, and because it had a high quality implementation
from day one. There are many excellent references (M. Forum 1994; Message
Passing Interface Forum 2012; Snir et al. 1995), tutorials (Gropp, Lusk, and
Skjellum 1994; Gropp, Lusk, and Thakur 1999), how-to guides, and other re-
sources (Gropp and et. al. n.d.; Gropp, Lusk, Doss, et al. 1996) dealing with
MPI. Thus we will not present a general tutorial, but rather focus on certain
aspects which are germane for scientific computation.

MPI has a shared-none memory model, meaning that each process (thread
of execution) has an independent memory which it only can access. Processes
coordinate with each other by sending messages. All other functionality, such
as gathers, scatters, reductions, can be built upon simple message sends and
receives, although specialized implementations are common for optimization
purposes.

MPI provides great control for the user over every aspect of the communica-
tion and synchronization of the operations, which makes optimization possible.
However, the important aspects for library writers are the mechanisms for en-
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capsulation. Foremost among these is the communicator object. An MPI com-
municator can be thought of as a scope for parallel operations. It determines
the group of processes which particpate in an action and gives them a total
order. It can also hold auxiliary information necessary for the implementation.
It allows different libraries to coordinate parallelism, as well as send messages
guaranteed not to interfere with each other.

An important distinction which arises between MPI operations is the level
of process synchronization required. For example, if process p sends a message
to process q, only p and q participate, leaving other processes free to compute
or communicate as they please. This type of communication is called point-to-
point, and often abbreviated p2p. On the other hand, if we want the sum of a
set of numbers from each process, then all processes must contribute a value and
wait for the result. This is an example of collective communication, and often
happens for reduction operations such as our summation example. However, the
barrier operation is also collective, and only requires that every process reach it
before any can continue.

4.1.1 Using MPI

In PETSc, each object has an MPI communicator which we will call a comm.
The comm determines which processes will be involved for any collective opera-
tion on the object (these are indicated in the PETSc manpage documentation).
For example, suppose we ask for the dot product of two parallel vectors. Even
though most of the computation may be performed concurrently by a set of
processes, they all must agree on the scalar answer at the end, which makes
the result collective. If the user creates two SNES nonlinear solver objects us-
ing communicators that have disjoint process sets, they can execute two solves
concurrently.

MPI uses its own set of data types in order to assure uniformity across lan-
guages and operating systems. PETSc provides the MPIU INT and MPIU SCALAR
MPI datatypes to match the PetscInt and PetscScalar C data types, as well
as the PetscMPIInt C datatype to match MPI INT. Moreover, it provides conver-
sion functions PetscDataTypeToMPIDataType and PetscMPIDataTypeToPetscDataType
to convert between the PETSc binary specification and MPI.

Unfortunately, most large systems that you run on will have a complicated
batch submission system. However, when running on your laptop or a friendly
local cluster, you can use the mpiexec tool to launch parallel jobs. For example,
to test PETSc, we could use

cd ${PETSC_DIR}/src/snes/examples/tutorials
make ex5
mpiexec -n 2 ./ex5
mpiexec -n 5 ./ex5
mpiexec -n 20 ./ex5

to run an example on 2, 5, and 20 processes. There is often an option to manage
the memory affinity, such as

mpiexec -n 20 -bind-to socket ./ex5

http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscDataTypeToMPIDataType.html
http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscMPIDataTypeToPetscDataType.html
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FoM Unit Rate Unit
Time s
Flops F Flop Rate F/s
Memory B Memory Bandwidth B/s
Energy J Power W
Concurrency —

Table 4.1: Figures of merit which can be measured for normal code execution.

on MPICH, or --bind-to-socket on OpenMPI.

4.2 Computational Scaling1

Computational scaling is the analysis of algorithmic performance as the run
environment is varied. This is merely another kind of engineering design. Just
as a chemical or process engineer might ask how a test plant reaction will scale
up to a production facility, or what step in the process is rate-limiting, we will
ask the same kinds of questions of our software. To begin, we need to understand
what figures of merit (FoM) are available for our code. We list some FoM which
can be measured in Table 4.1.

Concurrency is particularly important recently with the end of Dennard
Scaling (Dennard et al. 1974). Dennard noted that chip performance per Watt
was scaling at roughly the same rate as Moore’s Law for chip integration, and
this increase was based on the relation that power (W ) scales as capacitance
(C) times frequency (ω) times voltage (V ) squared

W ∝ CωV 2. (4.1)

Thus as the capacitance and voltage declined with chip area, the frequency
could be increased at constant power. The problem has become that this simple
model ignores both threshold voltage, that some minimum voltage is necessary
for switching, and leakage current. The resulting “power wall” has limited
clock frequencies to about 4 GHz since 2006. Therefore further increases in
performance need to come from other places, most notably more concurrent
computing cores. Thus we are being driven to produce algorithms that can
handle much more concurrency than before.

Speedup measures the ratio of performance between two executions. These
runs could compare implementations in two different languages, such as C and
Python, or two different algorithms, such as bubble and quicksort, or different
instruction optimizations, such as a scalar and vectorized version. However,
we will be concerned with the same problem solved on different numbers of
processors. We can run exactly the same algorithm on different process sets to
measure the scalability of the implementation. However, in order to look at the

1I would like the ackowledge the debt to William Gropp’s slides from his CS598

http://wgropp.cs.illinois.edu/courses/cs598-s15/index.htm
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gain realized by a user, we should compare the best algorithm/implementation
for each process set. This illustrates the problem of choosing the baseline which
we compare against. This can be tricky in the parallel case since we must
consider algorithms, implementations, and decomposition strategies.

4.2.1 Strong Scaling

We will define the parallel speedup Sp to be

Sp =
T1

Tp
(4.2)

where Tp is the time taken on p processes. Keeping the total problem size fixed
while we increase the number of processes is known as strong scaling. Clearly
Sp ≥ 1 since we can just ignore extra processes. However, can Sp > p? This can
indeed happen if the performance on a given architecture varys with the size of
the workload. For example, suppose we have a problem which is memory bound,
meaning the computational bottleneck is loading data from memory. If it loads
M words from memory many times, and M/p fits into cache for some p, the time
to access memory will be different in the two cases since T1 uses the STREAM
main memory bandwidth and Tp uses the appropriate cache bandwidth. This
raises the question, is there an upper limit on speedup?

Amdahl’s Law

Amdahl’s Law (Wikipedia 2015) was formulated by Gene Amdahl in 1967, and
analyzes the speedup for a program having a fixed serial fraction, meaning a
part of the program that will never improve. Let us define the time Tp it takes
for the entire algorithm on p processes,

Tp = fT1 + (1− f)
T1

sp
(4.3)

where f ∈ [0, 1) is the serial fraction of the computation, and sp is the speedup
for the parallel portion of the algorithm. The speedup is then given by

Sp =
T1

Tp
(4.4)

=
T1

fT1 + (1− f)T1

sp

(4.5)

=
1

f + (1− f)s−1
p

. (4.6)

In the limit of infinite speedup for the parallel portion, sp → ∞, the total
speedup is limited to

S∞ =
1

f
. (4.7)
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For example, suppose that a program has 1% overhead that cannot be sped up
by using more processes. Then the total speedup on the largest computer is
limited to

S∞ =
1
1

100

= 100. (4.8)

This appears to be a very stringent bound on the possible speedup. Parallel
workloads can be made quite large, but this tends to exceed the capacity of one
node. We will look at an alternative analysis in the next section.

We can also look at the approach to the asymptotic limit to get an idea how
fast the required resources increase as we demand more speedup. For example,
at what value of p is half the asymptotic speedup realized? We can solve for
this p,

Sp =
1

2
S∞ (4.9)

1

f + (1− f)s−1
p

=
1

2f
(4.10)

f + (1− f)s−1
p = 2f (4.11)

sp =
1− f
f

. (4.12)

Thus, for our example above with f = 0.01 assuming perfect speedup sp = p, it
would take 99 processes to achieve a speedup of 50, so the returns on additonal
processes rapidly diminish. Another way to see this is to look at the derivative
of speedup with respect to the number of processes,

∂Sp
∂p

=
∂

∂p

1

f + (1− f) 1
p

(4.13)

=
∂

∂p

p

pf + (1− f)
(4.14)

=
1

pf + (1− f)
− pf

(pf + (1− f))2
(4.15)

=
1− f

(pf + (1− f))2
(4.16)

which as p→∞ can be approximated by

1− f
f2p2

(4.17)

which shows the swift decline is marginal efficacy of more processes. The log
derivative gives the relative efficiency,

1

Sp

∂Sp
∂p

=
pf + (1− f)

p

1− f
(pf + (1− f))2

(4.18)

=
1− f

p2f + p(1− f)
(4.19)
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so at f = 0.01, it is 99
p2+99p .

4.2.2 Weak Scaling

We can conceive of problems too big to fit on a single process, so what should
we do in this case? We could change the definition of speedup to start at k
processes instead of 1. We could also take this idea farther and ask what happens
if we continue to increase the problem size each time we increase the number of
processes. Suppose that the parallel work size on each process was fixed, so that
the total parallel work increased linearly with the number of processes. Thus
a perfect algorithm would keep the time fixed, rather than decreasing the time
linearly with p as we expect in strong scaling arguments. Since the work per
process is kept fixed, we will model the time on p processes as the fixed work,
along with an overhead that increases more slowly than p and which we will
take to be proportional to the local work,

Tp = T1 + o(p)T1. (4.20)

We can define a speedup as the ideal time for the largest problem on one process
divided by the time on p processes,

Sp =
pT1

Tp
, (4.21)

but it is perhaps more appropriate to focus on the efficiency

Ep =
T1

Tp
≡ Sp

p
. (4.22)

This tells the implementor whether the problem decomposition assumption is
true and the overheads have been controlled. From our previous definitions,

Ep =
T1

T1 + o(p)T1
(4.23)

=
1

1 + o(p)
. (4.24)

We can see that the efficiency approaches zero in the limit of large p unless the
overhead per process is a fixed constant α, which is the usual assumption for
analysis,

Sp = p
1

1 + α
= p(1− α′). (4.25)

In this case the efficiency asymptotically approaches 1− α′ instead of decaying
rapidly to zero as in the case of Amdahl’s Law. This phenomenon is known as
weak scaling.

The appeal to weak scaling rests on the somewhat dubious physical assump-
tion that more resolution is always desirable. While there is definitely a regime
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in most problems where this is true, it is not at all clear that scientific insight
or engineering practice benefits from the increased resolution on many prob-
lems run on large machines today. Moreover, the analysis assumes an O(N)
algorithm for the workload, without which the time cannot keep pace with the
increase in size. For example, an O(N3) algorithm with twice the concurrency
can only solve a problem 26% bigger on constant time.

A more serious flaw in the application of weak scaling is that it discounts
the most important mechanism for data compression and scalability of solvers,
which is modeling. The idea is not to take a single, basic model and scale it to
the ends of the earth, but rather to apply a given model in its optimal domain
of applicability, at which point we transition to a higher level of abstraction and
another model. Thus, the weak scaling analysis is very useful within a limited
domain, and perhaps in modern HPC has been asked to do more than it is really
capable.

4.2.3 Machine Scaling

Suppose that instead of starting with a fixed problem, we start with a fixed par-
allel machine. We would like to understand how this machine handles different
workloads. Suppose that I run a range of problem sizes on this machine and
then plot the time to solution (T) against the rate of solution (N/T), which we
will call the performance spectrum. If the machine is performing optimally, then
it will perform all these different computations at the same rate, and our spec-
trum will be a flat horizontal line. However, as the problem on each computing
element (core) becomes small, overheads tend to overwhelm the computation
so that the rate decreases and the total time stalls, leading to a tailing off of
the line at the left edge. This turning point is the lower bound on turnaround
time for a job on this machine. Note that since the parallelism is constant, ma-
chine latencies will be constant, so all latency effects will come from algorithmic
scaling. If the algorithm has suboptimal scaling, meaning cost that is not in
O(N), then we will see a tailing off on the right edge of the spectrum as well.
A stepwise degradation on the right could also indicate NUMA performance
issues, such as dropping out of cache for a larger problem size.

4.2.4 Reliability of Scaling Measures

In the 1970s, social scientist Donald Campbell wrote that any metric of quality
can become corrupted if people start prioritizing the metric itself over the traits
it supposedly reflects (Campbell 1976). According to subsequent mathematical
models (Smaldino and McElreath 2016), his argument works even if individ-
uals aren’t trying to maximize their metrics, but rather just following broad
incentives. This is also true of algorithmic scaling measurements.

The guide lines for “perfect” scaling above are all relative to a base case.
If the base case is inefficient, the scaling looks better. This makes it trivial to
show near-perfect scaling despite having a poor algorithm or implementation
– the scaling gets more perfect as the algorithm gets worse. Demonstrating



62 CHAPTER 4. PARALLELISM

that the base case is efficient is not easy, rarely actually the case, and often
overlooked by authors and readers alike. Thus, scaling plots need a great deal
of context and careful reading of scales to be meaningful. This is perhaps the
most critical thing to recognize about the classical strong and weak scaling
plots. Even machine scaling plots can be made to look flat by the introduction
of useless work, but the subsequent minimum turnaround time will increase,
and thus this plot makes gaming easier to detect.

4.3 Scaling on Heterogeneous Machines

Heterogeneous parallelism has become the norm for high-end parallel machines,
and new developments at the top end almost invariably trickle down to the
consumer market after a decade or so (witness the rise of the multicore laptop).
The current world record holder, Tianhe-2 located in China’s National Super-
computer Center in Guangzhou, has 32,000 Intel Ivy Bridge Xeon processors,
but also 48,000 Xeon Phi 31S1P co-processors, meaning each node has 2 Xeons
and 3 Phis. The next-generation Department of Energy (DOE) supercomputer
Cori, which recently entered production at Lawrence Berkeley National Labo-
ratory, has about 2,000 Intel Haswell processors nodes (with two sockets each)
and 10,000 Intel Knights Landing nodes (with one processor node). In addition,
most high-end laptops now include a Graphics Processing Unit (GPU) capable
of handling general purpose computing.

With this change in hardware organization, we must re-examine the decision
to use MPI as the basis for scientific computing libraries. Is it possible that a
heterogeneous software stack would better match the heterogeneous computing
platform? We can ask some initial questions about our application in order to
guide our choices:

• What are the per-process memory requirements as a function of problem
size and scale?
If memory is a limitation, is that because there is a fundamental require-
ment for this much memory per process or because data is replicated
unnecessarily?

• Is on-node communication currently limiting the performance and scala-
bility?
For example, is MPI communication on high core count Intel Xeon pro-
cessors, such as 2× 18-core Haswell, a limitation?

If memory per process or intranode communication are not fundamentally lim-
iting factors in the application, the canonical flat MPI paradign will continue
to scale nicely on today’s largest heterogeneous machines.

4.3.1 MPI+OpenMP

You could imagine two endpoints in the design space for a parallel application.
One is a “provisioned” model, like the typical MPI launcher, where a number
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of threads of execution are started at the beginning on the run and continue
until the end, being given work as necessary. The other is an “on-demand” or
fork-join model in which threads of execution are created as needed for parallel
sections of a code and then vanish when that section ends, which is the more
common OpenMP model. OpenMP can certainly be run using a provisioned or
thread pool, however the differences between it and MPI then recede.

In Fig. 4.3.1, we show the work pattern graphically for the fork-join and pro-
visioned approaches, as well as the typical code organization. The overhead of
a fork-join in OpenMP can range from microseconds to a millisecond, especially
as the thread count grows (Wang and Parmer 2014). Thus in order to realize
significant speedup, we will need long lived workloads. This is a well-known
phenomenon, and most OpenMP optimization guides advocate a provisioned
approach. This is then very close to the MPI provisioned model.

In addition, the interaction of the MPI runtime with threads introduces
either serialization (using MPI THREAD FUNNELED) or large overheads (using
MPI THREAD MULTIPLE). The MPI-4 release, however, is slated to add a fea-
ture called endpoints, an object which can participate in communication. This
construct allows communication to be associated with a thread rather than just
with a process. There is still problem for library design here in that a user
would typically be calling the library from within an OpenMP parallel region,
and more importantly, library callbacks, such as those for residual and Jacobian
evaluation in PETSc, would return within the same OpenMP parallel region,
but few applications are structured in this way. Instead they embed OpenMP
parallel directives inside their residual and Jacobian functions, which is incom-
patible with the provisioned model, so that it is impossible to maintain the
interface semantics without large penalities for synchronization. The applica-
tion could be rewritten to use a shared-nothing model, but that is most of the
way back toward a pure MPI model. Note that this also exposes the difficulty of
developing robust libraries using OpenMP in that there is too much implicit or
assumed about the relationship between threads and scope of operations. More-
over, OpenMP provides none of the encapsulation methods which are crucial to
good library design, making interoperating with other packages using OpenMP
or threads very painful. The fine-grained control over the synchronization and
buffering behavior in MPI is also absent. A thorough case against the use of
threads is made in The Problem with Threads by Edward A. Lee of UC Berkeley
EECS.

MPI, however, can suffer when the shared-none memory model incurs over-
head. We can model this simply in 1D using an N node torus with a single dof
on each node. If we divide this into P partitions, and duplicate the unknowns
on each interface for the local spaces, the memory used by all the local spaces
is (

N

P
+ 2

)
P = N + 2P (4.26)

If we imagine that the total memory is fixed, then in the strong scaling limit,
the memory overhead of a shared-none partition may exceed the total memory

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf
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Fork-Join vs. Parallel-Serialize

Je↵ Hammond MPI+MPI

/∗ thread−unsafe ∗/
#pragma omp parallel for
{
/∗ threaded loops ∗/
}

/∗ thread−unsafe ∗/

#pragma omp parallel for
{
/∗ threaded loops ∗/
}
/∗ thread−unsafe work ∗/

#pragma omp parallel
{
/∗ thread−safe ∗/

#pragma omp single
/∗ thread−unsafe ∗/

#pragma omp for
/∗ threaded loops ∗/

#pragma omp sections
/∗ threaded work ∗/
}

Figure 4.1: This figure illustrates two different methods of using OpenMP for
parallelization, Fork-Join and Parallelize-Serialize. On the left, each loop is in-
dividually parallelized using the pragma for parallel for, whereas on the right
threads are spawned at the start of the program, and critical section are pro-
tected. The paradigm on the right avoids the overhead of repeated fork-join.
Image taken from Hammond.

https://github.com/jeffhammond/MPI-plus-MPI-slides
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capacity. This effect is exacerbated by the increase in the surface to volume
ratio as subdomain size shrinks, and also with higher order methods which
have many unknowns on the surface. If we instead assume that the amount of
memory per node is fixed (weak memory scaling), we have similar limitations
on node-level parallelism. If the memory per process is fixed, meaning also that
we do not over-decompose the problem, then we have a limit on subdomain size
which may impact preconditioning. In any case, the shared-none memory model
could become a bottleneck. The MPI-3 standard incorporates shared memory
regions, allowing processes on the same node access to the same memory much
like threads, without the huge cognitive overhead of non-determinism in the
entire program (Lee 2006).

If an application is limited by on-node MPI communication, it can now
appeal to the MPI-3 neighborhood collectives mechanism. This API allows
the user to provide a communication topology directly to the library, enabling
many optimizations (Hoefler and Schneider 2012). These are available in both
scatter/gather and all-to-all versions within the process set specified.

4.3.2 MPI+CUDA/OpenCL

CUDA, or its standardization OpenCL, look superficially like an on-demand
model for parallelism. However it incurs the same overheads as OpenMP. Kernel
launch time is the primary bottleneck for computations with small workload,
and thus larger kernel computations are recommended. In addition, the latency
penalty for access to global shared memory is very high (600+ cycles) so that
optimized kernels perform a single, coalesced load into local memory and operate
in a shared-none fashion. The global memory can then be thought of as a
message medium, similar to an interconnect, and we have essentially the MPI
model again, albeit with a dynamic process pool. However, the kernel launch
prescribes the number of thread blocks up front, just as we do in an MPI launch.

4.3.3 Verdict

It does not appear that for most workloads, and especially for weak scaling,
libraries will have to abandon the current MPI infrastructure. However, for
applications like climate simulations which have stringent turn-around time de-
mands and operate in the strong scaling limit, a hybrid model might still offer
some, yet to be conclusively demonstrated, relief. However, forthcoming features
of MPI, shared memory, neighborhood collectives, and endpoints, will reduce or
eliminate these advantages. The core PETSc team has come to the consensus
that pure MPI using neighborhood collectives and the judicious using of MPI
shared memory, for data structures that you may not wish to have duplicated on
each MPI process due to memory constraints, will provide the best performance
for HPC simulation needs on current generation systems, next generation sys-
tems and exascale systems. It is also a much simpler programming model then
MPI + Threads, leading to simpler, more maintainable code.
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Chapter 5

Data Layout and
Discretization I

5.1 Sparse Data

Sparsity, the fact that only a few important factors determine how a system
behaves, is what makes the universe understandable. If the influence of every
part mattered equally, we would have no way of doing practical calculations or
making predictions. When we discuss PDEs, sparsity in the operators comes
from the fact that physics in pieces of the domain influences only immediately
adjacent pieces through the differential operator. In integral equations, all parts
of the domain are coupled, but the information (strength) contained in distant
couplings is far less than close couplings.

If we knew what variables were actually important, we could always write
small dense problems in this basis. However, it is difficult or impossible to pick
this set for most problems, it could change over the course of the solve, and
its not easy to relate to experiments or experience. Thus, we often operate in
a situation where we have a large basis set describing a physical configuration,
but only a very few variables are coupled to one another. We encode this
situation using sparse matrices and sparse grid structures. Below, we will discuss
strategies for data representation and manipulation.

A more subtle difficulty is that, phrased in a reduced basis, the problem may
be much more ill-conditioned then the original sparse problem, mandating the
use of a direct solver. Due to the disparity in complexity, it is possible that
an optimal iterative method for the original sparse problem can outperform a
dense method for the reduced problem. The same kind of conditioning problem
can also arise when transforming a non-orthogonal basis to a smaller orthogonal
set. Thus, sparse methods are likely to be practical on a subset of problems for
a long time to come.

67
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5.1.1 Sparse Matrices

A matrix is a set of numbers {aij} which represents the action of a linear
operator in certain bases. For example, we have an operator A : X → Y , and I
wish to know that action y = Ax where x ∈ X and y ∈ Y . Now suppose I have
orthonormal bases {φj} and {ψi} for X and Y respectively. Then I can rewrite
the action above as

y = Ax (5.1)∑
k

ykψk = A
∑
j

xjφj (5.2)

ψ∗i
∑
k

ykψk = ψ∗iA
∑
j

xjφj (5.3)

∑
k

δikyk =
∑
j

ψ∗iAφjxj (5.4)

yi =
∑
j

aijxj (5.5)

y = Ax (5.6)

(5.7)

where

aij = ψ∗iAφj . (5.8)

Thus we have expressed our linear operator as a matrix, and our functions as
vectors. We can use this prescription to translate all our linear algebra problems
to matrix language.

Often we know that only some of the entries in A are nonzero. For example,
in finite element discretizations, only basis functions from adjacent elements are
coupled by differential operators, and similarly for finite volume discretizations.
In this case, representing A with a dense array of coefficients is very wasteful,
and can greatly increase the asymptotic complexity of our algorithm. In the
case of finite elements, the dense matrix can be applied in O(N2) for a basis of
size N , whereas the sparse matrix can be applied in O(N) time.

There is an excellent discussion of sparse matrix formats in (Saad 2003), and
the older edition (Saad 1996) is freely available online. We will just discuss the
main techniques in order to prepare for performance analysis and generalization
of this strategy. If there are very few entries, say O(1), then we can just rep-
resent their coordinates as a set of triples {(i, j, aij)}, and this is refered to as
Coordinate Format (COO). However, if we have more entries, such as O(N) in a
finite element matrix, we can imagine that many entries have repeated indices.
For example, all entries in same row have i the same, and similarly for columns.

We can apply a common compression technique, run length encoding (RLE),
to the sequence {(i, j, aij)}. Now we just keep track of the number of items for
each row {(i,#i)}, along with the original list of columns and values {(j, aij)}.

http://www-users.cs.umn.edu/~saad/books.html
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A =


1 0 0 2 0
3 4 0 5 0
6 0 7 8 9
0 0 10 11 0
0 0 0 0 12


i =

(
0 2 5 9 11 12

)
j =

(
0 3 0 1 3 0 2 3 4 2 3 4

)
a =

(
1 2 3 4 5 6 7 8 9 10 11 12

)
Figure 5.1: A sparse matrix encoded in AIJ format.

If we store the prior data in a dense array, the row i is implicitly given by the
array index. Thus, the AIJ sparse matrix format has three arrays: row offsets,
columns, and values. An example is shown in Figure 5.1.1.

Lets look at the process of sparse matrix multiplication, which is actually
quite simple. We loop over each sparse row, get the relevant rows from the
vector we are acting on, and do a sparse dot product. In C code, this is

for (i = 0; i < m; ++i) {
n = roffset[i+1] − roffset[i];
c = cols[roffset[i]];
v = vals[roffset[i]];
sum = 0.0;
PetscSparseDensePlusDot(sum, x, v, c, n);
y[i] = sum;
}

where x is the input array, y is the output array, and PetscSparseDensePlusDot()
is the operation

sum =

n∑
k=1

v[k] ∗ x[c[k]]. (5.9)

This can be expanded in a straightfoward way

PetscInt i;
for ( i = 0; i < n; ++ i) sum += v[ i] ∗ x[c[ i]];}

or with loop unrolling to try and promote vectorization

if (n > 0) {
switch (n & 0x3) {
case 3: sum += ∗v++ ∗x[∗c++];
case 2: sum += ∗v++ ∗x[∗c++];
case 1: sum += ∗v++ ∗x[∗c++];
n −= 4;
}
while (n > 0) {
sum += v[0] ∗ x[c[0]] + v[1] ∗ x[c[1]] +

v[2] ∗ x[c[2]] + v[3] ∗ x[c[3]];
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v += 4; c += 4; n −= 4;
}
}

Almost all of the changes to the AIJ format are made to try and vectorize
code for different architectures, since this is just about the only way to increase
performance. However, this only matters if you are currently running slower
than the speed that values can be fetched from memory, the bandwidth bound,
as we will see in Chapter 9.4. The other common optimizations promote good
cache reuse. If there are rows with the same index structure, say for a block
matrix, we would like to keep those indices in cache and not have them evicted
by the vector entries streaming by. In addition, there is benefit to prefetching
the indices and values for the next block row. This is the kind of simple, semi-
quantitative thinking we want to employ when initially judging algorithms, and
it should lead to the construction of illustrative performance models.

5.2 General Data Layout

A sparse matrix assigns some data (columns and values) to each basis vector
(row). Suppose we want to generalize this to a scheme which can assign data
to a more general entity, such as finite element basis coefficients to edges, or
cell averages to cells and field fluxes to faces, or finite difference coefficients to
vertices. How would we design such as thing? In PETSc, a general data layout
is encoded in the PetscSection class, which is mainly a map from an index
space which we call points to space of (size, offset) pairs, mirroring the AIJ
format. This structure is simple, and yet flexible enough to encoded a huge
variety of data distributions.

For example, the parallel data layout of a vector can be represented by
choosing the point space as the set of process ranks, and the data space as
(local size, global start) pairs. It can represent a finite element data layout over
an unstructured mesh by choosing the point space to be a numbering of each
mesh piece (vertices, edges, faces, cells) and the data space to be (dofs, offset)
pairs. Simmilarly, for finite volume discretizations, this same scheme works,
although the point numbering is likely to include only faces and cells.

This kind of arrangement can also be seen as the discrete analogue of the
mathematical fiber bundle. A fiber bundle makes precise the idea of one topo-
logical space, called a fiber, being “parameterized” by another topological space,
called a base. In our case, the point space is the base, and data size indicates
the dimension of the fiber space (and also the storage for a representative ele-
ment). We will want to be slightly more general in order to accommodate mixed
discretizations and multicomponent problems. If we allow the fiber spaces to
be different, but related to a larger total space, then we have a fibration. A
PetscSection can have different sizes for each point, and at a given point, we
allow the size to be split up between some number NF of fields. Thus the data
tuple would now be given by (size0, . . . , sizeNF−1, offset), since the field offsets
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Discretization Dof/Dimension Discretization Dof/Dimension
P0 [0 0 0 1] Q0 [0 0 0 1]
P1 [1 0 0 0] Q1 [1 0 0 0]
P2 [1 1 0 0] Q2 [1 1 1 1]
P3 [1 2 1 0] Q3 [1 2 4 8]
P disc

1 [0 0 0 4] RT0 [0 0 3 0]

Table 5.1: Storage specification for familiar scalar Galerkin finite elements.

can be inferred from the sizes and initial offset.

For the case of conforming finite elements, we can simplify the specification
since we have strong symmetry requirements for the PetscSection structure.
In order to define a continuous interpolant, we must have the same number
of unknowns on each kind of mesh point (vertex, edge, face, cell). Thus, it is
enough to specify the number of dofs for each dimension. Example for familiar
elements are shown in Table 5.1. From these specification, it is easy to construct
the PetscSection by looping over each mesh point and adding the appropriate
number of dofs.

5.2.1 Boundary Conditions

When we discuss the computational aspect of applying boundary conditions,
we will divide them into two classes, somewhat similar to the elementary divi-
sion into Dirichlet and Neumann conditions. We will call essential boundary
conditions those which alter the space of function that we will use to approxi-
mate the solution, of which Dirichlet is one type. We will call natural boundary
conditions those which augment or change the equations we use to define the
solution, such as Neumann conditions, but also Robin conditions, transmission
conditions, and Nitsche conditions. In simpler terms, I can either fix the solution
value on the boundary or write an equation for it.

Why do Neumann conditions fall into the second category if I am simply
fixing the value of the solution derivative on the boundary? This is because the
derivative is not a local concept, but depends on solution values in a (small)
neighborhood, and thus the boundary value depends on solution values in the
interior, just like all the other types of natural conditions, and therefore I can
write an equation that expresses this dependence.

There are two common ways of imposing essential boundary conditions: re-
move the variables from the global system, or modify the global system to
impose the boundary values. For the later method, we would need to change
the residual calculation so that it only computes the distance from the boundary
value, u − uΓ, but also any linearized update equations so that they fix these
boundary values, for which the MatZeroRowsColumns() function is often used.
This has been the favored method since people can easily see where the condi-
tion is imposed, but it has some drawbacks. Very often users create asymmetry
in the equations, but even if they are careful to preserve symmetry, scaling of
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the boundary unknowns can be an issue. It also imposes an extra step outside
of the normal assembly operations, making the code more complex and harder
to optimize at a low level.

An alternative way to handle boundary conditions is to remove these un-
knowns from the global problem. But how will the effect of the boundary values
be incorporated into the residual and update rhs? The constrained unknowns
will actually be present in a local space which we will use to compute updates to
the residual, Jacobian, and rhs. These updates will be assembled in the global
space, which is the one we are most familiar with and in which the solver oper-
ates. The local space will contain boundary values, as well as all ghost values
that arise from parallelism or overlapping discretization methods. The global
space will consist only of the independent dofs which are being solved for. We
will show how this works in detail for a very simple problem in order to elucidate
the difference in strategies.

Suppose that we have a triangular domain discretized using a single P1

element, so that there are unknowns associated with each vertex, and we solve
the Laplace equation on this domain,

−∆u = 0 on Ω (5.10)

u = 5 on ∂ΩD (5.11)

where the boundary ∂ΩD consists of only the first vertex. Since we constrain the
value at one vertex, our global problem will have only two unknowns, but when
we assemble in the local space all three unknowns will be present. When we
assemble the residual for an initial guess of zero with exact boundary conditions,
we have

~f(~u) =

 0.5 0 −0.5
0 0.5 −0.5
−0.5 −0.5 1.0

5
0
0

 (5.12)

=

 2.5
0
−2.5

 (5.13)

which is mapped to the global residual (since we ignore the constrained vertex),

~F (~U) =

(
0
−2.5

)
. (5.14)

Note that the local vector ~u has the boundary values inserted into it. The
Newton update equation is then(

0.5 −0.5
−0.5 1.0

)
δ~u =

(
0

2.5

)
(5.15)

δ~u =

(
5.0
5.0

)
, (5.16)
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so that ~U = (5.0, 5.0) exactly as we expect. If we use the alternative approach,
then we start with a residual

~F (~U) =

 0.5 0 −0.5
0 0.5 −0.5
−0.5 −0.5 1.0

5
0
0

 (5.17)

=

 2.5
0
−2.5

 , (5.18)

and Newton update equation 0.5 0 −0.5
0 0.5 −0.5
−0.5 −0.5 1.0

 δ~U =

−2.5
0

2.5

 . (5.19)

We then reset the first equation and put a zero on the rhs, obtaining the same
solution 1.0 0 0

0 0.5 −0.5
0 −0.5 1.0

 δ~U =

0.0
0

2.5

 (5.20)

δ~U =

0.0
5.0
5.0

 . (5.21)

and then insert the boundary values into the solution

~U =

5.0
5.0
5.0

 . (5.22)

If we had known the problem was exactly linear, we could insert the boundary
value itself in the rhs.

5.2.2 Parallelism

TODO Explain SF (KnepleyLangeGorman2015; Brown 2011)

5.3 Problems

Problem V.1 The schemes detailed above are designed for the situation in
which we fix the value of a single unknown. However, it is easy to imagine
that we would like to fix the value of a combination of unknowns. For example,
suppose we are solving a problem for fluid flow in a cavity where the flow obeys
the Euler equations, so that the constraint specifies that the fluid has no velocity
normal to the boundary. If the boundary aligns with the coordinates axes, we
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can simply constrain that component of velocity. Now let our boundary be
inclined at the 45◦ angle (see Fig. ??) so that now our constraint equation
becomes

~u · n̂ = 0(
u
v

)
· 1√

2

(
1
1

)
= 0

u+ v = 0.

Design a system for enforcing this boundary condition in both cases above,
namely eliminating constrained unknowns and replacing redundant equations.
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Chapter 6

Simple Finite Differences

6.1 Structured Meshes

Despite trememdous theoretical and practical success in computational mechan-
ics, traditional PDE codes (Hughes 2000) can rarely compare different discretiza-
tions, for instance different orders of finite element, or different types of elements,
or finite volume and finite element discretizations. Nor can they compare dif-
ferent mesh types, such as simplicial, hexahedral, or polyhedral. They cannot
easily run different dimensional problems, so that some parts of the computa-
tion can be repalced by lower dimensional models, or that reductions can be
compared against the full problem.

These problems stem from mesh representations which are inflexible and
discretization interfaces which hopelessly tangled in the mesh interface. The
traditional mesh interface is too specific in that it carrys along a lot of unnec-
essary data and categories. Code for the assembly of vectors, such as residuals,
and matrices, such as Jacobians, is specialized to each dimension, cell shape,
and approximation space. Internal iterations make explicit reference to element
type, such as getVertices(faceID) or getAdjacency(edgeID, VERTEX) or
getAdjacency(edgeID, dim = 0), but it is possible to have a single interface
for all of these cases. Furthermore, there is no interface for transitive closure,
making code instead depend on awkward nested loops which are different in
each dimension.

Moreover, in order to enable an optimal solver, we often need to separate
the contribution of different fields to the overall problem, and assemble auxiliary
operators not directly involved in the solution. The traditional interface between
the mesh and solver is too general in that it omits crucial information. The
linear/nonlinear solver is not told about the decomposition of the solution space
into fields, but merely given a vector or matrix. This means the solver cannot
take advantage of this structure, say for block operations or perhaps saddle-
point structure. It is also difficult to use auxiliary data, such as eigen-estimates
for smoothers or near null spaces for coarse problems.

75
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In PETSc, the interface between meshes and solvers is handled by the DM
object, which has three principal jobs. It must represent the topology of the
underlying mesh, layout data over that topology, and manage the map between
the local assembly space and the global solver space. Each of these jobs is vastly
simpler in the case of structured grids, as opposed to unstructured grids, and
thus we will begin our exposition there.

6.1.1 Structured Grids

We will understand structured grids to be Cartesian products of one-dimensional
chains, and use vertices to define our mesh. You could equally well take the dual
point of view, and define the mesh by cells, since this dual mesh has the same
topology. Each vertex will be refered to using a tuple (i, j, k) where indices
beyond the dimension of the mesh are ignored. This representation makes the
toplogy apparent, in that a vertex (i, j, k) has six unit distance neighbors in 3D,
or 26 using the full box stencil, identified by (i± 1, j ± 1, k± 1). In general, the
distance d neighbors are given by (i± d′, j ± d′, k ± d′) for 0 < d′ ≤ d.

It is possible to have a very general data layout over a structured mesh using
a PetscSection object. However, support for this in PETSc is incomplete,
so we will postpone a discussion of general data layouts until Chapter 7 on
unstructured data layout. We will confine ourselves to co-located data layouts
on structured grids, meaning that dofs may only be attached to vertices. It is
possible to represent staggered discretizations this way by imagining some fields
as lying on cells rather than vertices, and including appropriate buffer regions,
but we will not review this approach.

With the aforementioned restrictions, the relation between the local as-
sembly space and global solver space is particularly simple. The local space
will be defined as the union of the set of vertices local to a given process
and a halo region of distance s, which stands for stencil width, as shown in
Fig 6.1. The global space is just space of dofs on all vertices, or equivalently
the direct sum of the local spaces without the halo regions. The DM provides
the DMGlobalToLocalBegin()/DMGlobalToLocalEnd() pair, and its converse
DMLocalToGlobalBegin()/DMLocalToGlobalEnd(), in order to map from a
vector in one space to another. Since the local space redundantly represents
some dofs, the map from the local space to the global space has an InsertMode
which dictates how redundant data should be combined. This mapping can
also be extracted, using DMGetLocalToGlobalMapping(), as a list of the global
index for every local unknown.

Note here that PETSc not only handles ghost value coherence with the
above functions, but also all parallelism inherent in the problem. The user can
completely assemble the residuals and Jacobians in the sequential local space
(see Chapter 8), and then let PETSc construct the global objects appropriate
for the linear and nonlinear solvers.

The DM provides methods to create a parallel vector in the global space,
DMCreateGlobalVector(), a sequential vector in the local space, DMCreateLocalVector(),
and a matrix in the global space, DMCreateMatrix(). It would perhaps make
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Local Node

Ghost Node

Figure 6.1: Structured and unstructured meshes using an overlapping vertex
partition.

sense to also allow matrices in the local space, which are now handled through
the somewhat obscure MATIS implementation.

Instead of making geometry intrinsic to the mesh data structure, as is com-
monly done, we treat it in the same way as other data over the mesh, such
as the solution field. Thus we have another DM with the same topology, re-
trieved using DMGetCoordinateDM(), that describes the layout of the coordi-
nate data. The coordinates themselves can be retrieved in the global space using
DMGetCoordinates(), and in the local space using DMGetCoordinatesLocal().

6.1.2 Examining DMDA in PETSc

The DMDA class is a specialization of DM interface to structured grids. It employs
an overlapping vertex-based partition, as shown in Fig. 6.1. The parallel layout
is specified completely in the constructor, so we will go over each argument in
detail. The constructor for a two dimensional DA is given by

DMDACreate2d(comm, bdX, bdY, stype, M, N, m, n, dof, s, lm, ln, &da);

The first argument is the communicator, specifying the group of processes which
will handle this grid. The next two arguments set the type of boundary be-
havior, meaning the global topology of the grid. Notice that if this was a
three dimensional grid, there would be a third bdZ arugment. If this is just a
square, we use DM BOUNDARY NONE, whereas we can create a cylinder by giving
DM BOUNDARY PERIODIC for bdX, or a Möbius strip using DM BOUNDARY TWIST.
Providing DM BOUNDARY PERIODIC for both arguments would give a torus. Us-
ing DM BOUNDARY GHOSTED creates a layer of vertices s (the stencil width) deep
along that boundary. These ghost vertices are not present in the global space,
only in the local space, exactly as the partition overlap.
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The stype argument specifies the stencil type, DMDA STENCIL BOX or
DMDA STENCIL STAR, as shown below, and the stencil width is given by s.

proc 0 proc 1

proc 10

proc 0 proc 1

proc 10

Box Stencil Star Stencil

Figure 6.2: Graphical output
from -dm view draw in SNES
ex5.

The dof argument gives the number of
dofs on each vertices. The m,n and M,N ar-
guments for the number of local and global
vertices in the x and y directions function ex-
actly as the size arguments to a PETSc Mat
object, and PETSC DETERMINE is also an ac-
ceptable input. The lm and ln arguments,
arrays of size m and n, let the user completely
specify the grid partition. The lm array holds
the number of vertices in the x-direction for
each partition. In order to be consistent, the
entries in lm must sum to M , and similarly for
ln. In the usual case, PETSc partitions the
grid automatically, and the user passes NULL.
However, these arguments are normally used
in order to make the parallel division agree
with another existing structure. For example,
a DMDA can be forced to align with a existing
DMDA with a different number of vertices, or with a user-defined structure.

The constructor call is merely a convenience function, and the user can
accomplish the same thing using the generic create function and API calls:

DMDACreate(comm, &da);
DMSetDimension(da, 2);
DMDASetSizes(da, M, N, 1);
DMDASetNumProcs(da, m, n, PETSC DECIDE);
DMDASetBoundaryType(da, bx, by, DM BOUNDARY NONE);
DMDASetDof(da, dof);
DMDASetStencilType(da, stype);
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DMDASetStencilWidth(da, s);
DMDASetOwnershipRanges(da, lx, ly, NULL);
DMSetFromOptions(da);
DMSetUp(da);

It is clear from above how DMDA differs in the 1D and 3D cases.

We can use SNES example 5 (ex5) to demonstrate the creation of a DMDA
object. We first build the example

cd ${PETSC_DIR}/src/snes/examples/tutorials
make ex5

then we can get a text representation of the DMDA

./ex5 -dm_view

which shows both the DMDA and coordinate DMDA

DM Object: 1 MPI processes
type: da

Processor [0] M 4 N 4 m 1 n 1 w 1 s 1
X range of indices: 0 4, Y range of indices: 0 4
DM Object: 1 MPI processes
type: da

Processor [0] M 4 N 4 m 1 n 1 w 2 s 1
X range of indices: 0 4, Y range of indices: 0 4

Notice that the first grid has a single dof since it is the scalar Laplace problem,
whereas the second grid has two dof since there are two coordinates per vertex.
Using

./ex5 -da_grid_x 5 -da_grid_y 5 -dm_view draw -draw_pause -1

we get a graphical representation, where the numbers are a total order on the
vertices, as shown in Figure 6.2.

We have also shown how to change the initial grid size. If we run on four
processes

mpiexec -n 4 ./ex5 -da_grid_x 5 -da_grid_y 5 -dm_view draw -draw_pause -1

the ordering has changed. This occurs because PETSc renumbers the global
problem so that vertices within each partition are contiguous, simplifying the
indexing for global vectors and matrices. The numbering is reproduced below.

Proc 2 Proc 3
25 26 27 28 29
20 21 22 23 24
15 16 17 18 19
10 11 12 13 14
5 6 7 8 9
0 1 2 3 4

Proc 0 Proc 1
Natural numbering

Proc 2 Proc 3
21 22 23 28 29
18 19 20 26 27
15 16 17 24 25
6 7 8 13 14
3 4 5 11 12
0 1 2 9 10

Proc 0 Proc 1
PETSc numbering

http://www.mcs.anl.gov/petsc/petsc-current/src/snes/examples/tutorials/ex5.c.html
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6.2 Residual Evaluation

The DM assembly interface is based upon local callback functions which cal-
culate the residual and Jacobian. In PETSc examples these are often called
FormFunctionLocal() and FormJacobianLocal(). A DM is first associated
with a solver, e.g using SNESSetDM() or TSSetDM(), and then callbacks are reg-
istered with DMSNESSetFunctionLocal() or DMTSSetJacobianLocal(). When
PETSc needs to evaluate the nonlinear residual ~F (~x),

• PETSc maps the global input vector ~x to a local vector ~xl using
DMGlobalToLocal()

• Each process evaluates the local residual ~fl

• PETSc assembles the global residual ~f from ~fl using DMLocalToGlobal()

For structured grids, PETSc introduces another level of reordering, for the
local space, so that the domain again appears to be a rectangular grid section
and can be accessed through a multidimensional C array. The reordering for
our ex5 run with a 5× 5 grid is shown below with the ghost values in cyan.

Proc 2 Proc 3
X X X X X
X X X X X
12 13 14 15 X
8 9 10 11 X
4 5 6 7 X
0 1 2 3 X

Proc 0 Proc 1
Local numbering

Proc 2 Proc 3
21 22 23 28 29
18 19 20 26 27
15 16 17 24 25
6 7 8 13 14
3 4 5 11 12
0 1 2 9 10

Proc 0 Proc 1
Global numbering

In 2D, the user provided function which calculates the nonlinear residual has
signature

(∗lr)(DMDALocalInfo ∗info, PetscScalar ∗∗x, PetscScalar ∗∗r, void ∗ctx)

where info is a structure containing all layout and numbering information, x is
the current local solution represented as a multidimensional array, r holds the
local residual as another array, and ctx is an optional user context passed to
DMDASNESSetFunctionLocal(). In SNES ex5, we solve the Bratu equation, a
mildly nonlinear eigenvalue problem,

∆u+ λeu = 0. (6.1)

We will fix λ and treat it as a nonlinear system of equations, so that the local
residual function is given by

lr(DMDALocalInfo ∗info, PetscScalar ∗∗x, PetscScalar ∗∗f, void ∗ctx)
{
PetscReal lambda = ((AppCtx ∗) ctx)−>param;
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PetscReal hx, hy, hxdhy, hydhx;
PetscInt i, j;

hx = 1.0/(PetscReal)(info−>mx−1);
hy = 1.0/(PetscReal)(info−>my−1);
hxdhy = hx/hy;
hydhx = hy/hx;
for(j = info−>ys; j < info−>ys+info−>ym; ++j) {
for(i = info−>xs; i < info−>xs+info−>xm; ++i) {
PetscScalar u;

u = x[j][i];
/∗ Apply homogeneous Dirichlet conditions ∗/
if (i==0 || j==0 || i == M || j == N) {
f[j][i] = 2.0∗(hydhx+hxdhy)∗u; continue;
}
u xx = (2.0∗u − x[j][i−1] − x[j][i+1])∗hydhx;
u yy = (2.0∗u − x[j−1][i] − x[j+1][i])∗hxdhy;
f[j][i] = u xx + u yy − hx∗hy∗lambda∗exp(u);
}
}
}

If the solution field is no longer scalar, but has multiple components, another
index is added for the field components, as shown in SNES ex19.

When using DMDA and a finite difference approximation, it is convenient to
use the first method for application of Dirichlet boundary conditions, namely
replacing equations for the constrained unknowns. Above, we replace the equa-
tions for boundary unknowns with the deviation from the boundary value, u−0,
suitably scaled. Note that the (i, j, k) vertex indices used in the function are
global, so if the local patch does not contain the boundary, the branch will never
be taken.

6.3 Jacobian Evaluation

The user callabck for Jacobian assembly is largely the same as the residual
callback, except that the matrix is an Mat object rather than a raw array.

(∗lj)(DMDALocalInfo ∗info, PetscScalar ∗∗x, Mat J, void ∗ctx)

The Bratu Jacobian can also be calculated with simple serial code.

lj(DMDALocalInfo ∗info, PetscScalar ∗∗x, Mat J, void ∗ctx)
{
for(j = info−>ys; j < info−>ys + info−>ym; j++) {
for(i = info−>xs; i < info−>xs + info−>xm; i++) {

http://www.mcs.anl.gov/petsc/petsc-current/src/snes/examples/tutorials/ex19.c.html
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row.j = j; row.i = i;
if (i == 0 || j == 0 || i == mx−1 || j == my−1) {
v[0] = 1.0;
MatSetValuesStencil(J, 1, &row, 1, &row, v, INSERT VALUES);
} else {
v[0] = −(hx/hy); col[0].j = j−1; col[0].i = i;
v[1] = −(hy/hx); col[1].j = j; col[1].i = i−1;
v[2] = 2.0∗(hy/hx+hx/hy) − hx∗hy∗lambda∗PetscExpScalar(x[j][i]);
v[3] = −(hy/hx); col[3].j = j; col[3].i = i+1;
v[4] = −(hx/hy); col[4].j = j+1; col[4].i = i;
MatSetValuesStencil(J, 1, &row, 5, col, v, INSERT VALUES);
}
}
}
}

However since we are inserting values into a global Mat Object, we would need
to use global row and column indices for MatSetValues(). We could use local
indices instead by calling MatSetValuesLocal, but we would still need to calcu-
late the row indices from the vertex indices. PETSc provides a call which does
this conversion automatically,

MatSetValuesStencil(Mat A, m, MatStencil idxm[], n, MatStencil idxn[],
PetscScalar values[], InsertMode mode);

where rather than a row or column index, the user passes a MatStencil structure
which holds the global vertex indices and field component. These are converted
to global indices, and the values remain in the same logically dense block. This
same insertion scheme will be used for unstructured grids, but will allow cells,
edges, and faces in addition to vertices.

We can view the parallel Jacobians produced by ex5 using options

mpiexec -n 2 ./ex5 -da_grid_x 10 -da_grid_y 10 -mat_view draw -draw_pause -1

as well as the denser Jacobian produced by SNES ex48,

mpiexec -n 3 ./ex48 -mat_view draw -draw_pause 1 -da_refine 3 -mat_type aij

It is often that case that a user is unwilling or unable to code the Jacobian
for a given set of equations. It could be too complex or expensive to warrant
assembly. In this case, PETSc provides a finite difference approximation to the
true Jacobian, which is usually accurate to single precision. It uses the simple
formula for the Jacobian action,

J(~u)~v ≈ 1

h
(F (~u+ h~v)− F (~u)) , (6.2)

where there are some heuristic for choosing h (Brown and Saad 1990). If we act
on a unit vector, ~v = ei, we get the ith column of the Jacobian. Thus, naively
we would need N actions to assemble the entire Jacobian. However, if we can

http://www.mcs.anl.gov/petsc/petsc-current/src/snes/examples/tutorials/ex48.c.html
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perturb two values, say i and j, such that they do not generate values in the
same row, we can calculate them simultaneously. A vertex i interacts with all
vertices a distance s away. If vertices i and j are both a distance s from vertex
k, then a perturbation in either can contribute to rwo k in the Jacobian. Thus,
we must group vertices into sets which are at least distance 2s from each other.
For the common case s = 1, this is called a 2-coloring.

6.4 Code Verification

There is an old numerical saying, originating with the von Neumann analysis of
timestepping methods, that

consistency + stability = convergence

which we will illustrate in the context of linear equations. Convergence means
that our approximate solutions x become closer and closer to the true solution
x∗. Thus we start by bounding the error, x − x∗, in terms of the residual,
r = Ax− b,

||x− x∗|| = ||A−1A(x− x∗)||, (6.3)

= ||A−1r||, (6.4)

≤ ||A−1|| ||r||. (6.5)

We can see that stability, namely the invertibility of our linear operator A,
combined with consistency, or the ability to solve our equations, produces con-
vergence. We also have

||b|| = ||Ax∗|| (6.6)

||b|| ≤ ||A|| ||x∗|| (6.7)

1

||x∗||
≤ ||A||
||b||

(6.8)

so that the version with relative errors and residuals is also true

||x− x∗||
||x∗||

≤ ||A||||A−1|| ||r||
||b||

(6.9)

≤ κ(A)
||r||
||b||

(6.10)

where κ(A) is the condition number of the operator.
We would like to test our discretization, physics, and solver. We could do

that if we had an exact solution to the continuum problem. In order to test
the discretization, we could look at the L2 (or other suitable function norm)
difference between the exact solution and its discretization on a series of refined
meshes to quantify the discretization error. It is very common to look at the
slope on a log-log graph, since we usually have a bound like

‖u− uh‖ < C(u)hk, (6.11)
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where k is the order of convergence, and C is independent of h, coming from
Theorem (5.4.8) of (Brenner and Scott 2002). If we consider the Laplace problem
using P1 elements, this gives a bound for the solution

‖u− uh‖2 < Ch2|u|Hk (6.12)

where the Hk norm looks like a norm of the kth derivative. This is also a
good way to look at other quantities of interest. For example, if we are solv-
ing the Stokes problem, we might also want to look at a measure of the mass
conservation, ‖∇ · ~u‖.

We can attempt to check the physical equations by looking the residual of
the projected exact solution, F (uh). How close will this be zero? To answer
this, lets look at some facts about Galerkin discretizations of elliptic equations
F (uh) = a(uh, vh) − f(vh), and we will eventually use the Laplacian to make
the derivation simpler. First, we have Galerkin orthogonality, which says that
the error in the finite dimensional solution, u−un, is orthogonal to any member
of the finite dimensional approximation space V ,

a(u− uh, vn) = a(u, vn)− a(uh, vn) = f(vn)− f(vn) = 0 (6.13)

since vn ∈ Vn ⊂ V . The operator is elliptic because

a(u, u) ≥ α‖u‖2 (6.14)

and also normally satisfies a boundedness condition

a(u, v) ≤ C‖u‖‖v‖ (6.15)

where C and α are positive. We can now prove Cea’s Lemma

α‖u− uh‖2 ≤ a(u− uh, u− uh) from Eq. (6.14) (6.16)

≤ a(u− uh, u− vn) from Eq. (6.13) (6.17)

≤ C‖u− uh‖ ‖u− vn‖ from Eq. (6.15) (6.18)

‖u− uh‖ ≤
C

α
‖u− vn‖ (6.19)

‖u− uh‖ ≤ inf
vn∈Vn

C

α
‖u− vn‖. (6.20)

(6.21)

For the case of the Laplacian in the H1 seminorm, C = α = 1, which means
that the orthogonal H1 projection of u is the Galerkin solution uh, so that
the residual should be zero. However, in general the Galerkin solution and the
projected exact solution do not coincide, and we can only bound one by the
other using the condition number C

α . We do have that uh and Phu are both
within hk of the true solution u, so that

‖Ah(uh − Phu)‖ ≤ C‖uh − Phu‖ ≤ C ′hk‖u‖. (6.22)
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Thus, we cannot expect F (Phu) to be too small outside of the Laplacian and
mass matrix without some more delicate estimates.

Finally, we can check the solver by actually solving the system and then
looking at the L2 error using the exact solution. But coming up with analytic
solutions to arbitrary PDEs can be extremely challenging. However, suppose
that we allow ourselves to change both the boundary conditions and add a
forcing function on the rhs. For example, suppose we have a bilinear form a,
and we choose a solution s. Then we let the rhs be (bs, v) = a(s, v), so that

a(u, v)− (bs, v) = 0. (6.23)

Now the solve for u should produce an approximation to s. This called the
Method of Manufactured Solutions (MMS), and there is a wonderful and concise
description by Roache in (Roache 2002).

6.4.1 MMS in PETSc

We will use SNES ex5, which employs a simple first order finite difference dis-
cretization, to demonstrate MMS in the simplest setting. We first choose an
exact solution

u∗ = x(1− x)y(1− y) (6.24)

which makes things a little easier since we do not have to change the boundary
conditions as u is already zero when x, y = 0, 1. Next, we look at the residual
of the exact solution

−∆u∗ − λeu
∗

= 2x(1− x) + 2y(1− y)− λex(1−x)y(1−y) (6.25)

which we will subtract from the residual. Note that the Jacobian is unchanged
because ths term is independent of the solution u. The modified residual func-
tion is

lr(DMDALocalInfo ∗info, PetscScalar ∗∗x, PetscScalar ∗∗f, void ∗ctx)
{
DM coordDA;
Vec coordinates;
DMDACoor2d ∗∗coords;
PetscReal lambda = ((AppCtx ∗) ctx)−>param;
PetscReal hx, hy, hxdhy, hydhx;
PetscInt i, j;

hx = 1.0/(PetscReal)(info−>mx−1);
hy = 1.0/(PetscReal)(info−>my−1);
hxdhy = hx/hy;
hydhx = hy/hx;
/∗ Retrieve coordinates ∗/
DMGetCoordinateDM(info−>da, &coordDA);
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DMGetCoordinates(info−>da, &coordinates);
DMDAVecGetArray(coordDA, coordinates, &coords);
for(j = info−>ys; j < info−>ys+info−>ym; ++j) {
for(i = info−>xs; i < info−>xs+info−>xm; ++i) {
PetscScalar u;

u = x[j][i];
x = coords[j][i].x;
y = coords[j][i].y;
/∗ Apply homogeneous Dirichlet conditions ∗/
if (i==0 || j==0 || i == M || j == N) {
f[j][i] = 2.0∗(hydhx+hxdhy)∗u; continue;
}
u xx = (2.0∗u − x[j][i−1] − x[j][i+1])∗hydhx;
u yy = (2.0∗u − x[j−1][i] − x[j+1][i])∗hxdhy;
f[j][i] = u xx + u yy − hx∗hy∗(lambda∗exp(u)
+ 2∗x∗(1 − x) + 2∗y∗(1 − y) − lambda∗exp(x∗(1 − x)∗y∗(1 − y)));

}
}
DMDAVecRestoreArray(coordDA, coordinates, &coords);
}

We can check the error using the L2 norm, also called the Root Mean Square
deviation (RMS),

Vec e;
PetscReal errorl2, errorinf;
PetscInt N;

VecDuplicate(x, &e);
if (MMS == 1) {FormExactSolution1(da, &user, e);}
else {FormExactSolution2(da, &user, e);}
VecAXPY(e, −1.0, x);
VecNorm(e, NORM 2, &errorl2);
VecNorm(e, NORM INFINITY, &errorinf);
VecGetSize(e, &N);
PetscPrintf(PETSC COMM WORLD, "N: %D error L2 %g Linf %g\n", N,
(double) errorl2/PetscSqrtReal(N), (double) errorinf);

VecDestroy(&e);

Now we can run a series of tests with increasing mesh size

for i in `seq 1 6`;
do
./ex5 -pc_type mg -pc_mg_levels 3 -pc_mg_galerkin \
-da_grid_x 17 -da_grid_y 17 -da_refine $i \
-mg_levels_ksp_norm_type unpreconditioned -mg_levels_ksp_chebyshev_esteig 0.5,1.1 \
-mg_levels_pc_type sor -pc_mg_type full -mms 1

done
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which outputs

N: 1089 error L2 1.35637e-14 Linf 3.02883e-14
N: 4225 error L2 1.36056e-14 Linf 2.98858e-14
N: 16641 error L2 3.05717e-13 Linf 8.70887e-13
N: 66049 error L2 5.53919e-14 Linf 1.83256e-13
N: 263169 error L2 1.96731e-07 Linf 4.24471e-07
N: 1050625 error L2 1.96912e-07 Linf 4.24397e-07

This illustrates a potential pitfall of MMS, namely that the solution will not
be “generic” enough. Here we get superconvergence at the vertices due to the
symmetric nature of the solution. If instead we choose

u∗ = sin(πx) sin(πy), (6.26)

which also fulfills the boundary conditions, and run with -mms 2, we get

N: 1089 error L2 0.00108949 Linf 0.0023403
N: 4225 error L2 0.000275821 Linf 0.000583337
N: 16641 error L2 6.94434e-05 Linf 0.000145726
N: 66049 error L2 1.74255e-05 Linf 3.64248e-05
N: 263169 error L2 4.36468e-06 Linf 9.10578e-06
N: 1050625 error L2 1.09222e-06 Linf 2.27641e-06

We can plot this using Python tools

import numpy as np
from pylab import legend, loglog, show, title, xlabel, ylabel

N = np.array([1089, 4225, 16641, 66049, 263169, 1050625])
el2 = np.array([0.00108949, 0.000275821, 6.94434e−05, 1.74255e−05,

4.36468e−06, 1.09222e−06])
einf = np.array([0.0023403, 0.000583337, 0.000145726, 3.64248e−05,

9.10578e−06, 2.27641e−06])

loglog(N, eL2, 'r', N, 0.9 ∗ N ∗∗ −1.0, 'r−−',
N, einf, 'g', N, 2.0 ∗ N ∗∗ −1.0, 'g−−',
N, eL2 ∗ np.sqrt(N), 'b', N, 0.9 ∗ N ∗∗ −0.5, 'b−−',)

title('SNES ex5 MMS $u = \sin(\pi x) \sin(\pi y)$')
xlabel('Number of Dof $N$')
ylabel('Solution Error $e$')
legend(['$L 2$', '$h^2 = N^{−1}$',

'$L \infty$', '$h^2 = N^{−1}$',
'$\ell 2$', '$h = N^{−1/2}$'], 'upper right')

show()

We see that the `2 norm has a slower rate of convergence1. A slightly slicker
script would parse the output of our simulation and plot it automatically, gen-
erating Fig. 6.3.

1Shown in Pascal Frey’s lecture notes for MA691, p.85

https://www.ljll.math.upmc.fr/frey/cours/UdC/ma691/ma691_ch6.pdf
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Figure 6.3: Using MMS in SNES ex5, we show that we get the expected rate of
convergence of the error in the L2, `2 and L∞ norms.

6.5 Problems

Problem VI.1 Change SNES ex5 to run in 1, 2, and 3 spatial dimensions.
Produce a mesh convergence graph similar to Fig. 6.3 for each dimension. Com-
ment on the dimension dependence of the convergence for each norm.

Problem VI.2

Part I Carry out the MMS procedure for a modified Bratu equation which
incorporates an inhomogeneous coefficient,

−∇ ·
(

tanh

(
x− 1

2

)
∇u
)
− λeu = 0, (6.27)

where λ = 6.0 as we used in the previous exercises. Use the same exact solutions
as shown in the text,

u∗ = x(1− x)y(1− y) u∗ = sin(πx) sin(πy). (6.28)

Create convergence graphs for the solutions in both the `2 and `∞ norms, as in
the text. This problem becomes very hard to solve as the mesh size is increased,
the opposite of the behavior we saw with the original equation. For example, if
we use our script from before
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for i in `seq 1 6`;
do
./ex5 -snes_type newtonls \
-da_grid_x 17 -da_grid_y 17 -da_refine $i \
-pc_type mg -pc_mg_levels 3 -pc_mg_galerkin \
-mg_levels_ksp_norm_type unpreconditioned -mg_levels_ksp_chebyshev_esteig 0.5,1.2 \
-mg_levels_pc_type sor -pc_mg_type full -mms 3 \

-snes_monitor -snes_converged_reason -ksp_converged_reason
done

we cannot even converge the first system.

0 SNES Function norm 4.865204926677e-01
Linear solve converged due to CONVERGED_RTOL iterations 3
1 SNES Function norm 5.168062931528e-02
Linear solve converged due to CONVERGED_RTOL iterations 15
2 SNES Function norm 4.184362140608e-02
Linear solve converged due to CONVERGED_RTOL iterations 23
3 SNES Function norm 3.866392229628e-02
Linear solve converged due to CONVERGED_RTOL iterations 25
4 SNES Function norm 3.606888512126e-02
Linear solve converged due to CONVERGED_RTOL iterations 30
5 SNES Function norm 3.410310612571e-02
Linear solve converged due to CONVERGED_RTOL iterations 58
6 SNES Function norm 3.294064502174e-02
Linear solve converged due to CONVERGED_RTOL iterations 57
7 SNES Function norm 3.291316232478e-02
Linear solve converged due to CONVERGED_RTOL iterations 54

Nonlinear solve did not converge due to DIVERGED_LINE_SEARCH iterations 7

Since we have control over the grid refinement, one common technique is to solve
a smaller problem and use this as the initial guess for the larger problem, which
is called grid sequencing. PETSc provides grid sequencing automatically using
the option -snes_grid_sequence, however we will have to alter our error checking
code to extract the final solution and grid by adding

ierr = SNESGetSolution(snes, &y);CHKERRQ(ierr);
ierr = SNESGetDM(snes, &dm);CHKERRQ(ierr);

Starting from a smaller grid,

for i in `seq 1 6`;
do
./ex5 -snes_type newtonls -snes_grid_sequence $i -da_refine 1 \
-ksp_rtol 1e-9 -pc_type mg -pc_mg_levels 3 -pc_mg_galerkin \
-mg_levels_ksp_norm_type unpreconditioned -mg_levels_ksp_chebyshev_esteig 0.5,1.2 \
-mg_levels_pc_type sor -pc_mg_type full -mms 3 \
-snes_monitor -snes_converged_reason -ksp_converged_reason

done

we can converge the first five systems,

0 SNES Function norm 6.805338772655e-01
Linear solve converged due to CONVERGED_RTOL iterations 4
1 SNES Function norm 5.154734539031e-01
Linear solve converged due to CONVERGED_RTOL iterations 4
2 SNES Function norm 5.899227765372e-02
Linear solve converged due to CONVERGED_RTOL iterations 2
3 SNES Function norm 4.111593886420e-03
Linear solve converged due to CONVERGED_RTOL iterations 3
4 SNES Function norm 2.234476660521e-05
Linear solve converged due to CONVERGED_RTOL iterations 3
5 SNES Function norm 1.179499962334e-09

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 5
0 SNES Function norm 9.350819446678e-03
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Linear solve converged due to CONVERGED_RTOL iterations 4
1 SNES Function norm 8.975872639470e-07
Linear solve converged due to CONVERGED_RTOL iterations 4
2 SNES Function norm 1.581449936603e-12

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 2
0 SNES Function norm 4.820528651869e-03
Linear solve converged due to CONVERGED_RTOL iterations 5
1 SNES Function norm 2.839396976835e-08
Linear solve converged due to CONVERGED_RTOL iterations 4
2 SNES Function norm 3.513911836431e-15

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 2
0 SNES Function norm 2.461494407946e-03
Linear solve converged due to CONVERGED_RTOL iterations 10
1 SNES Function norm 8.896591851778e-10
Linear solve converged due to CONVERGED_RTOL iterations 10
2 SNES Function norm 9.442247176540e-17

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 2
0 SNES Function norm 1.244744690374e-03
Linear solve converged due to CONVERGED_RTOL iterations 2807
1 SNES Function norm 2.782787902882e-11
Linear solve converged due to CONVERGED_RTOL iterations 2556
2 SNES Function norm 1.850505579361e-16

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 2
0 SNES Function norm 6.259834963960e-04
Linear solve converged due to CONVERGED_RTOL iterations 7049
1 SNES Function norm 8.694365205916e-13

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 1
0 SNES Function norm 3.139064083951e-04
Linear solve did not converge due to DIVERGED_ITS iterations 10000

Nonlinear solve did not converge due to DIVERGED_LINEAR_SOLVE iterations 0

which reveals that the problem is becoming quite ill-conditioned and our geo-
metric multigrid solver cannot cope with the variation in coefficient. For these
smaller serial problems, LU can be effective for checking convergence

for i in `seq 1 6`;
do
./ex5 -snes_type newtonls -snes_grid_sequence $i \
-da_refine 1 -ksp_rtol 1e-9 \
-pc_type lu -mms 3 \
-snes_converged_reason

done%$

and we see that if the linear systems can be solved, the nonlinear equation is
effectively preconditioned with grid sequencing.

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 2
N: 169 error l2 2.20735e-06 inf 7.9559e-05
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 2
N: 625 error l2 3.081e-07 inf 2.42794e-05
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 2
N: 2401 error l2 4.0427e-08 inf 8.29001e-06
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 2
N: 9409 error l2 5.16863e-09 inf 2.62871e-06
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 1
N: 37249 error l2 6.53061e-10 inf 7.96102e-07
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 1
N: 148225 error l2 8.20737e-11 inf 2.33813e-07

Part II Update the flop counting in the residual and Jacobian evaluation to
account for the additional flops in the new equation. Using the total flop count
output for each run, plot a work-precision diagram for this solve. The x-axis
should show the total work, and as a proxy we will use the flops executed. The
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y-axis shows the precision of the result, and here we will use the error. Make
this plot comparing two different solvers: SNES Newton using LU with grid
sequencing, and SNES Newton using GMRES/GMG with grid sequencing.

Extra Cedit Use a higher order approximation of the derivative, predict the
enhanced convergence, and demonstrate it with a convergence graph.

Problem VI.3

Part I Carry out the MMS procedure for an equation similar to Lane-Emden
Equation by modifying the Bratu example,

−∆u− uλ = 0, (6.29)

where λ = 1, 2, 5. Use the same exact solutions as shown in the text,

u∗ = x(1− x)y(1− y) u∗ = sin(πx) sin(πy). (6.30)

Create convergence graphs for the solutions in both the `2 and `∞ norms, as in
the text.

Part II Update the flop counting in the residual and Jacobian evaluation to
account for the additional flops in the new equation. Using the total flop count
output for each run, plot a work-precision diagram for this solve. The x-axis
should show the total work, and as a proxy we will use the flops executed. The
y-axis shows the precision of the result, and here we will use the error. Make
this plot comparing two different solvers: SNES Newton using LU, and SNES
Newton using GMRES/GMG.

Extra Cedit Use a higher order approximation of the derivative, predict the
enhanced convergence, and demonstrate it with a convergence graph.
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Chapter 7

Data Layout and
Discretization II

7.1 Unstructured Meshes

The PETSc DMPlex class is a generic interface for manifold topology, more
precisely it encodes a CW complex (Wikipedia 2015a; Hatcher 2002). It is
designed to orthogonalize the concerns of topology/geometry, discretization,
data layout, and the solver. In most PDE codes, these are all inextricably
entangled when evaluating residuals and Jacobians, such that a change in one
feature, say the discretization, entails rewriting the majority of the code. This
point of view is critical for library development, rather than the construction of
monolithic, inflexible applications.

The ability to compare algorithms which use different meshes, discretiza-
tions, problem formulations, and solvers is crucial to the advance of computa-
tional science, and its maturation as a discipline. One of the most important
contributions of PETSc was to make it easy to compare different Krylov solvers,
as well as a subset of domain decomposition preconditioners. Not coincidentally,
publication in the field of Krylov solvers was nearly wiped out as it became
obvious that the available gains were quite small. It would be healthy for com-
putational science to see a similar decline in publications for rival discretizations
and meshes once the obvious candidates for important problems are identified
by comparison.

The main advantage of DMPlex in representing topology is that it treats all
the different pieces of a mesh, e.g. cells, faces, edges, vertices in exactly the
same way. This allows the interface to be very small and simple, while remain-
ing flexible and general. This also allows dimension independent programming,
which means that the same algorithm can be used unchanged for meshes of
different shapes and dimensions.

All pieces of the mesh are identified as mesh points, represented internals
as just a PetscInt so that there is a total order on the topology. A mesh is

93



94 CHAPTER 7. DATA LAYOUT AND DISCRETIZATION II

2

3

4

50 1

Vertices

Cells

Depth 0

Depth 1

2 3 4 5

0 1

Figure 7.1: A 2D doublet mesh, two triangles sharing an edge along with the
Hasse diagram for this mesh, expressed as a DAG.

built by relating points to other points, in particular specifying a “covering”
relation among the points. For example, an edge is defined by being covered by
two vertices, and a triangle can be defined by begin covered by three edges (or
even by three vertices). In fact, this structure has been known for a long time.
It is a Hasse Diagram (Wikipedia 2015b), which is a Directed Acyclic Graph
(DAG) representing a cell complex using the covering relation. The graph edges
represent the relation, which is a poset (partially-ordered set), and when it is
segregated by dimension (or breadth-first level) a ranked poset.

For example, we can encode the triangular doublet mesh in Fig. 7.1 using
the DAG shown below it. We can use the same scheme to represent the edges
as well, show in Fig. 7.2. We can also represent a quadrilateral mesh, Fig. 7.3
and Fig. 7.4, and a tetrahedral mesh, Fig. 7.5. In fact, any CW-complex can be
represented, which includes all conforming meshes we have seen used in compu-
tational science. Recent work IsaacKnepley2016 extends the representation
to cover non-conforming meshes as well.

We can use the PETSc API directly to construct a mesh, for example one in
Fig. 7.2. We first consecutively number the mesh pieces. The PETSc convention
is to number first cells, then vertices, then faces, and then edges. This convention
can be violated, but many of the higher level tools require it. The set of points
present in a mesh is declared using,

DMPlexSetChart(dm, 0, 11);

We then define the covering relation, which we call the cone. For any point p
in the DAG, its cone consists of the in-edges. In order to preallocate our data
structure, we first setup sizes,

DMPlexSetConeSize(dm, 0, 3);
DMPlexSetConeSize(dm, 1, 3);
DMPlexSetConeSize(dm, 6, 2);
DMPlexSetConeSize(dm, 7, 2);
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Figure 7.2: The 2D doublet mesh from Fig. 7.1, now incorporating edges, along
with its Hasse diagram.
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Figure 7.3: A 2D doublet mesh, two quadrilaterals sharing an edge along with
the Hasse diagram for this mesh, expressed as a DAG.
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Figure 7.4: The 2D doublet mesh from Fig. 7.3, now incorporating edges, along
with its Hasse diagram.
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Figure 7.5: A 3D interpolated doublet mesh, two tetrahedra sharing a face,
along with its Hasse diagram.
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DMPlexSetConeSize(dm, 8, 2);
DMPlexSetConeSize(dm, 9, 2);
DMPlexSetConeSize(dm, 10, 2);
DMSetUp(dm);

and then point values,

DMPlexSetCone(dm, 0, [6, 7, 8]);
DMPlexSetCone(dm, 1, [8, 9, 10]);
DMPlexSetCone(dm, 6, [2, 3]);
DMPlexSetCone(dm, 7, [3, 4]);
DMPlexSetCone(dm, 8, [4, 2]);
DMPlexSetCone(dm, 9, [4, 5]);
DMPlexSetCone(dm, 10, [5, 2]);

where the arrays arguments are mnemonic, in that the actual call would have
a pointer to that array. There is also an API for the dual relation, using DM-
PlexSetSupportSize() and DMPlexSetSupport(), but this can be calculated au-
tomatically by calling DMPlexSymmetrize(dm). In order to support efficient
queries, we also want to construct fast search structures, indices, for the differ-
ent types of points, which is done using DMPlexStratify(dm).

It is unusual for the user to construct the mesh at such a low level. Instead, a
typical construction would use DMPlexCreateFromCellList() which takes the
cell-vertex list and coordinates as input, or DMPlexCreateFromFile() which
supports a number of formats such as Gmsh, ExodusII, and Fluent CAS.

By focusing on the key topological relations, the interface can be both con-
cise and quite general (Knepley and Karpeev 2009). It is expressed as a sin-
gle relation over the points, “covering”, and ignores the extraneous detail that
plagues other interfaces and implementations. There is no large enumeration of
cell types, separate interface functions are not necessary for pieces of different
dimension, and the implementation is quite small and easy to optimize since it
is built from common graph operations. Moreover, many complex operations
become much simpler. For example, the mesh dual can be obtained simply by
reversing arrows in the DAG.

7.1.1 Basic Operations

The usefulness of DMPlex would not extend much beyond being a canonical
representation if important solution strategies, such a finite elements or finite
volumes for PDEs, could not be expressed by generic operations over the struc-
ture. In fact, we will strive to write dimension independent algorithms, so that
our code will not change depending on spatial dimension, cell shape, or mesh
composition.

The basic operations on a DMPlex object can be reduced to graph operations
on its Hasse diagram. For example, to find the set of points which cover another
point we use the DMPlexGetCone() operation, which is just the set of in-edges
for the DAG vertex, as shown in Fig. 7.6. Also in that figure, we see that the
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We begin with the basic cov-
ering relation,

cone(0) = {2, 3, 4}
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reverse arrows to get the
dual operation,

support(9) = {3, 4, 6}
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Figure 7.6: The basic operations are illustrated on a doublet mesh.

dual operation, the set of points covered by a given point, is just the set of out-
edges. Thinking in this way makes it easy to write code which is independent
of the particular features of a mesh. For example, suppose we wanted to get
the set of neighbors for a given cell, meaning that they share a face. For a
point p, this set is just supp(cone(p)). Notice that this works for triangles,
quads, tetrahedra, hexes, and any other shape or dimension. It also works if I
am asking the question about a boundary face in a higher dimensional mesh,
and all using the same code.

Very often we are interested not only in a region of the domain, such as a cell,
but in its closure, especially in the context of finite element methods. DMPlex
provides the transitive closure of the basic operations DMPlexGetCone() and
DMPlexGetSupport() as DMPlexGetClosure() and DMPlexGetStar(), respec-
tively. These operations are illustrated in Fig. 7.7. Using closure can eliminate
awkward nested loop structures, and is dimension independent whereas the
number of loops often depends on the dimension.

Some queries are not easily answered using just adjacency information, but
really require a set operation. For example, do two cells shared a common face,
and if so what is it? We can answer these queries by imposing a lattice structure
on the poset, and adding the associated meet and join operations. These are
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add the transitive closure of
the relation,

closure(0) = {0, 2, 3, 4, 7, 8, 9}
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and the transitive closure of
the dual,

star(7) = {7, 2, 3, 0}
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Figure 7.7: The transitive closure operations are illustrated on a doublet mesh.
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and augment with lattice
operations.

meet(0, 1) = {4}
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and augment with lattice
operations.

join(8, 9) = {4}
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Figure 7.8: The lattice operations are illustrated on a doublet mesh.

illustrated in Fig. 7.8.

7.1.2 Labels

It is very common for mesh subsets to be labeled in some way. For example,
if a boundary condition should be applied to a section of the mesh boundary,
or refinement should take place over part of the domain, or if part of the mesh
should be communicated to another process, and for many other reasons, we
would like to mark a subset of mesh points, and perhaps have many such sets.
PETSc provides the DMLabel class to represent these markings.

A DMLabel is a bi-directional map from integers to sets of mesh points, of-
ten called a multimap. While it is possible to assign a given point to more
than one integer value, only a single value will be returned on reverse lookup.
The implementation uses hash tables for efficient creation, and sorted arrays
for optimized lookup. If explicit bounds on the points are given, using the in-
terface method DMLabelCreateIndex(label, pStart, pEnd), extremely fast
membership queries are possible using bitmaps.
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7.1.3 Using DMPlex in PETSc

The most common way to create a DMPlex is to read in the output of a mesh
generator

DMPlexCreateFromFile(comm, filename, interpolate, &dm);

where the interpolate flag tells PETSc whether to create the intermediate
edges and faces in the mesh, or just return cells and vertices. Some mesh
generators, Triangle (J. R. Shewchuk 1996; J. Shewchuk 2005) and TetGen (Si
2015; Si 2005), are accessible at the library level. If the user has a boundary
DM, it can be meshed in using

DMPlexGenerate(dmBoundary, NULL, interpolate, &dm);

and this strategy is used to make stock meshes of the unit cube for simplices,
DMPlexCreateBoxMesh(comm, dim, interpolate, &dm). For tensor product
cells, the interface is much closer to the DMDA,

DMPlexCreateHexBoxMesh(comm, dim, cells,
DM BOUNDARY NONE, DM BOUNDARY NONE, DM BOUNDARY NONE, &dm);

where the user sets the number of cells and the boundary behavior for each
dimension. A mesh can also be stored and loaded from an HDF5 file,

DMCreate(comm, &dm);
DMSetType(dm, DMPLEX);
DMLoad(dm, viewer);

where the mesh has been previously saved using DMView().
New meshes can be constructed by refinement using the generic DM interface,

DMRefine(dm, comm, &dmRef);
if (dmRef) {
DMDestroy(&dm);
dm = dmRef;
}

A volume constraint on the largest cell can be set using DMPlexSetRefinementLimit(),
or for nonuniform refinement using DMPlexSetRefinementFunction(). How-
ever, this mechanism uses the mesh generators themselves, and is thus restricted
to serial meshes. The eventual incorporation of Pragmatic (Rokos and Gorman
2013) functionality will remove this restriction. Parallel uniform refinement is
available by first setting the a flag, DMPlexSetRefinementUniform(dm, PETSC TRUE),
and then calling DMRefine(), and it can also be accomplished with the generic
DM option -dm refine num where num is the number of refinement levels.

A serial mesh can be automatically partitioned and distributed using,

DMPlexDistribute(dm, 0, NULL, &dmDist);
if (dmDist) {
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DMDestroy(&dm);
dm = dmDist;
}

where the 0 is an amount of overlap for the partition, in terms of number of
cells, and NULL can optionally be a PetscSF pointer that returns the commu-
nication pattern for shared points. This call uses the PetscPartitioner class
underneath, and will be discussed further in Section 7.4.

When reading the mesh from a file, sets of mesh points are read in as DMLabel
objects which are stored in the DMPlex. If none exist, the mesh boundary can
be automatically marked using

DMLabel label;

DMPlexCreateLabel(dm, "boundary");
DMPlexGetLabel(dm, "boundary", &label);
DMPlexMarkBoundaryFaces(dm, label);
DMPlexLabelComplete(dm, label);

The third call marks only boundary faces (edges in 2D), and the fourth call
adds the closure of each face to the label.

7.2 Data Layout

The strongest links between solvers and discretizations have to do with the the
layout of data over a mesh. For instance,

• parallel partitioning, perhaps with overlap,

• division into fields,

• blocking of unknowns, and

• ordering of unknowns,

all spring from the data layout. In order to enable modularity, we encode all
the information above in a simple data structure that can be understood by the
linear algebra engine in PETSc without any reference to the mesh (topology)
or discretization (analysis), the PetscSection object.

The name section was chosen to draw parallels between the section of a
fiber bundle from analysis on manifolds and the linear algebraic vector with
additional structure in PETSc. We can imagine that the additional structure
in the large linear algebra space comes from gluing together many small spaces
representing the partitions. This is exactly what happens in a fiber bundle,
which glues together spaces associated with each point of a base space. The
section is a thing that chooses values in each of the small spaces, just as our
vector does. The analogy is not exact because we do not require that the vector
satisfy additional constraints (e.g. trivialization), but this is a topic for future
exploration.
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7.2.1 Data Layout on Unstructured Grids

Data is associated to a mesh using the PetscSection object, which can be
thought of as a generalization of PetscLayout, in the same way that a fiber
bundle is a generalization of the normal Euclidean basis used in linear algebra.
With PetscLayout, we associate a unit vector (ei) with every point in the space,
and just divide up points between a set of processes, which we will represent
as a contiguous set of points indexed by MPI rank. Thus the full space is just
the direct sum of the spaces for each partition. Using PetscSection, we can
associate a set of dofs, a small space {ek}, with each point, and though our
points must be contiguous like PetscLayout, now they can be in any range
[pStart,pEnd) since they are abstract entities. For mesh layout, the point space
will usually be a subset of the mesh points, but we can use any index space,
such as the set of partitions or the set of unknowns (we do this when describing
adjacency for Jacobian construction).

The sequence for setting up a PetscSection is the following:

1. Specify the chart, or range [pStart,pEnd),

2. Specify the number of dofs per point, and

3. Call PetscSectionSetUp().

For example, using the triangular doublet mesh from Fig. 7.2, we can layout
data for a continuous Galerkin P3 finite element method, shown in Figure 7.9,

PetscInt pStart, pEnd, cStart, cEnd, c, vStart, vEnd, v, eStart, eEnd, e;

DMPlexGetChart(dm, &pStart, &pEnd);
DMPlexGetHeightStratum(dm, 0, &cStart, &cEnd);
DMPlexGetDepthStratum(dm, 1, &eStart, &eEnd);
DMPlexGetDepthStratum(dm, 0, &vStart, &vEnd);
PetscSectionSetChart(s, pStart, pEnd);
/∗ One dof on each vertex ∗/
for (v = vStart; v < vEnd; ++v) PetscSectionSetDof(s, v, 1);
/∗ Two dofs on each edge ∗/
for (e = eStart; e < eEnd; ++e) PetscSectionSetDof(s, e, 2);
/∗ One dof on each cell ∗/
for (c = cStart; c < cEnd; ++c) PetscSectionSetDof(s, c, 1);
PetscSectionSetUp(s);

Now a local vector can be created manually using this layout,

Vec lv;
PetscInt n;

PetscSectionGetStorageSize(s, &n);
VecSetSizes(lv, n, PETSC DETERMINE);
VecSetFromOptions(lv);



104 CHAPTER 7. DATA LAYOUT AND DISCRETIZATION II

v0 2

v1

3

v2

4

v35

e0

e1
6

e2

e3

7

e4

e5
8

e6

e7
9

e8

e9
10

f00 f1 1

e0 e1

6

e2 e3

7

e4 e5

8
e6 e7

9

e8 e9

10
v0

2

v1

3

v2

4

v3

5

f0

0

f1

1

Figure 7.9: Data layout over a triangular doublet mesh using a P3 continuous
Galerkin finite element. The left portion shows the topological data layout, and
the right shows the section corresponding to it.

however, it is usually easier to use the DM directly, which also provides global
vectors,

Vec lv, gv;

DMSetDefaultSection(dm, s);
DMGetLocalVector(dm, &lv);
DMGetGlobalVector(dm, &gv);

7.2.2 Boundary Conditions

Essential boundary conditions can be represented by marking unknowns which
are constrained. When we set the number of dofs on a given mesh point, we
also set the number of constraints

PetscSectionSetConstraintDof(section, point, numConstraints);

and we can also associate constraints with a given field

PetscSectionSetFieldConstraintDof(section, point, field, numConstraints);

When PetscSectionSetUp() is finally called, another section with this infor-
mation is created. After that, we can let the section know which local dofs on
a mesh point are actually constrained. For example, we might fix the x- and
z-coorindates of displacement for an elasticity problem,

PetscSectionSetConstraintIndices(section, point, [0, 2]);

With this information, PETSc can now construct the proper local-to-global
mapping.
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In the future, PETSc should have an interface which allows the user to
prescribe a linear transformation between the local and global basis. This would
allow fixing a linear combination of local unknowns instead of just unknowns
themselves. Right now, PETSc supports a very limited form of this for hanging
node constraints using the DMForest class, which represents non-conforming
octree meshes. Hanging node constraints are implemented by having the DM
automatically calculate the constraint matrices mapping from local to global
unknowns. This interface could be expanded to allow users to soecify both the
connectivity pattern of the constraints and the constraint mapping.

7.3 Using Unstructured Data in PETSc

Most discretizations do not manually construct a data layout, but instead have
a rule for assigning dofs to certain parts of a mesh. For example, finite elements
assign dofs based upon the dimension of the local space and the continuity re-
quirements for the interpolant. The PetscFE object encapsulates this descrip-
tion, as does PetscFV, and they can be used to generate a section automatically
when DMGetDefaultSection() is called for the first time. In SNES ex12, we
solve the Poisson equation with optional nonlinear permittivity. A PetscFE ob-
ject is created and inserted into a PetscDS, which holds a discretization for each
field in the solution. The PetscDS allows the DM to construct a PetscSection
for the data layout automatically from the discretization information. In SNES
ex62, the same thing is done for the Stokes problem, which has multiple fields.

Checkpoint and visualizing complex data layouts can be difficult, and there
is still no standard way to handling this. It seems that current best practice
is to use HDF5 (The HDF Group 2015) to store both the original data, and
a subsampled version appropriate for visualization. Then the subsampled data
can be exposed to a visualization program, such as ParaView (Kitware 2015a),
using XDMF metadata (Kitware 2015b). Note here that when checkpointing
and visualizing, we want to insert boundary values and output in the canonical
basis, rather than the global basis we might use to solve the problem.

PETSc objects can be easily output to HDF5 using builtin viewers. First,
we place optional view statements in the code,

PetscObjectViewFromOptions((PetscObject) dm, NULL, "−domain view");
PetscObjectViewFromOptions((PetscObject) u, NULL, "−sol view");

and then on the command line we use the PETSc viewer syntax

-domain_view hdf5:sol.h5 -sol_view hdf5:sol.h5::append

so that both objects are stored to sol.h5. The DM output routine also stores a
subsampled version of the data, so that we can run the PETSc XMDF generator
on the file,

${PETSC_DIR}/bin/petsc_gen_xdmf.py sol.h5

to produce sol.xdmf, which can be visualized with ParaView. The full syntax for
a view option is

http://www.mcs.anl.gov/petsc/petsc-current/src/snes/examples/tutorials/ex12.c.html
http://www.mcs.anl.gov/petsc/petsc-current/src/snes/examples/tutorials/ex62.c.html
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-foo_view <type>:<filename>:<format>:<mode>

where ommitted arguments just use the default.

7.4 Parallel Operations for Unstructured Meshes
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Chapter 8

Simple Finite Elements

8.1 Bases

Consider the space of linear polynomials P1 on the 2D simplex S. The monomial
basis for P1 is just {1, x, y}, however this is not the most convenient basis for
computing. We often want an interpolatory basis from which we can read off
the value at a given point. If our simplex has vertices (−1,−1)–(1,−1)–(−1, 1)
which we label vi, then the basis

φ0 = −x+ y

2
, (8.1)

φ1 =
1 + x

2
, (8.2)

φ2 =
1 + y

2
, (8.3)

has the property that φi is 1 at vi and zero at the other vertices, which we can
express as

φi(vj) = δij . (8.4)

We would like a basis for the dual space P ′1 of linear functionals on P1, {ψi},
with a diagonal Vandermonde matrix,

ψi(φj) = δij . (8.5)

We can use Eq. 8.4 to see that point evaluation functionals at the vertices will
give us exactly what we want,

ψi(f) =

∫
S

δ(~x− vi)f(~x) (8.6)

so that

ψi(φj) = φj(vi) = δij . (8.7)
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However, we could instead use elements of P1 itself since by the Riesz Represen-
tation Theorem (Fréchet 1907; Riesz 1907; Riesz 1909), we have an identification
of the dual space with the original space. We can take a generic linear poly-
nomial with three free parameters and require conjugacy, Eq. 8.5. The first
equation is

1 =

∫
S

φ0 · (ax+ by + c) (8.8)

= −1

3
a− 1

3
b+

2

3
c. (8.9)

The other integrals are

0 =

∫
S

φ1 · (ax+ by + c) (8.10)

= −1

3
b+

2

3
c, (8.11)

and

0 =

∫
S

φ2 · (ax+ by + c) (8.12)

= −1

3
a+

2

3
c. (8.13)

We can solve this linear system

1

3

−1 −1 2
0 −1 2
−1 0 2

ab
c

 =

1
0
0

 , (8.14)

which gives the polynomial

ψ0 = −x− y − 1

2
. (8.15)

A similar thing can be done for the other functions by solving with rhs (0, 1, 0)
and (0, 0, 1), giving

ψ1 = x+
1

2
, (8.16)

ψ2 = y +
1

2
. (8.17)

An alternative way to obtain these functions is to use the Riesz map, that is to
solve

−∆ui = ψi. (8.18)
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From before, we have the discretization of ∆ in the P1 basis, and solving with
the first basis functional as the rhs forcing, 1 − 1

2 − 1
2

− 1
2

1
2 0

− 1
2 0 1

2

c0c1
c2

 =

1
0
0

 . (8.19)

The system is singular, so we make the rhs consistent by removing the compo-
nent in the null space, 1 − 1

2 − 1
2

− 1
2

1
2 0

− 1
2 0 1

2

c0c1
c2

 =

 2
−1
−1

 . (8.20)

We can do the same with the other functionals, and we obtain exactly the same
basis as before,  3

2
− 1

2
− 1

2

 =⇒ 3

2
φ0(x, y)− 1

2
φ1(x, y)− 1

2
φ2(x, y) (8.21)

= −x− y − 1/2, (8.22)− 1
2

3
2
− 1

2

 =⇒ 3

2
φ0(x, y)− 1

2
φ1(x, y)− 1

2
φ2(x, y) (8.23)

= x+ 1/2, (8.24)− 1
2
− 1

2
3
2

 =⇒ 3

2
φ0(x, y)− 1

2
φ1(x, y)− 1

2
φ2(x, y) (8.25)

= y + 1/2. (8.26)

When we represent the dual basis in our code, we can make use of the Riesz-
Markov-Kakutani Representation Theorem (Riesz 1909; Markov 1938; Kaku-
tani 1941; Wikipedia 2015) which says that any positive linear functional ψ on
Cc(X), the space of continuous compactly supported complex-valued functions
on a locally compact Hausdorff space X,there is a unique regular Borel measure
µ on X such that

ψ(f) =

∫
X

f(x)dµ(x). (8.27)

Since we are operating in the purely discrete world of the computer, we will
represent these measures by a quadrature rule∫

X

f(x)dµ(x) ≈
∑
q

wqf(xq). (8.28)

Thus our dual space bases may all be stored internally as sets of quadrature
rules supported on a cell and its boundary.
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8.2 Evaluating Residuals

The evaluation of a residual, or Jacobian, for most discretizations has the fol-
lowing general form:

• Traverse the mesh, picking out pieces which in general overlap,

• Extract some values from the solution vector, associated with this piece,

• Calculate some values for the piece, and

• Insert these values into the residual vector

DMPlex separates these different concerns by passing sets of points, which are
just integers, from mesh traversal routines to data extraction routines and back.
In this way, the PetscSection which structures the data inside a Vec does not
need to know anything about the mesh inside a DMPlex (Knepley et al. 2013).

The most common mesh traversal is the transitive closure of a point, which is
exactly the transitive closure of a point in the DAG using the covering relation.
Note that this closure can be calculated orienting the arrows in either direction.
For example, in a finite element calculation, we calculate an integral over the
closure of each element, and then sum up the contributions to the basis function
coefficients. The closure of the element can be expressed discretely as the tran-
sitive closure of the element point in the mesh DAG, where each point also has
an orientation. Then we can retrieve the data using PetscSection methods,

PetscScalar ∗a;
PetscInt numPoints, ∗points = PETSC NULL, p;

VecGetArray(u, &a);
DMPlexGetTransitiveClosure(dm, cell, PETSC TRUE, &numPoints, &points);
for (p = 0; p < numPoints∗2; p += 2) {
PetscInt dof, off, d;

PetscSectionGetDof(section, points[p], &dof);
PetscSectionGetOffset(section, points[p], &off);
for (d = 0; d < dof; ++d) {
myfunc(a[off+d]);
}
}
DMPlexRestoreTransitiveClosure(dm, cell, PETSC TRUE, &numPoints, &points);
VecRestoreArray(u, &a);

Note that the closure operation return both points and and orientation for each
point. We ignore the orientations here since we are just retrieving data on each
point, and the closure operation itself has used the orientation information to
properly order the points. This operation is so common, that we have built a
convenience method around it which returns the values in a contiguous array,
correctly taking into account the orientations of various mesh points,
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const PetscScalar ∗values;
PetscInt csize;

DMPlexVecGetClosure(dm, section, u, cell, &csize, &values);
/∗ Do integral in quadrature loop ∗/
DMPlexVecRestoreClosure(dm, section, u, cell, &csize, &values);
DMPlexVecSetClosure(dm, section, residual, cell, &r, ADD VALUES);

A simple example of this kind of calculation is in DMPlexComputeL2Diff().
Note that there is no restriction on the type of cell or dimension of the mesh in
the code above, so it will work for polyhedral cells, hybrid meshes, and meshes
of any dimension, without change. We can also reverse the covering relation,
so that the code works for finite volume methods where we want the data from
neighboring cells for each face

PetscScalar ∗a;
PetscInt points[2∗2], numPoints, p, dofA, offA, dofB, offB;

VecGetArray(u, &a);
DMPlexGetTransitiveClosure(dm, cell, PETSC FALSE, &numPoints, &points);
assert(numPoints == 2);
PetscSectionGetDof(section, points[0∗2], &dofA);
PetscSectionGetDof(section, points[1∗2], &dofB);
assert(dofA == dofB);
PetscSectionGetOffset(section, points[0∗2], &offA);
PetscSectionGetOffset(section, points[1∗2], &offB);
myfunc(&a[offA], &a[offB]);
VecRestoreArray(u, &a);

This kind of calculation is used in TS ex11, which solves hyperbolic problems
such as advection or the shallow water equations.

8.3 MMS
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Chapter 9

Performance Modeling

Without a model, performance measurements are meaningless!

— Matthew G. Knepley

Physical models are essential to our understanding of reality. They allow us
to subsume a huge amount of experimental data into an understandable frame-
work, which we use for validation and predicition. In the same way, performance
models are required in order to make sense of the mass of performance data. For
example, if we measure the time it takes for a code to run, is that fast or slow?
Can it be improved? Will it run in the same time for a related problem? These
are all questions which cannot be answered without a model of the performance.

When choosing metrics, its always best to start with a goal, and then ex-
plain how to achieve that goal. For example, if the goal is to “Run a particular
problem as fast as possible in parallel”, then strong scaling is a good metric.
It shows you how much time improvement you get by adding more processors.
However, suppose that you insert redundant work into my solver which is per-
fectly parallel, such as recalculation of coefficients which can be stored. Now I
can show perfect strong scaling, but this is not the most efficient way to im-
plement this solver. In the same way, I can add more streaming operations
to make my computation bandwidth constrained and achieve the bandwidth
peak. Thus, we should keep in mind that any performance metric, with the
possible exception of time to solution, can be gamed, in the sense that it can be
maximized at the expense of another desirable feature. How can I undercover
this kind of underhanded benchmarking, and more importantly, how can I know
when my algorithm is “improvable”? You must appeal to performance models,
which demonstrates their absolute necessity in benchmarking. In addition, this
makes it important to use several complementary measures of code performance
and accuracy, and to express the tradeoffs visually if possible.

113
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9.1 The STREAM Benchmark

STREAM is a simple benchmark program measuring sustainable memory band-
width, available from http://www.cs.virginia.edu/stream/. It does this by per-
forming a collection of vector operations, such as Triad (WAXPY): w = y+αx,
for which the datasets outstrip cache size. In Table 9.1, we show some repre-
sentative STREAM numbers, along with the maximum flop rate for the triad
operation as a percentage of peak performance. Clearly, for these vector op-
erations we cannot hope to achieve much at all of peak performance, and this
trend will prove robust throughout numerical computing.

Machine Peak (MF/s) Triad (MB/s) MF/MW Eq. MF/s
Matt’s Laptop 1700 1122.4 12.1 93.5 (5.5%)
Intel Core2 Quad 38400 5312.0 57.8 442.7 (1.2%)
Tesla 1060C 984000 102000.0* 77.2 8500.0 (0.8%)

Table 9.1: Bandwidth limited machine performance

The STREAM benchmark can be run from PETSc using the make system,

cd ${PETSC_DIR}
make NPMAX=4 streams

where 4 is replaced by the number of cores on the machine in question. This,
however, can produce substandard results on multicore machines due to infelic-
itous mapping of memory to different sockets. This can be alleviated using a
flag for the MPI launcher (below we use MPICH installed by PETSc),

make NPMAX=4 MPIEXEC="${PETSC_DIR}/${PETSC_ARCH}/bin/mpiexec --bind-to socket" streams

and the OpenMPI equivalent is --bind-to-socket.

9.2 Building a Model

A performance model should include measures such as

• computation,

• memory usage,

• communication,

• bandwidth,

• achievable concurrency,

and perhaps others. It allows us both to verify the behavior of a particular
implementation or architecture, and also predict the behavior for a new machine
or related problem. In this class, we will mainly be interested in the tradeoff
between computation and communication, which controls the performance of

http://www.cs.virginia.edu/stream/
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most of scientific computing. Our key performance indicator, which we will call
the arithmetic intensity β, will be the ratio of flops executed to bytes transferred.
We will designate the unit F

B as the Keyes, denoted Ky. The balance factor is
a characteristic of the implementation of an algorithm.

Let us begin with an implementation A of an algorithm A. Suppose that we
are running our implementation on a machine with peak flop rate rpeak. The
bandwidth required to run A at this peak rate, breq, is given by

breq =
rpeak

β
. (9.1)

It could be that our machine bandwidth bpeak is less than breq, which means
we cannot achieve the peak flop rate. This is the case for almost all numerical
computing today, with the exception of BLAS 3 computations such as DGEMM.
Using the peak bandwidth bpeak, we can get the maximum flop rate rmax for an
algorithm

rmax = βbpeak (9.2)

We will first construct a model for a simple BLAS operation, AXPY, which
adds two vectors element-wise and updates an input vector with the sum,

~y ← α~x+ ~y. (9.3)

If the vectors are both of length N and store b-byte numbers, then this operation
performs 2N flops and accesses (3N + 1)b bytes of data, since N bytes are
retrieved for x and y, 1 byte for α, and N bytes are written back to y. Here we
simplify the problem by not distinguishing loads and stores. The balance factor
for this computation is then

β =
2NF

(3N + 1)bB
≈ 2

3b
Ky (9.4)

which for double precision numbers is 1
12 . For my Mac Air laptop, rpeak =

1700 MF/s, implying breq = 2550b MB/s which is much greater than bpeak. The
peak bandwidth bpeak = 1122 MB/s on the Air implies that rmax = 748

b MF/s,
93.5 MF/s which is 5.5% of rpeak. This dismal number is all too common in
sparse algorithms, where most computations today run at several percent of
peak floating point performance.

9.3 The Roofline Model

The Roofline model (Williams, Waterman, and Patterson 2009; Williams and
et. al. n.d.) is a performance analysis framework which has the stated pur-
pose to “integrate in-core performance, memory bandwidth, and locality into
a single readily understandable performance figure”, and is well explained in
this talk (Williams and Patterson 2008). However, all locality information is

http://crd.lbl.gov/assets/pubs_presos/parlab08-roofline-talk.pdf
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contained in the achievable memory bandwidth, so it is not as fine-grained as
the external memory model (Aggarwal and Vitter 1988) which we will see in
Section 9.5. The “roof” in the model is the bound on computation performance
we have from Section 9.2,

r = min

{
rpeak

bpeakβ
(9.5)

and when plotted it looks like the side of a roof on a house, as in Fig 9.1. The
flat section at the top is the bound on peak computational performance coming
from the processor itself, and as Fig 9.1 demonstrates, this bound is sensitive to
optimizations such as use of SIMD instructions, or vectorization, fused instruc-
tions such a fused-multiply-add (FMA), and instruction level parallelism. The
sloping part of the graph is the performance limited by memory bandwidth. On
a log-log plot, this has unit slope (since the exponent of β is unity) and the
intercept is determined by bpeak. Thus optimizations such as prefetching, unit
stride, and tiling will translate this line.

Like any performance measure, however, this can be “gamed” in the sense
that we can produce an algorithm which appears to be optimal by this measure,
but is in fact unusable. For example, suppose that we have bandwidth-limited
algorithm to solve a linear system, such as classical multigrid for the Poisson
equation. We could add many small DGEMM calls to shift the arithmetic
intensity and obtain almost rpeak. Since we nowhere compare algorithms in
terms of time-to-solution, it is difficult to see that we are artificially inflating
the computational demands. Alternatively, we may have an algorithm with a
larger β which is difficult to optimize, such as a Q2 finite element assembly
and solve for a complex PDE. We can choose to parallelize the computation
by vectorizing over basis functions, taking each quadrature point in turn. This
vectorizes beautifully and requires very little local memory, but pulls all finite
element coefficients from global memory for each quadrature point, rather than
a single time. Thus β decreases, but our bandwidth utilization goes up, making
the overall algorithm look more efficient, even though it is much slower.

9.4 Sparse Matrix-Vector Product (SpMV)

The Sparse Matrix-Vector Product (SpMV) is today a workhorse of scientific
computing. It is a central kernel is iterative linear and nonlinear solvers for
PDE, and now for many graph algorithms. An excellent performance analysis
of SpMV is given in (Gropp et al. 1999), which we will follow closely. For
this simple model, we assume that there are no conflict cache misses, meaning
each matrix and vector entry is loaded into cache only once, and no latency
for memory references, so each load or store takes a single cycle. The SpMV
for a matrix with m rows and nz non-zero elements using AIJ storage being
multiplied with V vectors is shown below, annotated with the kind of assembly
instructions generated by each statement,
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for (i = 0, i < m; i++) {
jrow = ia(i+1) // 1 Of, AT, Ld
ncol = ia(i+1) − ia(i) // 1 Iop
Initialize, sum1, ..., sumV // V Ld
for (j = 0; j < ncol; j++) { // 1 Ld
fetch ja(jrow), a(jrow),

x1(ja(jrow)), ..., xV(ja(jrow)) // 1 Of, V+2 AT, V+2 Ld
do V fmadd (floating multiply add) // 2V Fop
jrow++
} // 1 Iop, 1 Br
Store sum1, ..., sumV in
y1(i), ..., yV(i) // 1 Of, V AT, V St

} // 1 Iop, 1 Br

where AT is address translation, Br is branch, Iop is integer operation, Fop is
floating-point operation, Of is offset calculation, Ld is load, and St is store. In
each outer loop, we load the column offset and store V vector elements. In
each inner loop, we need to transfer one integer (ja column array) and V + 1
doubles (one matrix element and V vector elements) and we do V floating-point
multiply-add (fmadd) operations or 2V flops. We therefore communicate

m (bint + V bdouble) + nz (bint + (V + 1)bdouble)) (9.6)

= 4(m+ nz) + 8(mV + nz(V + 1)) (9.7)

≈ 4(m+ nz) + 8(2mV + nz) (9.8)

where the third line follows from the perfect cache assumption (since elements
of the vectors will not be loaded more than once), so that

β =
2nzV

4(m+ nz) + 8(2mV + nz)
Ky =

1(
8 + 2

V

)
m
nz + 6

V

Ky. (9.9)

From Eq. 9.2, the peak performance we can expect is

bpeak(
8 + 2

V

)
α−1 + 6

V

F/s. (9.10)

where α is the average row occupancy of the matrix.
We can look at the implications of this model. For a single matvec with 3D

FD Poisson, Matt’s laptop can achieve at most

1122.4 MB/s

(8 + 2) 1
7 + 6B/F

= 151 MF/s, (9.11)

which is a dismal 8.8% of peak. With a box stencil, the row occupancy is now
27, giving 176 MF/s. If we use 4 vectors instead of 1, we can achieve 414 MF/s,
so we see the larger rows have much less effect than using more vectors. We can
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ask how many vector would we need to use in order to achieve theoretical peak
on this machine,

β(V ) =
rpeak

bpeak
(9.12)

1(
8 + 2

V

)
1
7 + 6

V

=
1700

1122.4
Ky (9.13)

44

7V
= −0.48Ky (9.14)

(9.15)

so it is impossible for this machine. The peak attainable performance with this
matrix, V → ∞, is 982 MF/s. However, this shows the limits of the model,
since operation issue limitations would dominate long before we reached this
limit. We could also improve performance by blocking since it would bring in
fewer column offsets and indices, altering the coefficients on the 1/V terms, but
not the ultimate performance limit given by the 8.

In order to overcome the inherent limitations for performance in SpMV, we
would have to adopt an approach having Nk computation for N data where
k > 1, such as unassembled operator application or nonlinear evaluation. When
choosing a method, we must consider tradeoffs betweem storage, bandwidth,
and cycles. The assembled operator action (SpMV) trades cycles for memory
bandwidth and storage. Whereas unassembled operator action trades band-
width and storage for cycles in application. In fact, for high order spectral
elements, storage is impossible. Partial assembly of the matrix could give even
finer control over these tradeoffs, but perhaps introduce new parallel costs, such
as load balance.

9.5 Serial Computation

We will not develop models of serial performance in this class. However,
they incorporate two main effects which help explain performance on modern
processors. First, and usually most important for scientific computing, is vector-
ization. The peak flop rate rpeak on modern CPUs is attained through the use
of a SIMD multiply-accumulate instruction on special 256-bit registers. SIMD
MAC operates in the form of 8 simultaneous operations (4 adds and 4 multi-
plies):

c1 = c1 + a1 ∗ b1 (9.16)

c2 = c2 + a2 ∗ b2 (9.17)

c3 = c3 + a3 ∗ b3 (9.18)

c4 = c4 + a4 ∗ b4 (9.19)

You will degrade performance from the peak if any operations are missing. In the
worst case, you are reduced to 12.5% efficiency if your algorithm performs naive
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summation or products. In addition, memory alignment is also crucial when
using these instructions (AVX on Intel processors). The instructions used to
load and store from the 256-bit registers throw very costly alignment exceptions
when the data is not stored in memory on 32 byte (256 bit) boundaries.

The other effects are differences in behavior for different types of memory,
such as fast local memory, slower global memory, or even slower remote memory
on another process. When retrieving data from memory, or over a network,
not only are there bandwidth limits, but there is a latency associated with
the request and possibly an overhead for each transaction. These factors are
incorporated into the LogP model of parallel computation (Culler et al. 1993).
In addition, we may have different kinds of memory, for example fast cache
memory and slow main memory. The external memory model (Aggarwal and
Vitter 1988) models the memory system as a small fast memory consisting of Z
words, and an infinite main memory. Computations can only be performed on
data in fast memory, and data can only be transfered from main to fast memory
in chunks of L words. Then an algorithm analysis will try to predict QZ,L(N),
the number of transfers between main and fast memory for a computation W (N)
of size N , and β(N) = W (N)/QZ,L(N) (Czechowski et al. 2011).

9.6 Problems

Problem IX.1 The following pseudocode is a naive implementation of a dense
matrix-vector multiplication (assuming matrix dimension of N ×N , vector di-
mension of N).

C

for (i=0; i < N; ++i) {

double sum = 0.0;

for (j=0; j < N; ++j) {

sum += a[i*N+j]*b[j];

}

c[i] = sum;

}

Fortran

for(i=1,N)

sum = 0

for(j=1,N)

sum = sum + a(i,j)*b(j)

c(i) = sum

Based on the above code, answer the following questions:

1. Count the total number of floating point operations, in terms of N . The
unit will be a FLOP, abbreviated with F.

2. Count the total number of bytes transferred to/from memory if each float-
ing point number is 8 bytes, abbreviated with B, in terms of N .

3. Compute the arithmetic intensity, meaning the ratio of floating point op-
erations to total bytes transferred, and approximate for large N . (This
will give you a value in F/B, where F is a FLOP and B is a byte).

4. If a processor flop rate is 2 GF/s, and memory bandwidth is 8 GB/s, is
the program flop rate limited, or memory bandwidth limited?
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5. What fraction of peak performance do you estimate can be obtained?

Problem IX.2 Consider the Gram-Schmidt Orthogonalization process. Start-
ing with a set of vectors {vi}, create a set of orthonormal vectors {ni}.

n1 =
v1

||v1||
(9.20)

n2 =
w2

||w2||
where w2 = v2 − (n1 · v2)n1 (9.21)

nk =
wk
||wk||

where wk = vk −
∑
j<k

(nj · vk)nj (9.22)

What is

1. the balance factor β for this algorithm?

2. the bandwidth required to run at peak (breq) on your computer?

3. the maximum achievable flop rate (rmax) on your computer?

Extra Credit Can this algorithm be improved?

Problem IX.3 Change the performance model for sparse matrix-vector mul-
tiplication (SpMV) so that the loads from memory are uncached. How does the
dependence on row occupancy change?

Problem IX.4 Run the STREAMS benchmark on your personal computer
and graph the results as a function of core count. What do the results tell you
about the architecture of your machine?
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Chapter 10

Linear Solvers

A linear solver is an operation which given the equation

Ax = b (10.1)

where the matrix A and vector b are specified, will return a vector x̃ which is
close to x, usually in a normwise sense. We call the measure of proximity a
tolerance, and distinguish an absolute tolerance where the error is smaller than
a fixed size

‖x− x̃‖ < εa, (10.2)

from a relative tolerance

‖x− x̃‖ < εr‖x‖. (10.3)

In practice, we cannot evaluate the error, so the residual is used instead

‖A(x− x̃)‖ = ‖b−Ax̃‖. (10.4)

We usually divide these solvers into two classes: direct and iterative. Di-
rect solvers are supposed to reach a given tolerance using a fixed amount of
computation determined by the problem size, and iterative methods take an
indeterminant number of iterates which improve the approximate solution until
the tolerance is satisfied. The prototypical direct solver is Gaussian elimination
(or LU factorization), and the Gauss-Seidel iteration can stand for a broad class
of iterative solvers. However, this definition is somewhat fuzzy. The accuracy of
direct methods can be limited by the condition number of A, κ(A) = ‖A‖‖A−1‖,
and often the solutions are improved by iterative refinement, discussed in Sec-
tion 10.1.2. On the other hand, the iterative multigrid algorithm from Sec-
tion 10.3 can be considered a direct solver for the Laplace equation since the
amount of computing can be explicitly bounded and accuracy quantified.

123
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10.1 Direct Solvers

10.1.1 Schur complement

(
a b
c d

)(
u
v

)
=

(
f
g

)
(10.5)

We can solve the first equation for u in terms of v,

u = f − b/av, (10.6)

plug into the second equation to get v

c(f − b/av) + dv = g, (10.7)(
d− cb

a

)
v = g − cf, (10.8)

and then plug in v to recover u. If we let these entries be matrices, rather than
scalar values, we have (

D − CA−1B
)
v = g − Cf, (10.9)

where the matrix S = D − CA−1B is called the Schur Complement.

(
a b
c d

)
=

(
α 0
0 1

)(
1 b/a
c d

)
(10.10)

=

(
a 0
c d− cb/a

)(
1 b/a
0 1

)
(10.11)

(
α bT

c D

)
=

(
α 0
0 1

)(
1 bT /α
c D

)
(10.12)

=

(
α 0
c D − cbT /α

)(
1 b/α
0 I

)
(10.13)

Work: b/α −→ N − 1 flops D − 1
acb

T −→ 3(N − 1)2 Total:
∑n
k=1 k

2 =
n(n + 1)(2n + 1)/6 so to leading order it is O(n3). Can actually prove that is
scales like matrix-matrix multiply (Bunch and Hopcroft 1974).

10.1.2 Iterative Refinement

10.2 Krylov Solvers

(Saad 2003) - Why do you want to do low-order/incomplete PC and MF action?
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Figure 10.1: The multiplicative full multigrid iteration.

Why Krylov methods? Both Chebyshev and Krylov methods build polyno-
mial approximations to the solution of linear equations. The Chebyshev method
solves a continuous problem for the coefficients, so that they are known without
computation, but this requires an estimate for the spectrum of the operator. On
the other hand, a Krylov method solves the discrete minimization problem for
the coefficients, which requires inner products (as many as k2 in GMRES), that
can severely limit the scalability on machines with appreciable latency, such
as massively parallel machines. This points out the central strength of Krylov
methods.

We can see that as κ → ∞, Krylov methods make no progress, but our
PDEs have increasing κ with increasing resolution (for the Laplacian, κ ∝ h−2).
Thus, it seems Krylov methods alone cannot be an approriate solver. However,
Krylov methods have a signal strength in that they are “spectrally adaptive”,
meaning that the user does not need to know the spectrum in order to use them
effectively. When combined with a method that needs spectral information, such
as multigrid, Krylov methods can fill holes left by approximate or inappropriate
spectral descriptions.

10.3 Multigrid Methods

10.3.1 V-cycle

10.3.2 Full Multigrid

The Full Multigrid algorithm (FMG) can be thought of as applying a multigrid
V-cycle at each level at each level of the multigrid hierarchy, and then interpo-
lating to the next finer grid. You can see the structure in Figure 10.1. This may
seem like a lot more work than a simple V-cycle, but we will show that it is, in
fact, just a small percentage more.

Since FMG is just made up of V-cycles and interpolation operations, at each
level the cost is linear in the number of unknowns. Thus if the cost of the final
V-cycle is CV , then the cost of the next coarsest cycle is 1

2d
CV , and the entire
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cost CFMG is given by

CFMG =

(
1 +

1

2d
+

1

22d
+ . . .

)
CV (10.14)

=

∞∑
n=0

1

2nd
CV (10.15)

=
2d

2d − 1
CV (10.16)

=

(
2d

2d − 1

)2

Cv. (10.17)

In one dimension, the cost of FMG is twice that of a V-cycle, but in three
dimensions it is only 8

7 of a single V-cycle, and only about 30% more expensive
than a single two-level iteration.

Full multigrid can solve to discretization error with just one iteration. In
order to understand this argument, we must have a model of discretization error
Ed. We suppose that

‖x− xh‖ < Chα (10.18)

where α > 0. For example, our simple FD method has error which is in O(h2),
so α = 2 and it is a second order method. This is also true for the P1 linear
finite element method. Suppose that we have just finished the V-cycle for the
grid with 2h spacing, which gives the coarse grid correction for the top level
grid of spacing h. The error E is bounded by the sum of the discretization error
and the algebraic error Ea, which is the error due to a finite precision iterative
solve. We will suppose that our iterative tolerance is such that our algebraic
error is within a constant factor r < 1 of our discretization error, since we are
free to choose any tolerance. This means that

E ≤ Ed + Ea = (1 + r)C(2h)α, (10.19)

where the reduction factor r = Ea/Ed is the solver tolerance relative to dis-
cretization error. Now we perform the final V-cycle for fine grid of spacing h.
In order that we make the required reduction r in algebraic error, we need the
V-cycle to have error reduction factor η, which satisfies

ηEa < rChα (10.20)

η (E − Ed) < rChα (10.21)

η ((1 + r)C(2h)α − Chα) < rChα (10.22)

η ((1 + r)2α − 1) < r (10.23)

η <
1

2α + 2α−1
r

. (10.24)

For our second order method with a reduction factor r = 1
2 , we require that

η < 1
10 . This V-cycle error reduction can achieved for tuned multigrid itera-

tion (Trottenberg, Oosterlee, and Schüller 2001).
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Let us try and verify this remarkable property of FMG experimentally. We
can use SNES ex5 if we turn off the nonlinearity by using λ = 0.0. We can limit
ourselves to a single Newton iterate, -snes_max_it 1, and thus standard V-cycle
MG with GMRES

./ex5 -mms 1 -par 0.0 -da_refine 3 -snes_type newtonls -snes_max_it 1 -ksp_rtol 1e-10
-pc_type mg -snes_monitor_short -ksp_monitor_short

gives

0 SNES Function norm 0.0287773
0 KSP Residual norm 0.793727
1 KSP Residual norm 0.00047526
2 KSP Residual norm 4.18007e-06
3 KSP Residual norm 1.1668e-07
4 KSP Residual norm 3.25952e-09
5 KSP Residual norm 7.274e-11

1 SNES Function norm 2.251e-10
N: 625 error l2 1.21529e-13 inf 9.53484e-12

and it changes little if we refine six more times

0 SNES Function norm 0.000455131
0 KSP Residual norm 50.6842
1 KSP Residual norm 0.00618427
2 KSP Residual norm 9.87833e-07
3 KSP Residual norm 2.99517e-09

1 SNES Function norm 2.83358e-09
N: 2362369 error l2 1.28677e-15 inf 7.68693e-12

If instead we run with FMG,

./ex5 -mms 1 -par 0.0 -da_refine 3 -snes_type newtonls -snes_max_it 1 -ksp_rtol 1e-10
-pc_type mg -pc_mg_type full -snes_monitor_short -ksp_monitor_short

we do not seem to see the convergence acceleration

0 SNES Function norm 0.0287773
0 KSP Residual norm 0.799687
1 KSP Residual norm 6.95292e-05
2 KSP Residual norm 1.50836e-06
3 KSP Residual norm 2.62524e-08
4 KSP Residual norm 6.184e-10
5 KSP Residual norm 1.275e-11

1 SNES Function norm 3.757e-11
N: 625 error l2 2.1428e-14 inf 1.80611e-12

although its a little more apparent as we refine,

0 SNES Function norm 0.000455131
0 KSP Residual norm 51.2
1 KSP Residual norm 2.92416e-06
2 KSP Residual norm 3.76404e-09

1 SNES Function norm 8.50096e-09
N: 2362369 error l2 1.70304e-15 inf 6.22476e-11

In order to untangle this, we need to consider the discretization error inherent
in our approximation, since the proof above for FMG is predicated on the solve
reaching discretization error rather than some arbitrary residual target. We
can do this by limiting the linear solve to a single iterate and looking at the
convergence. We cannot use -ksp_max_it 1 since that causes a failure of the linear
iteration, whereas -ksp_rtol 1e-1 accomplishes the same objective. The script
below compares standard GMG with V-cycles to the FMG, using a slightly
stronger smoother (5 iterates of Chebyshev/SOR) in order to guarantee the
sufficient decrease in error for each V-cycle.
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#! /usr/bin/env python
import argparse
import subprocess
import numpy as np

parser = argparse.ArgumentParser(
description = 'CAAM 519 FMG',
epilog = 'For more information, visit http://www.mcs.anl.gov/petsc',
formatter class = argparse.ArgumentDefaultsHelpFormatter)

parser.add argument('−−kmax', type=int, default=5,
help='The number of doublings to test')

parser.add argument('−−save', action='store true', default=False,
help='Save the figures')

args = parser.parse args()

sizesA = []
sizesB = []
errorA = []
errorB = []
for k in range(args.kmax):
options = ['−snes type', 'newtonls', '−snes max it', '1', '−da refine', str(k),

'−par', '0.0', '−ksp atol', '1e−1', '−mms', '1',
'−pc type', 'mg', '−pc mg type', 'multiplicative',
'−mg levels ksp max it', '5']

cmd = './ex5 '+' '.join(options)
out = subprocess.check output(['./ex5']+options).split(' ')
# This is l 2, out[6] is l infty
sizesA.append(int(out[1]))
errorA.append(float(out[4]))

for k in range(args.kmax):
options = ['−snes type', 'newtonls', '−snes max it', '1', '−da refine', str(k),

'−par', '0.0', '−ksp atol', '1e−1', '−mms', '1',
'−pc type', 'mg', '−pc mg type', 'full',
'−mg levels ksp max it', '5']

cmd = './ex5 '+' '.join(options)
out = subprocess.check output(['./ex5']+options).split(' ')
# This is l 2, out[6] is l infty
sizesB.append(int(out[1]))
errorB.append(float(out[4]))

SA = np.array(sizesA)
SB = np.array(sizesB)

from pylab import legend,plot,loglog,show,title,xlabel,ylabel,savefig
loglog(SA, errorA, 'r', SA, 5e−6 ∗ SA ∗∗ −0.5, 'r−−',

SB, errorB, 'g', SB, 5e−6 ∗ SB ∗∗ −1., 'g−−')
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Figure 10.2: Comparison of a single iterate of V-cycle GMG and FMG for the
Poisson equation.

title('SNES ex5')
xlabel('Problem size $N$')
ylabel('Error $\|u − u^∗\|$')
legend(['GMRES/GMG', '$h = N^{−1/2}$', 'GMRES/FMG', '$h^2 = N^{−1}$'],

'upper right', shadow = True)
if args.save:
savefig('fmg.png')

else:
show()

We can see in Figure 10.2 that for our simple FD discretization, which has a
truncation error in O(h2), FMG produces a solution which decreases with the
discretization error in just a single iteration. The pure V-cycle implementation
gets to only O(h) error in one iterate.

10.3.3 FAS Multigrid

FAS stands for Full Approximation Storage, and was originally proposed by
Achi Brandt as an alternative to defect correction multigrid which computes
the entire coarse solution directly rather than a correction to the fine solution.
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One of the main reasons for this is it allows the generalization of multigrid to
nonlinear equations. Starting with the original fine grid equation

Ff (uf ) = bf , (10.25)

we solve a coarse problem

Fc(uc) = bc, (10.26)

and then correct the fine solution using

uf ← uf + P (uc −Ruf ) . (10.27)

The question is what should be use for the rhs bc? In defect correction multigrid,
this is the residual restricted to the coarse grid. Here we will use

bc = Rbf + Fc(Ruf )−RFf (uf ). (10.28)

If we suppose our equation is linear, meaning F = A, then we have

Fc(uc) = Rbf + Fc(Ruf )−RFf (uf ) (10.29)

Acuc = Rbf +AcRuf −RAfuf (10.30)

Ac (uc −Ruf ) = R (bf −Afuf ) (10.31)

Acδuc = Rrf (10.32)

so that defect correction multigrid and FAS are mathematically equivalent. Note
that the manipulation in Eq. 10.31 fails for a nonlinear operator F , which is
why FAS is used as the starting point for a multilevel nonlinear solver.

One important property of the coarse grid equation for FAS is that it is
satisfied by the restriction of the true fine solution u∗f ,

Fc(Ru
∗
f ) = Rbf + Fc(Ru

∗
f )−RFf (u∗f ) (10.33)

R
(
Ff (u∗f )− bf

)
= 0 (10.34)

0 = 0. (10.35)

This means that once the fine solution is obtained, the coarse problem will not
introduce any change via the update in Eq. 10.27. This is a guiding principle
for derivation of coarse grid equation in more sophisticated settings, such as
optimization problems.

Superlinear Convergence We can repeat our argument above for the con-
vergence of FMG when using FAS. However, this time we will allow the possi-
bility of superlinear convergence. If we have q-convergence of order greater than
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one, we would have

ηEqa < rChα (10.36)

η (E − Ed)q < rChα (10.37)

η ((1 + r)C(2h)α − Chα)
q
< rChα (10.38)

η ((1 + r)2α − 1)
q
< rC1−qhα(1−q) (10.39)

η < C1−qhα(1−q) 1

2α + 2α−1
r

. (10.40)

We can interpret this as saying that η can become progressively bigger as we
refine the grid, but this rapidly become of no use. It seems that superlinear
algebraic convergence does not help the solve because the algebraic progress
outstrips the accuracy of the discretization at the subsequent level, since the
discretization error decreases only linearly. We might instead allow the size of
the fine grid to increate at a superlinear rate to offset this disparity. Suppose
that we have solved the nonlinear problem on a coarse grid of resolution 2h, and
then interpolate to a fine grid of resolution hq,

ηEqa < rChqα (10.41)

η (E − Ed)q < rChqα (10.42)

η ((1 + r)C(2h)α − Chα)
q
< rChqα (10.43)

η ((1 + r)2α − 1)
q
< rC1−q (10.44)

η < C1−q 1

2α + 2α−1
r

. (10.45)

and thus for α = 2 and r = 1
2 , we require that η < 1

10Cq−1 .

10.3.4 Why does Multigrid fail?

Reductively, there are two failure modes for MG: failure of the smoother to
remove high frequency error components and failure of the coarse correction to
remove low frequency error components. A strategy for examining these two
cases is presented in (Diskin, Thomas, and Mineck 2005). It will be helpful for
us to enumerate a more precise list of problems that can arise.

Inaccurate coarse operator Helmholtz example. Use renormalization ap-
proach.

Ineffective smoother Helmholtz and MHD examples. Use artifical diffu-
sion/filtering and defect correction. This could also apply to PDE-constrained
optimization.

Inaccurate prolongation PDE-constrained optimization example. Use a
solve instead.
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Smoother misses isolated modes Find an example. Use a Krylov acceler-
ator.

Smoother fails for multiple intervals Stokes example. Use a Schur-
complement/distributive smoother.

10.3.5 Algebraic Multigrid

Agglomeration variants of algebraic multigrid (AMG) create subspaces using
constant basis functions over sets of cells, which can optionally be smoothed by
application of the operator itself. The original system is then projected into this
subpsace using Galerkin projection, PTAP . After projection, we can think of
the operator as approximating its symbol as the effect of boundary conditions is
diluted or removed. Thus, it is important to capture the nullspace of the symbol
of the operator in the coarse basis. Since AMG is so often used to solve the
Laplacian, most implementations automatically provide the constant vector as
a member of the coarse space. We will demonstrate that other systems require
additional (near) nullspace vectors.

The balance of momentum for linear elasticity in an isotropic, homogeneous
medium can be written

∇ · σ = ~f (10.46)

∇ · (λTr(ε)I + 2µε) = (10.47)

and is implemented in PETSc SNES ex17. The energy in this system, in the
absence of body force ~f , is invariant to translations and rotations. Thus, the
operator above annihilates the infinitesimal generators of these transformations.
We can see the effect of these symmetries by looking at a solve in ex17. We will
discretize using Q1 finite elements on a quadrilateral grid for the unit square.
We begin with the default GMRES/ILU(0) solver for a series of regularly refined
meshes:

> ./ex17 -sol_type elas_quad -simplex 0 -displacement_petscspace_order 1 -dm_refine 5 -snes_converged_reason -ksp_rtol 1e-9 -ksp_converged_reason
Linear solve converged due to CONVERGED_RTOL iterations 77

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 1
> ./ex17 -sol_type elas_quad -simplex 0 -displacement_petscspace_order 1 -dm_refine 6 -snes_converged_reason -ksp_rtol 1e-9 -ksp_converged_reason
Linear solve converged due to CONVERGED_RTOL iterations 167

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 1
> ./ex17 -sol_type elas_quad -simplex 0 -displacement_petscspace_order 1 -dm_refine 7 -snes_converged_reason -ksp_rtol 1e-9 -ksp_converged_reason
Linear solve converged due to CONVERGED_RTOL iterations 411

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 1

We can see that the number of iterates increases drastically as the problem size
is increased. If we use GAMG, the number of iterates is greatly reduced, but
still grows somewhat as the problem size is increased

knepley/pylith $:/PETSc3/petsc/petsc-pylith/src/snes/examples/tutorials$ ./ex17 -sol_type elas_quad -simplex 0 -displacement_petscspace_order 1 -dm_refine 5 -snes_converged_reason -ksp_rtol 1e-9 -ksp_converged_reason -pc_type gamg
Linear solve converged due to CONVERGED_RTOL iterations 10

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 1
knepley/pylith $:/PETSc3/petsc/petsc-pylith/src/snes/examples/tutorials$ ./ex17 -sol_type elas_quad -simplex 0 -displacement_petscspace_order 1 -dm_refine 6 -snes_converged_reason -ksp_rtol 1e-9 -ksp_converged_reason -pc_type gamg
Linear solve converged due to CONVERGED_RTOL iterations 11

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 1
knepley/pylith $:/PETSc3/petsc/petsc-pylith/src/snes/examples/tutorials$ ./ex17 -sol_type elas_quad -simplex 0 -displacement_petscspace_order 1 -dm_refine 7 -snes_converged_reason -ksp_rtol 1e-9 -ksp_converged_reason -pc_type gamg
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Linear solve converged due to CONVERGED_RTOL iterations 13
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 1
knepley/pylith $:/PETSc3/petsc/petsc-pylith/src/snes/examples/tutorials$ ./ex17 -sol_type elas_quad -simplex 0 -displacement_petscspace_order 1 -dm_refine 8 -snes_converged_reason -ksp_rtol 1e-9 -ksp_converged_reason -pc_type gamg
Linear solve converged due to CONVERGED_RTOL iterations 15

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 1
knepley/pylith $:/PETSc3/petsc/petsc-pylith/src/snes/examples/tutorials$ ./ex17 -sol_type elas_quad -simplex 0 -displacement_petscspace_order 1 -dm_refine 9 -snes_converged_reason -ksp_rtol 1e-9 -ksp_converged_reason -pc_type gamg
Linear solve converged due to CONVERGED_RTOL iterations 16

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 1
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Chapter 11

Nonlinear Solvers

‖ek+1‖ ≤ C‖ek‖q (11.1)

11.1 Single Step Solvers

11.1.1 What is the Picard Iteration?

If we are given the fixed-point problem,

x = K(x), (11.2)

then the simplest iteration towards solution would be to just keep applying the
operator K,

xn+1 = K(xn). (11.3)

This iterative method is also called nonlinear Richardson iteration, Picard iter-
ation, or the method of successive substitution. It is convergent if the operator
K is contractive (Ortega and Rheinboldt 1987; Kelley 1995). However, if we
begin with a system of nonlinear equations,

F(x) = 0, (11.4)

there is some ambiguity about the definition of this iteration. We could use the
trivial formulation

x = x−F(x) ≡ K(x), (11.5)

but this may not be the best choice. For example, suppose that the problem
consists of a small nonlinear perturbation M to a linear operator A,

F(x) ≡ Ax+M(x)− b = 0. (11.6)

135
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Figure 11.1: Comparison of different convergence rates
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Then we can define an iteration

x = A−1 (b−M(x)) ≡ K(x), (11.7)

which is much more likely to converge, and can sometimes be seen as a sort of
inexact Newton method.

11.2 Multistep Solvers

11.3 Solver Composition

(Brune et al. 2015)
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Chapter 12

Problem Solutions

The best organized and most challenging problem sets I have ever encoun-
tered came from the classic texts Concrete Mathematics (Graham, Knuth, and
Patashnik 1989) and Classical Electrodynamics (Jackson 1962). I will endeavor
to be as complete, insightful, and bedeviling as those authors.

12.1 Programming Basics

Problem I.1 Following the online directions, install the latest release of
PETSc.

Solution I.1 On my Mac Air, I configure using

./config/configure.py --PETSC_ARCH=arch-master-debug
--download-chaco --download-ctetgen --download-exodusii
--download-hdf5 --download-metis --download-mpich
--download-netcdf --download-p4est --download-parmetis
--download-pragmatic --download-triangle
--with-cc="/Users/knepley/MacSoftware/bin/ccache gcc -Qunused-arguments"
--with-cxx="/Users/knepley/MacSoftware/bin/ccache g++ -Qunused-arguments"
--with-fc="/Users/knepley/MacSoftware/bin/ccache gfortran"
--with-shared-libraries

and then make all. After installation, you can test your PETSc using

make check

Problem I.2 Clone my sample repository of PETSc code onto your local
machine, https://bitbucket.org/knepley/simplepetscexample.

Solution I.2 We can clone the repository using SSH

git clone git@bitbucket.org:knepley/simplepetscexample.git tutorial_code

or if port 22 is not open, you can use HTTPS

git clone https://knepley@bitbucket.org/knepley/simplepetscexample.git tutorial_code

139
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assuming you have put your SSH key on Bitbucket. Otherwise, you should
remove the username@ from the URL.

Problem I.3 Create a repository on GitHub and checkin you LATEX para-
graph.

Solution I.3 You can create a Git repository on Bitbucket by following these
steps, and definitely setup SSH. Once your essay is written, you can schedule it
for commit using

git add scicompEssay.tex

commit it

git commit -m "Draft essay"

and push to Bitbucket

git push

This can also be accomplished using a GUI tool, such as SourceTree from At-
lassian which has many associated tutorials.

Problem I.4 Write a makefile that compiles the code in the sample repository
and commit it.

Solution I.4 A possible makefile is shown below, and we will discuss the
elements in detail.

CFLAGS =
CPPFLAGS =

bin/ex5: src/ex5.o src/myStuff.o src/myStuff2.o
-@${MKDIR} bin
${CLINKER} -o $@ $^ ${PETSC_LIB}
${DSYMUTIL} $@
${RM} $^

clean::
${RM} bin/ex5
${RM} -r bin/ex5.dSYM

include ${PETSC_DIR}/lib/petsc/conf/variables
include ${PETSC_DIR}/lib/petsc/conf/rules

The CFLAGS and CPPFLAGS variables can be used to feed additional compiler op-
tions to the build. Note that the executable bin/ex5 depends on only the ob-
ject files src/ex5.o, src/myStuff.o, src/myStuff2.o. These are built automatically us-
ing rules imported from ${PETSC_DIR}/lib/petsc/conf/rules. The commands shell MKDIR,
CLINKER, DSYMUTIL, and RM are defined in ${PETSC_DIR}/lib/petsc/conf/variables and allow
the makefile to be portable across operating systems and architectures. Note
also that we have use automatic variables in this makefile, which are defined
here. The $@ refers to the target name, here bin/ex5, while the $^ is a list of
all the prerequisites, here src/ex5.o, src/myStuff.o, src/myStuff2.o. Writing rules this
way make them less error-prone and more robust to change. We can submit the
makefile using

https://confluence.atlassian.com/display/BITBUCKET/Create+a+repository
https://confluence.atlassian.com/display/BITBUCKET/Create+a+repository
https://confluence.atlassian.com/display/BITBUCKET/Set+up+SSH+for+Git
https://www.sourcetreeapp.com/
https://www.gnu.org/software/make/manual/html_node/Automatic-Variables.html
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git add makefile
git commit -m "Added makefile"
git push

Problem I.5 The simple Python script below runs the sample ex5 for a range
of problem sizes and plots the timing.

#! /usr/bin/env python
import os

sizes = []
times = []
for k in range(5):
Nx = 10 ∗ 2∗∗k
modname = 'perf%d' % k
options = ['−da grid x', str(Nx), '−da grid y', str(Nx), '−log view',

':%s.py:ascii info detail' % modname]
os.system('./bin/ex5 '+' '.join(options))
perfmod = import (modname)
sizes.append(Nx ∗∗ 2)
times.append(perfmod.Stages['Main Stage']['SNESSolve'][0]['time'])

print zip(sizes, times)

from pylab import legend, plot, loglog, show, title, xlabel, ylabel
plot(sizes, times)
title('SNES ex5')
xlabel('Problem Size $N$')
ylabel('Time (s)')
show()

loglog(sizes, times)
title('SNES ex5')
xlabel('Problem Size $N$')
ylabel('Time (s)')
show()

Notice that the logging information is output in a Python module named perf1.py

for k = 1. Each time we output a module, it must have a different name since
Python caches module contents by name.

Modify this Python script to report the linear solver time (KSPSolve) in-
stead of the nonlinear solve time (SNESSolve), and plot it for the GMRES/ILU
(-ksp_type gmres -pc_type ilu) and GMRES/GAMG (-ksp_type gmres -pc_type gamg) solvers
on the same graph. For extra credit, look at the performance as the number of
processes increases.

Solution I.5 Here is my script which compares the performance of two dif-
ferent solvers as a function of problem size:



142 CHAPTER 12. PROBLEM SOLUTIONS

#! /usr/bin/env python
import argparse
import os

parser = argparse.ArgumentParser(
description = 'CAAM 519 Homework I.4',
epilog = 'For more information, visit http://www.mcs.anl.gov/petsc',
formatter class = argparse.ArgumentDefaultsHelpFormatter)

parser.add argument('−−kmax', type=int, default=5,
help='The number of doublings to test')

parser.add argument('−−save', action='store true', default=False,
help='Save the figures')

parser.add argument('−−debug', action='store true', default=False,
help='Turn on debugging')

args = parser.parse args()

sizes = []
timesA = []
timesB = []
for k in range(args.kmax):
Nx = 10 ∗ 2∗∗k
modname = 'perfA%d' % k
options = ['−da grid x', str(Nx), '−da grid y', str(Nx), '−log view',

':%s.py:ascii info detail' % modname]
cmd = './bin/ex5 '+' '.join(options)
if args.debug: print(cmd)
os.system(cmd)
perfmod = import (modname)
sizes.append(Nx ∗∗ 2)
timesA.append(perfmod.Stages['Main Stage']['KSPSolve'][0]['time'])

print zip(sizes, timesA)
for k in range(args.kmax):
Nx = 10 ∗ 2∗∗k
modname = 'perfB%d' % k
options = ['−da grid x', str(Nx), '−da grid y', str(Nx), '−log view',

':%s.py:ascii info detail' % modname, '−pc type', 'gamg']
cmd = './bin/ex5 '+' '.join(options)
if args.debug: print(cmd)
os.system(cmd)
perfmod = import (modname)
timesB.append(perfmod.Stages['Main Stage']['KSPSolve'][0]['time'])

print zip(sizes, timesB)

from pylab import legend,plot,loglog,show,title,xlabel,ylabel,savefig
plot(sizes, timesA, sizes, timesB)
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title('SNES ex5')
xlabel('Problem Size $N$')
ylabel('Linear Solver Time (s)')
legend(['GMRES/ILU', 'GMRES/GAMG'], 'upper left', shadow = True)
if args.save:
savefig('hw1 4 linear.png')

else:
show()

loglog(sizes, timesA, sizes, timesB)
title('SNES ex5')
xlabel('Problem Size $N$')
ylabel('Linear Solver Time (s)')
legend(['GMRES/ILU', 'GMRES/GAMG'], 'upper left', shadow = True)
if args.save:
savefig('hw1 4 log.png')

else:
show()

Running it using

./bin/prob1_4.py --kmax=6 --save

produces the graphs below. Note that GMRES/ILU is initially faster than
GMRES/GAMG, but eventually is much more expensive because it is not linear
in the problem size. Note that when run with debugging enabled, GAMG is
always slower than ILU due to the great number of internal checks made and
necessity of optimized code for good performance.

Problem I.6 Modify the script from Problem 5 to report the assembly time
(SNESFunctionEval and SNESJacobianEval), of both the residual and Jacobian, instead
of the nonlinear solve time (SNESSolve), and plot it for the GMRES/ILU and
GMRES/GAMG solvers on the same graph.

Solution I.6 Here is my script which compares the performance of two dif-
ferent solvers as a function of problem size:
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#! /usr/bin/env python
import argparse
import os

parser = argparse.ArgumentParser(
description = 'CAAM 519 Homework I.5',
epilog = 'For more information, visit http://www.mcs.anl.gov/petsc',
formatter class = argparse.ArgumentDefaultsHelpFormatter)

parser.add argument('−−kmax', type=int, default=5,
help='The number of doublings to test')

parser.add argument('−−save', action='store true', default=False,
help='Save the figures')

parser.add argument('−−debug', action='store true', default=False,
help='Turn on debugging')

args = parser.parse args()

sizes = []
timesA = []
timesB = []
for k in range(args.kmax):
Nx = 10 ∗ 2∗∗k
modname = 'perfA%d' % k
options = ['−da grid x', str(Nx), '−da grid y', str(Nx), '−log view',

':%s.py:ascii info detail' % modname]
cmd = './bin/ex5 '+' '.join(options)
if args.debug: print(cmd)
os.system(cmd)
perfmod = import (modname)
sizes.append(Nx ∗∗ 2)
timesA.append(perfmod.Stages['Main Stage']['SNESFunctionEval'][0]['time'] +

perfmod.Stages['Main Stage']['SNESJacobianEval'][0]['time'])
print zip(sizes, timesA)
for k in range(args.kmax):
Nx = 10 ∗ 2∗∗k
modname = 'perfB%d' % k
options = ['−da grid x', str(Nx), '−da grid y', str(Nx), '−log view',

':%s.py:ascii info detail' % modname, '−pc type', 'gamg']
cmd = './bin/ex5 '+' '.join(options)
if args.debug: print(cmd)
os.system(cmd)
perfmod = import (modname)
timesB.append(perfmod.Stages['Main Stage']['SNESFunctionEval'][0]['time'] +

perfmod.Stages['Main Stage']['SNESJacobianEval'][0]['time'])
print zip(sizes, timesB)
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from pylab import legend,plot,loglog,show,title,xlabel,ylabel,savefig
plot(sizes, timesA, sizes, timesB)
title('SNES ex5')
xlabel('Problem Size $N$')
ylabel('Assembly Time (s)')
legend(['GMRES/ILU', 'GMRES/GAMG'], 'upper left', shadow = True)
if args.save:
savefig('hw1 5 linear.png')

else:
show()

loglog(sizes, timesA, sizes, timesB)
title('SNES ex5')
xlabel('Problem Size $N$')
ylabel('Assembly Time (s)')
legend(['GMRES/ILU', 'GMRES/GAMG'], 'upper left', shadow = True)
if args.save:
savefig('hw1 5 log.png')

else:
show()

Running it using

./bin/prob1_5.py --kmax=6 --save

produces the graphs below. Note that since the number of Newton iterations
is insensitive to the linear solver used, the assembly time is very similar, and
probably only varies due to machine noise.

12.2 Finding and Relating Information

Problem II.1 It is quite likely that no matter what profession you choose to
pursue after this course, expository writing will form a large part of your work-
load. Please write a paragraph or two describing what you hope to learn from
this course, suggestions for upcoming units, or broader thoughts on scientific
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computing and its progress as a discipline. Typeset your work in LATEX and
include at least one citation using BibTEX.

Solution II.1 The problem of transmission of computational knowledge is
often framed as a problem reproducibility (Stodden et al. 2010). The goal is
that any computation performed for the paper can be run and checked by the
reviewer/reader. However, this is often unrealistic, given specialized hardware,
large problem sizes, non-portable libraries, and just plain awful code from the
researchers. While I believe it should be a requirement that any code employed
in a paper should be provided with the paper itself, for the reasons propounded
in the excellent article by LeVeque (LeVeque 2013), reproducibility is today
impractical. So how do we move forward?

In the situation where only a handful of researchers have the specialized skills
and resources to evaluate pieces of computational research, it is crucial that they
inform the process. It is many times impossible to locate or enlist the help of
such researchers for the traditional peer review process. A possible antidote
would be the introduction of open review for computational publications. This
would allow moderated comment on a paper, after publication, by all members
of the community. This would help to provide validation of the results, put the
work in context, compare it to other efforts, and help young people understand
the algorithmic and programmatic decision making process.

The open review process also restores the natural role of a scientific journal,
namely selection of important results. Free services such as arXiv enable efficient
dissemintation of scientific work for no cost to the author, removing the need for
journal publication. Journal editors and reviewers could then focus on selecting
the most important work and highlighting it for readers.

Problem II.2 Create a PDF from your essay source and submit it by email
with the subject Essay I.

Solution II.2 The best way to create PDF from LATEX is to use pdflatex,

pdflatex essay.tex
bibtex essay
pdflatex essay.tex
pdflatex essay.tex

where the repetition is necessay to assure that the metadata stored in auxiliary
files is consistent. This process can be handled in an elegant way by using the
latexmk program,

latexmk -pdf essay.tex

If you rely on TEX source or BibTEX files in other locations, you can use

TEXINPUTS=${TEXINPUTS}:/path/to/tex BIBINPUTS=${BIBINPUTS}:/path/to/bib
latexmk -pdf essay.tex

http://www.zrxiv.org
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Problem II.3 Using any internet resources available, answer the following
questions, providing proper citation for the information you provide:

1. Give the generating function for the sequence 1, 1, 2, 2, 3, 5, 5, 7, 10, 15, 15, 20, 27, 37, . . ..

2. Give an asymptotic expansion for the Gamma function Γ(z) as z → ∞
with error term.

3. On Ubuntu systems, why can you get the error ImportError: No module named _md5

when using import hashlib in Python?

4. Does the popular nonlinear solver deserve to be called the Newton-Raphson
method? Why or why not?

5. Who is Leonid Kantorovich?

6. How do I solve the semiconductor equations?

Solution II.3

1. The On-line Encyclopedia of Integer Sequences calls this Aitken’s array,
also called the Bell triangle or the Peirce triangle. It is the number of
equivalence relations a(n, k) on {0, ..., n} such that k is not equivalent to
n, k + 1 is not equivalent to n, . . ., n − 1 is not equivalent to n. The
double-exponential generating function is given by∑

n,k

a(n− k, k)
xnyk

n!k!
= exp(ex+y − 1 + x), (12.1)

but it appears that the general term can also be expressed as

a(n, k) =

k∑
i=0

(
k

i

) n−k+i∑
j=0

{
n− k + i

j

}
. (12.2)

2. The Digital Library of Mathematical Functions from NIST has an asymp-
totic expansion for the Γ-function,

Γ(z) ∼ e−zzz
√

2π

z

∞∑
k=0

gk
zk
. (12.3)

If we consider the truncated expansion with error term R,

Γ(z) ∼ e−zzz
√

2π

z

(
K−1∑
k=0

gk
zk

+RK(z)

)
, (12.4)

we have the bound,

|RK(z)| ≤ (1 + ζ(K))Γ(K)

2(2π)K+1|z|K
(

1 + min
(

sec(phz), 2
√
K
))

. (12.5)

http://www.oeis.org
http://oeis.org/A011971
http://dlmf.nist.gov/
http://dlmf.nist.gov/5.11#E3
http://dlmf.nist.gov/5.11#E3
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3. A question on Stack Overflow tells us that libssl-dev must be installed
before configuring and building your Python interpreter, in order to have
the md5 module function correctly.

4. According to Wikipedia, Newton’s method was first published in 1685 by
John Wallis, but this method was purely algebraic, only worked for poly-
nomials and was not structured as an iterative update. In 1690, Joseph
Raphson published a simplified description which generated successive ap-
proximations. However, it was not until 1740 that Thomas Simpson pub-
lished a version of Newton’s method based on calculus and intended for
general nonlinear equations. Thus, it appears there might be more justi-
fication for calling it the Newton-Simpson method.

5. An excellent article on the life and work of Leonid Kantorovich can be
found at the Russian Virtual Computer Museum. Although most people
are familiar with the contributions of Wiener and von Neumann to the
development of computing, few people today seem to recall the contri-
butions of Kantorovich. Not only did he pioneer approximate methods
of functional analysis and linear programming, but he was one of the
first mathematical users of automatic computing. Continuing the applied
mathematics tradition in St. Petersburg (Leningrad) he developed early
parallel programming techniques to compensate for the speed of his ma-
chines, finishing tabulation of Bessel function more quickly than Ameri-
cans using the more powerful MARC and EINIAC. He famously delivered
a talk entitled Functional Analysis and Computational Mathematics, with
S.L. Sobolev and L.A. Lyusternik, at the Third All-Union Mathematical
Congress in 1956, which sounds modern even today.

6. The drift-diffusion model for transport of electrons and holes in a semi-
conductor is often called the semiconductor equations. NanoHub has a
good description of their solution methods. The Gummel method is very
popular, since it decouples the Poisson equation for potential from the con-
tinuity equations for electrons and holes. In general, Gummel’s method
seems to be preferred at low bias because of its lower cost per iteration. At
medium and high bias the coupling between equations becomes stronger,
and the convergence rate deteriorates, and Newton’s method becomes
more competitive, as in this paper. However, since Gummel’s method has
a fast initial error reduction, many authors couple the two procedures,
using Newton’s method after several Gummel’s iterations. This may be a
good candidate for nonlinear preconditioning algorithms.

Problem II.4 Using any internet resources available, answer the following
questions, providing proper citation for the information you provide:

1. What relation generates the sequence 8, 12, 16, 24, 32, 36, 48, 96, 128, 160, 192, 288, 768, . . .?

2. Give an asymptotic expansion for the complete elliptic integral E(k) =∫ π/2
0

√
1− k2 sin2 θ dθ as k → 1.

http://stackoverflow.com/questions/10306531/python-importerror-no-module-named-md5
http://stackoverflow.com
https://en.wikipedia.org/wiki/Newton%27s_method
http://www.computer-museum.ru/english/galglory_en/Kantorovich.php
https://nanohub.org
https://nanohub.org/resources/1565/download/ddmodel_solution_details_word.pdf
http://pages.physics.cornell.edu/~rsundararaman/software/doc/poissonnl-report.pdf
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3. In Linux, if you receive a linker error with the text “relocation R_X86_64_32S against symbol

. . .”, what has happened?

4. Has Hilbert’s 13th Problem been solved? If so, who solved it and when.

5. Who invented the Python language? What language did this person work
on prior to Python?

6. If I am simulating an incompressible flow, what discretization would be
“mass conservative” for these equations?

Solution II.4

1. The On-line Encyclopedia of Integer Sequences tells us that this sequence
consists of numbers n for which n = ϕ(x)ϕ(y), where n = x+ y and ϕ(x)
is the Euler totient function of x.

2. The Digital Library of Mathematical Functions from NIST has an conver-
gent series for E(k) as k → 1

E(k) = 1 +
1

2

∞∑
m=0

(
1
2

)
m

(
3
2

)
m

(2)mm!
k′2m+2

(
ln

1

k′
+ ψ(1 +m)− ψ

(
1

2
+m

)
− 1

(2m+ 1)(2m+ 2)

)
(12.6)

where ψ(x) is the digamma function, (·)m is Pochhammer’s Symbol, and
|k′| < 1.

3. A good explanation of this error is given here. In this case, objects com-
piled as position independent code are being linked with objects which
were not. On 32-bit Linux versions, this works just fine, but the 64-bit
versions are more strict when linkers and throw an error. The solution is
to give the appropriate compiler flag, e.g. -fPIC, and as the webpost points
out the error could be coming from a library in the link.

4. In his 13th Problem, Hilbert asks for the solution of an equation of seventh
degree

x7 + ax3 + bx2 + cx+ 1 = 0 (12.7)

which can be considered a function of three variables a, b, and c. Could we
express this function as the composition of a finite number of two-variable
functions? If we consider the allowable solution functions to come from
the space of continuous functions, then the affirmative answer was given
in 1957 by Vladimir Arnold, then a nineteen year old student of Andrey
Kolmogorov. However, if we consider the solution to be an algebraic
function, then the problem is still open.

http://www.oeis.org
http://oeis.org/A273800
http://dlmf.nist.gov/
http://dlmf.nist.gov/19.12
http://dlmf.nist.gov/19.12
http://stackoverflow.com/questions/19768267/relocation-r-x86-64-32s-against-linking-error
https://en.wikipedia.org/wiki/Hilbert%27s_thirteenth_problem
http://link.springer.com/chapter/10.1007/978-3-642-01742-1_2
https://en.wikipedia.org/wiki/Vladimir_Arnold
https://en.wikipedia.org/wiki/Andrey_Kolmogorov
https://en.wikipedia.org/wiki/Andrey_Kolmogorov
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5. Guido van Rossum developed the Python language. Before that, he had
worked on ABC, which he discusses in his PyCon 2016 talk.

6. The finite volume method can be mass convservative to machine precision,
since the continuity equation can be written as a conservation law.

Problem II.5 Make a contribution to Wikipedia and send the link to your
edit.

Solution II.5 I helped explain non-conforming finite element spaces on
Wikipedia.

12.3 PETSc Introduction

Problem III.1 Consider the fixed point problem

x = Gx x ∈ B (12.8)

where B is some Banach space. It is very common to solve these problems using
an iterative method

xi+1 =M (xi, . . . , xi−m) (12.9)

where xi+1 is the next approximate solution, {xi, . . . , xi−m} are previous ap-
proximate solutions, and M is some function defining the method. In (An-
derson 1965), Anderson proposed an iterative method for systems of nonlinear
equations, in which the next approximate solution xi+1 is chosen to satisfy a
minimzation problem involving k prior solutions. However, we will restrict our-
selves to the case of no prior solutions, or what is called simple mixing (Fang
and Saad 2009),

xi+1 = xi + βfi, (12.10)

where fi is the residual vector at the ith iterate. In ex5 from Problem 2,
implement a simple mixing solver using the SNESSHELL type in PETSc. Compare
the convergence of simple mixing to Newton’s method for the default initial
guess. Plot a work-precision diagram for this solve. The x-axis should show
the total work, and as a proxy we will use the runtime. The y-axis shows the
precision of the result, and here we will use the problem size as a proxy for the
precision, an acceptable approach for this well-conditioned problem.

Solution III.1 We begin by implementing the simple mixing iteration, shown
below. We check the initial residual and report it for the monitors, and then
iterate until convergence.

https://en.wikipedia.org/wiki/Guido_van_Rossum
https://en.wikipedia.org/wiki/ABC_(programming_language)
https://www.youtube.com/watch?v=YgtL4S7Hrwo
https://en.wikipedia.org/wiki/Finite_volume_method
https://en.wikipedia.org/w/index.php?title=Finite_element_method&diff=prev&oldid=187781737
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#undef FUNCT
#define FUNCT "SimpleMixing"
PetscErrorCode SimpleMixing(SNES snes, Vec x) {
Vec r;
PetscScalar ∗beta;
PetscReal atol, rtol, r0, res;
PetscInt maxits, n;
PetscErrorCode ierr;

PetscFunctionBeginUser;
ierr = SNESShellGetContext(snes, (void ∗∗) &beta);CHKERRQ(ierr);
ierr = SNESGetFunction(snes, &r, NULL, NULL);CHKERRQ(ierr);
ierr = SNESGetTolerances(snes, &atol, &rtol, NULL, &maxits, NULL);CHKERRQ(ierr);
/∗ Check Initial Residual ∗/
ierr = SNESComputeFunction(snes, x, r);CHKERRQ(ierr);
ierr = VecNorm(r, NORM 2, &r0);CHKERRQ(ierr);
ierr = SNESSetIterationNumber(snes, 0);CHKERRQ(ierr);
ierr = SNESSetFunctionNorm(snes, r0);CHKERRQ(ierr);
ierr = SNESMonitor(snes, 0, r0);CHKERRQ(ierr);
if (r0 < atol) {
ierr = SNESSetConvergedReason(snes, SNES CONVERGED FNORM ABS);CHKERRQ(ierr);
PetscFunctionReturn(0);
}
for (n = 0; n < maxits; ++n) {
/∗ Calculate new approximate solution x {i+1} = x i + beta f i ∗/
ierr = VecAXPY(x, ∗beta, r);CHKERRQ(ierr);
ierr = SNESComputeFunction(snes, x, r);CHKERRQ(ierr);
ierr = VecNorm(r, NORM 2, &r0);CHKERRQ(ierr);
/∗ Check Convergence ∗/
ierr = SNESSetIterationNumber(snes, n+1);CHKERRQ(ierr);
ierr = SNESSetFunctionNorm(snes, res);CHKERRQ(ierr);
ierr = SNESMonitor(snes, n+1, res);CHKERRQ(ierr);
if (res < atol) {ierr = SNESSetConvergedReason(snes, SNES CONVERGED FNORM ABS);CHKERRQ(ierr);}
if (res/r0 < rtol) {ierr = SNESSetConvergedReason(snes, SNES CONVERGED FNORM RELATIVE);CHKERRQ(ierr);}
}
if (n == maxits) {ierr = SNESSetConvergedReason(snes, SNES DIVERGED MAX IT);CHKERRQ(ierr);}
PetscFunctionReturn(0);
}

I declare a new variable in main(),

PetscScalar beta = 1.0;

and then after line 121 in ex5.c I add,

ierr = SNESSetType(snes, SNESSHELL);CHKERRQ(ierr);
ierr = SNESShellSetSolve(snes, SimpleMixing);CHKERRQ(ierr);
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ierr = SNESShellSetContext(snes, &beta);CHKERRQ(ierr);
ierr = PetscOptionsGetScalar(NULL, "−beta", &beta, NULL);CHKERRQ(ierr);

We can compare the convergence behavior to Newton. For the small initial
problem with 16 unknowns, the Newton solver,

./ex5 -snes_monitor -snes_converged_reason -snes_type newtonls

takes many fewer iterates

0 SNES Function norm 2.075636426232e-01
1 SNES Function norm 1.489679343548e-02
2 SNES Function norm 1.139674015480e-04
3 SNES Function norm 6.924167017530e-09
4 SNES Function norm 4.440892098501e-16

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 4

than the Anderson solver

./ex5 -snes_monitor -snes_converged_reason

which takes 13 iterates

0 SNES Function norm 2.075636426232e-01
1 SNES Function norm 3.160865516063e-02
2 SNES Function norm 7.040770859724e-03
3 SNES Function norm 1.651820286652e-03
4 SNES Function norm 3.919656779638e-04
5 SNES Function norm 9.325862697018e-05
6 SNES Function norm 2.220260987729e-05
7 SNES Function norm 5.286694642948e-06
8 SNES Function norm 1.258867274423e-06
9 SNES Function norm 2.997639181324e-07
10 SNES Function norm 7.138051039135e-08
11 SNES Function norm 1.699730844962e-08
12 SNES Function norm 4.047442381250e-09
13 SNES Function norm 9.637872722124e-10
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 13

However, the Anderson solver does much less work, so we should really examine
the work/precision tradeoff. To do this, we will use the runtime as our defini-
tion of work, and the problem size as a proxy for the precision, an acceptable
approach for this well-conditioned problem.

#! /usr/bin/env python
import argparse
import os
import numpy as np

parser = argparse.ArgumentParser(
description = 'CAAM 519 Homework III.1',
epilog = 'For more information, visit http://www.mcs.anl.gov/petsc',
formatter class = argparse.ArgumentDefaultsHelpFormatter)

parser.add argument('−−kmax', type=int, default=5,
help='The number of doublings to test')

parser.add argument('−−save', action='store true', default=False,
help='Save the figures')

parser.add argument('−−debug', action='store true', default=False,
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help='Turn on debugging')
args = parser.parse args()

sizes = []
timesA = []
timesB = []
for k in range(args.kmax):
Nx = 10 ∗ 2∗∗k
modname = 'perfA%d' % k
options = ['−da grid x', str(Nx), '−da grid y', str(Nx), '−log view',

':%s.py:ascii info detail' % modname, '−snes type', 'newtonls', '−pc type', 'gamg']
cmd = './ex5 '+' '.join(options)
if args.debug: print(cmd)
os.system(cmd)
perfmod = import (modname)
sizes.append(Nx ∗∗ 2)
timesA.append(perfmod.Stages['Main Stage']['SNESSolve'][0]['time'])

for k in range(args.kmax):
Nx = 10 ∗ 2∗∗k
modname = 'perfB%d' % k
options = ['−da grid x', str(Nx), '−da grid y', str(Nx), '−log view',

':%s.py:ascii info detail' % modname, '−snes max it', str(100000), '−beta', '−0.1']
cmd = './ex5 '+' '.join(options)
if args.debug: print(cmd)
os.system(cmd)
perfmod = import (modname)
timesB.append(perfmod.Stages['Main Stage']['SNESSolve'][0]['time'])

N = np.array(sizes)

from pylab import legend,plot,loglog,show,title,xlabel,ylabel,savefig
loglog(N, timesA, 'r', N, 3e−5 ∗ N ∗∗ 1., 'r−−', N, timesB, 'g', N, 5e−7 ∗ N ∗∗ 2, 'g−−')
title('SNES ex5')
xlabel('Problem Size $N$')
ylabel('Time (s)')
legend(['Newton/GAMG', '$h^{−2} = N^1$', 'Anderson', '$h^{−4} = N^2$'], 'upper left', shadow = True)
if args.save:
savefig('hw3 1 log.png')

else:
show()

First we note that for larger problems, convergence can only be achieved with a
reduced β (we use β = −0.1 for our tests). We can also see that simple Anderson
mixing performs better than Newton only for the very smallest problem sizes,
and that the convergence deteriorates significantly with problem size.
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Problem III.2 The QR decomposition is a representation of a matrix A in
terms of an orthogonal matrix Q and an upper triangular matrix R,

A = QR. (12.11)

It is described in detail on Wikipedia, and also in many textbooks (Trefethen
and Bau, III 1997). Implement the QR decomposition in PETSc for arbitrary
matrix dimension using the Gram-Schmdit process. In your code, include a test
of the routine for some matrix A which reports ||A−QR||.

Extra Credit: Implement QR using Householder reflectors or Givens rota-
tions.

Extra Extra Credit: Implement the TSQR Algorithm.

Solution III.2 The Gram-Schmidt process (Stewart 2011) orthogonalizes a
set of vectors by subtracting off the piece of an initial vector parallel to each of
the subsequent vectors. For example, suppose we have vectors v0 and v1. then
the vector

u1 = v1 −
v1 · v0

v0 · v0
v0 (12.12)

https://en.wikipedia.org/wiki/QR_decomposition
https://en.wikipedia.org/wiki/QR_decomposition#Using_the_Gram.E2.80.93Schmidt_process
https://arxiv.org/abs/0806.2159
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is orthogonal to v0, as can be verified by explicit calculation

v0 · u1 = v0 · v1 −
v1 · v0

v0 · v0
v0 · v0 = 0. (12.13)

If we normalize the vectors uk, then we have an orthonormal system ek defined
by

uk = vk −
k−1∑
j=0

vk · uj
uj · uj

uj ek =
uk
||uk||

(12.14)

which we can use to express our original vectors

vk =

k∑
j=0

(vk · ej)ej =

k∑
j=0

vk · uj
||uj ||

ej . (12.15)

This can be written in matrix form V = QR, where

Q = [e0, . . . , en] R =


v0 · e0 v1 · e0 v2 · e0 . . .

0 v1 · e1 v2 · e1 . . .
0 0 v2 · e2 . . .
...

...
...

. . .

 . (12.16)

In PETSc, the easiest way to code this for parallel computing is to have R
replicated on each process, but the columns of Q distributed across processes.
The code below implements QR in this fashion.

static char help[] = "Naive QR implementation\n";

#include <petsc.h>

#undef FUNCT
#define FUNCT "ComputeQR"
PetscErrorCode ComputeQR(PetscInt n, Vec V[], Vec ∗Q[], Mat ∗R)
{
PetscScalar ∗r;
PetscReal norm;
PetscInt k, j;
PetscErrorCode ierr;

PetscFunctionBeginUser;
if (n <= 0) SETERRQ1(PETSC COMM SELF, PETSC ERR ARG OUTOFRANGE,
"The number of vectors to orthogonalize %D must be positive", n);

ierr = VecDuplicateVecs(V[0], n, Q);CHKERRQ(ierr);
ierr = MatCreateSeqDense(PETSC COMM SELF, n, n, NULL, R);CHKERRQ(ierr);
ierr = MatDenseGetArray(∗R, &r);CHKERRQ(ierr);
for (k = 0; k < n; ++k) {
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ierr = VecCopy(V[k], (∗Q)[k]);CHKERRQ(ierr);
for (j = 0; j < k; ++j) {
/∗ R {jk} = v k \cdot e j ∗/
ierr = VecDot(V[k], (∗Q)[j], &r[k∗n+j]);CHKERRQ(ierr);
ierr = VecAXPY((∗Q)[k], −r[k∗n+j], (∗Q)[j]);CHKERRQ(ierr);
}
ierr = VecNorm((∗Q)[k], NORM 2, &norm);CHKERRQ(ierr);
ierr = VecScale((∗Q)[k], 1.0/norm);CHKERRQ(ierr);
ierr = VecViewFromOptions((∗Q)[k], NULL, "−Q view");CHKERRQ(ierr);
ierr = VecDot(V[k], (∗Q)[k], &r[k∗n+k]);CHKERRQ(ierr);
}
ierr = MatDenseRestoreArray(∗R, &r);CHKERRQ(ierr);
ierr = MatViewFromOptions(∗R, NULL, "−R view");CHKERRQ(ierr);
PetscFunctionReturn(0);
}

#undef FUNCT
#define FUNCT "main"
int main(int argc, char ∗∗argv)
{
Vec ∗V, ∗Q, tmp;
Mat R;
const PetscInt n = 3;
PetscScalar ∗r;
PetscInt k;
PetscMPIInt rank;
PetscErrorCode ierr;

ierr = PetscInitialize(&argc, &argv, NULL, help);CHKERRQ(ierr);
ierr = MPI Comm rank(PETSC COMM WORLD, &rank);CHKERRQ(ierr);
/∗ Create initial vectors ∗/
ierr = VecCreate(PETSC COMM WORLD, &tmp);CHKERRQ(ierr);
ierr = VecSetFromOptions(tmp);CHKERRQ(ierr);
ierr = VecSetSizes(tmp, PETSC DETERMINE, n);CHKERRQ(ierr);
ierr = VecDuplicateVecs(tmp, n, &V);CHKERRQ(ierr);
if (!rank) {
ierr = VecSetValue(V[0], 0, 12.0, INSERT VALUES);CHKERRQ(ierr);
ierr = VecSetValue(V[0], 1, 6.0, INSERT VALUES);CHKERRQ(ierr);
ierr = VecSetValue(V[0], 2, −4.0, INSERT VALUES);CHKERRQ(ierr);
ierr = VecSetValue(V[1], 0, −51.0, INSERT VALUES);CHKERRQ(ierr);
ierr = VecSetValue(V[1], 1, 167.0, INSERT VALUES);CHKERRQ(ierr);
ierr = VecSetValue(V[1], 2, 24.0, INSERT VALUES);CHKERRQ(ierr);
ierr = VecSetValue(V[2], 0, 4.0, INSERT VALUES);CHKERRQ(ierr);
ierr = VecSetValue(V[2], 1, −68.0, INSERT VALUES);CHKERRQ(ierr);
ierr = VecSetValue(V[2], 2, −41.0, INSERT VALUES);CHKERRQ(ierr);
}
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/∗ QR factor ∗/
ierr = ComputeQR(n, V, &Q, &R);CHKERRQ(ierr);
/∗ Check factors ∗/
ierr = MatDenseGetArray(R, &r);CHKERRQ(ierr);
for (k = 0; k < n; ++k) {
PetscReal error;

ierr = VecSet(tmp, 0.0);CHKERRQ(ierr);
ierr = VecMAXPY(tmp, k+1, &r[k∗n], Q);CHKERRQ(ierr);
ierr = VecAXPY(tmp, −1.0, V[k]);CHKERRQ(ierr);
ierr = VecNorm(tmp, NORM 2, &error);CHKERRQ(ierr);
if (PetscAbsReal(error) > 1.0e−10) SETERRQ3(PETSC COMM WORLD, PETSC ERR PLIB,
"||QR %D − V %D|| = %g\n", k, k, error);

}
ierr = MatDenseRestoreArray(R, &r);CHKERRQ(ierr);
/∗ Cleanup ∗/
ierr = VecDestroy(&tmp);CHKERRQ(ierr);
ierr = VecDestroyVecs(n, &V);CHKERRQ(ierr);
ierr = VecDestroyVecs(n, &Q);CHKERRQ(ierr);
ierr = MatDestroy(&R);CHKERRQ(ierr);
ierr = PetscFinalize();
return ierr;
}

It tests the routine on the following factorization12 −51 4
6 167 −68
−4 24 −41

 =

 6
7 − 69

175 − 58
175

3
7

158
175

6
175

− 2
7

6
35 − 33

35

14 21 −14
0 175 −70
0 0 35

 (12.17)

and checks the solution by explicit multiplication.

12.4 Parallelism

12.5 Data Layout and Discretization I

Problem V.1 The schemes detailed above are designed for the situation in
which we fix the value of a single unknown. However, it is easy to imagine
that we would like to fix the value of a combination of unknowns. For example,
suppose we are solving a problem for fluid flow in a cavity where the flow obeys
the Euler equations, so that the constraint specifies that the fluid has no velocity
normal to the boundary. If the boundary aligns with the coordinates axes, we
can simply constrain that component of velocity. Now let our boundary be
inclined at the 45◦ angle (see Fig. ??) so that now our constraint equation
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becomes

~u · n̂ = 0(
u
v

)
· 1√

2

(
1
1

)
= 0

u+ v = 0.

Design a system for enforcing this boundary condition in both cases above,
namely eliminating constrained unknowns and replacing redundant equations.

Solution V.1 When eliminating constrained unknowns, it makes sense to
define the global basis as one consisting of only unconstrained dofs. For this
problem, we can redfine the global unknowns by rotating the original space

1√
2

(
1 1
−1 1

)(
u
v

)
=

(
u+ v
v − u

)
which we recognize as the rotation matrix for θ = 45◦. We can use the same
local assembly procedure, but when we map local unknowns to global unknowns,
instead of simply identifying local and global variables, we admit a linear map,

1 0 0 0 0 0
0 1 0 0 0 0

0 0
. . . 0 0 0

0 0 0 −1 1 0
0 0 0 1 1 0

0 0 0 0 0
. . .





u0

v0

...
uk
vk
...


where uk, vk come from a constrained vertex. For more general discretizations,
we define a linear transformation M which maps local unknowns to uncon-
strained global unknowns.

If instead we would like to work in the original basis, then we can replace
the equation for vk by

uk + vk = 0

instead of just fixing the value of vk.

12.6 Simple Finite Differences

Problem VI.1

Part I Carry out the MMS procedure for a modified Bratu equation which
incorporates an inhomogeneous coefficient,

−∇ ·
(

tanh

(
x− 1

2

)
∇u
)
− λeu = 0. (12.18)
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Use the same exact solutions as shown in the text,

u∗ = x(1− x)y(1− y) u∗ = sin(πx) sin(πy). (12.19)

Create convergence graphs for the solutions in both the `2 and `∞ norms, as in
the text. This problem becomes very hard to solve as the mesh size is increased,
the opposite of the behavior we saw with the original equation. For example, if
we use our script from before

for i in `seq 1 6`;
do
./ex5 -snes_type newtonls \
-da_grid_x 17 -da_grid_y 17 -da_refine $i \
-pc_type mg -pc_mg_levels 3 -pc_mg_galerkin \
-mg_levels_ksp_norm_type unpreconditioned -mg_levels_ksp_chebyshev_esteig 0.5,1.2 \
-mg_levels_pc_type sor -pc_mg_type full -mms 3 \

-snes_monitor -snes_converged_reason -ksp_converged_reason
done

we cannot even converge the first system.

0 SNES Function norm 4.865204926677e-01
Linear solve converged due to CONVERGED_RTOL iterations 3
1 SNES Function norm 5.168062931528e-02
Linear solve converged due to CONVERGED_RTOL iterations 15
2 SNES Function norm 4.184362140608e-02
Linear solve converged due to CONVERGED_RTOL iterations 23
3 SNES Function norm 3.866392229628e-02
Linear solve converged due to CONVERGED_RTOL iterations 25
4 SNES Function norm 3.606888512126e-02
Linear solve converged due to CONVERGED_RTOL iterations 30
5 SNES Function norm 3.410310612571e-02
Linear solve converged due to CONVERGED_RTOL iterations 58
6 SNES Function norm 3.294064502174e-02
Linear solve converged due to CONVERGED_RTOL iterations 57
7 SNES Function norm 3.291316232478e-02
Linear solve converged due to CONVERGED_RTOL iterations 54

Nonlinear solve did not converge due to DIVERGED_LINE_SEARCH iterations 7

Since we have control over the grid refinement, one common technique is to solve
a smaller problem and use this as the initial guess for the larger problem, which
is called grid sequencing. PETSc provides grid sequencing automatically using
the option -snes_grid_sequence, however we will have to alter our error checking
code to extract the final solution and grid by adding

ierr = SNESGetSolution(snes, &y);CHKERRQ(ierr);
ierr = SNESGetDM(snes, &dm);CHKERRQ(ierr);

Starting from a smaller grid,

for i in `seq 1 6`;
do
./ex5 -snes_type newtonls -snes_grid_sequence $i -da_refine 1 \
-ksp_rtol 1e-9 -pc_type mg -pc_mg_levels 3 -pc_mg_galerkin \
-mg_levels_ksp_norm_type unpreconditioned -mg_levels_ksp_chebyshev_esteig 0.5,1.2 \
-mg_levels_pc_type sor -pc_mg_type full -mms 3 \
-snes_monitor -snes_converged_reason -ksp_converged_reason

done

we can converge the first five systems,
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0 SNES Function norm 6.805338772655e-01
Linear solve converged due to CONVERGED_RTOL iterations 4
1 SNES Function norm 5.154734539031e-01
Linear solve converged due to CONVERGED_RTOL iterations 4
2 SNES Function norm 5.899227765372e-02
Linear solve converged due to CONVERGED_RTOL iterations 2
3 SNES Function norm 4.111593886420e-03
Linear solve converged due to CONVERGED_RTOL iterations 3
4 SNES Function norm 2.234476660521e-05
Linear solve converged due to CONVERGED_RTOL iterations 3
5 SNES Function norm 1.179499962334e-09

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 5
0 SNES Function norm 9.350819446678e-03
Linear solve converged due to CONVERGED_RTOL iterations 4
1 SNES Function norm 8.975872639470e-07
Linear solve converged due to CONVERGED_RTOL iterations 4
2 SNES Function norm 1.581449936603e-12

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 2
0 SNES Function norm 4.820528651869e-03
Linear solve converged due to CONVERGED_RTOL iterations 5
1 SNES Function norm 2.839396976835e-08
Linear solve converged due to CONVERGED_RTOL iterations 4
2 SNES Function norm 3.513911836431e-15

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 2
0 SNES Function norm 2.461494407946e-03
Linear solve converged due to CONVERGED_RTOL iterations 10
1 SNES Function norm 8.896591851778e-10
Linear solve converged due to CONVERGED_RTOL iterations 10
2 SNES Function norm 9.442247176540e-17

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 2
0 SNES Function norm 1.244744690374e-03
Linear solve converged due to CONVERGED_RTOL iterations 2807
1 SNES Function norm 2.782787902882e-11
Linear solve converged due to CONVERGED_RTOL iterations 2556
2 SNES Function norm 1.850505579361e-16

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 2
0 SNES Function norm 6.259834963960e-04
Linear solve converged due to CONVERGED_RTOL iterations 7049
1 SNES Function norm 8.694365205916e-13

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 1
0 SNES Function norm 3.139064083951e-04
Linear solve did not converge due to DIVERGED_ITS iterations 10000

Nonlinear solve did not converge due to DIVERGED_LINEAR_SOLVE iterations 0

which reveals that the problem is becoming quite ill-conditioned and our geo-
metric multigrid solver cannot cope with the variation in coefficient. For these
smaller serial problems, LU can be effective for checking convergence

for i in `seq 1 6`;
do
./ex5 -snes_type newtonls -snes_grid_sequence $i \
-da_refine 1 -ksp_rtol 1e-9 \
-pc_type lu -mms 3 \
-snes_converged_reason

done%$

and we see that if the linear systems can be solved, the nonlinear equation is
effectively preconditioned with grid sequencing.

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 2
N: 169 error l2 2.20735e-06 inf 7.9559e-05
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 2
N: 625 error l2 3.081e-07 inf 2.42794e-05
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 2
N: 2401 error l2 4.0427e-08 inf 8.29001e-06
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 2
N: 9409 error l2 5.16863e-09 inf 2.62871e-06
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Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 1
N: 37249 error l2 6.53061e-10 inf 7.96102e-07
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 1
N: 148225 error l2 8.20737e-11 inf 2.33813e-07

Part II Update the flop counting in the residual and Jacobian evaluation to
account for the additional flops in the new equation. Using the total flop count
output for each run, plot a work-precision diagram for this solve. The x-axis
should show the total work, and as a proxy we will use the flops executed. The
y-axis shows the precision of the result, and here we will use the error. Make
this plot comparing two different solvers: SNES Newton using LU with grid
sequencing, and SNES Newton using GMRES/GMG with grid sequencing.

Solution VI.1 For the new equation, we must derive a finite difference ap-
proximation of the operator. Previously, we had reasoned in the following way,

uxx(xi, yi) ≈
ux(xi+1/2)− ux(xi−1/2)

h
(12.20)

≈
u(xi+1)−u(xi)

h − u(xi)−u(xi−1)
h

h
(12.21)

≈ u(xi+1)− 2u(xi) + u(xi−1)

h2
. (12.22)

Thus now we have(
∂

∂x
tanh

(
x− 1

2

)
ux

)
(xi, yi) (12.23)

≈
tanh

(
xi+1/2 − 1

2

)
ux(xi+1/2)− tanh

(
xi−1/2 − 1

2

)
ux(xi−1/2)

h
(12.24)

≈
tanh

(
xi+1/2 − 1

2

) u(xi+1)−u(xi)
h − tanh

(
xi−1/2 − 1

2

) u(xi)−u(xi−1)
h

h
(12.25)

≈
tanh

(
xi+1/2 − 1

2

)
u(xi+1)

h2
+

tanh
(
xi−1/2 − 1

2

)
u(xi−1)

h2
(12.26)

−
(
tanh

(
xi+1/2 − 1

2

)
+ tanh

(
xi−1/2 − 1

2

))
u(xi)

h2
, (12.27)

and an identical expression applies in the y-direction. For the first exact solu-
tion, we have

−∇ ·
(

tanh

(
x− 1

2

)
∇u∗

)
− λeu

∗
(12.28)

= −∇ · tanh

(
x− 1

2

)(
(1− 2x)y(1− y)
x(1− x)(1− 2y)

)
− λex(1−x)y(1−y) (12.29)

= −(1− 2x)y(1− y)sech2

(
x− 1

2

)
+ 2y(1− y) tanh

(
x− 1

2

)
+ 2x(1− x) tanh

(
x− 1

2

)
− λex(1−x)y(1−y), (12.30)
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Figure 12.1: Mesh convergence of solutions to the modified Bratu equation
−∇ tanh

(
x− 1

2

)
∇u− λeu = 0.

and for the second

−∇ ·
(

tanh

(
x− 1

2

)
∇u∗

)
− λeu

∗
(12.31)

= −∇ · tanh

(
x− 1

2

)(
π cos(πx) sin(πy)
π sin(πx) cos(πy)

)
− λesin(πx) sin(πy) (12.32)

= −π cos(πx) sin(πy)sech2

(
x− 1

2

)
+ π2 sin(πx) sin(πy) tanh

(
x− 1

2

)
+ π2 sin(πx) sin(πy) tanh

(
x− 1

2

)
− λesin(πx) sin(πy), (12.33)

= −π cos(πx) sin(πy)sech2

(
x− 1

2

)
+ 2π2 sin(πx) sin(πy) tanh

(
x− 1

2

)
− λesin(πx) sin(πy). (12.34)

Note that after our modification to the equation, the differential operator is still
linear in u, even if it is nonlinear in x. Thus our Jacobian is just this operator
itself. We introduce residual and Jacobian callbacks for the new model, which
allows us to evaluate our error for a series of sizes, using for example a script
like

for i in `seq 1 6`;
do
./ex5 -snes_type newtonls -snes_grid_sequence $i \
-ksp_rtol 1e-9 \
-da_refine 1 -mms 4 \
-pc_type lu

done

which produces the plots in Figure 12.1. We note that the `∞ convergence is not
maintained, which may have something to do with the extreme ill-conditioning
of the Jacobian near the solution.
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We can modify the PetscLogFlops() arguments in FormFunctionLocalMMS3(),
FormFunctionLocalMMS4(), and FormJacobianLocalMMS3() in order to ac-
count for the extra flops used to compute the heterogeneous coefficient. Then
using the script below, we can compute a work=precision diagram for two dif-
ferent solver configurations.

#! /usr/bin/env python
import argparse
import subprocess
import numpy as np

parser = argparse.ArgumentParser(
description = 'CAAM 519 Homework IV.1',
epilog = 'For more information, visit http://www.mcs.anl.gov/petsc',
formatter class = argparse.ArgumentDefaultsHelpFormatter)

parser.add argument('−−kmax', type=int, default=5,
help='The number of doublings to test')

parser.add argument('−−save', action='store true', default=False,
help='Save the figures')

parser.add argument('−−debug', action='store true', default=False,
help='Turn on debugging')

args = parser.parse args()

errorA = []
flopsA = []
errorB = []
flopsB = []
for k in range(args.kmax):
Nx = 10 ∗ 2∗∗k
modname = 'perfA%d' % k
options = ['−snes type', 'newtonls', '−snes grid sequence', str(k), '−da refine', '1',

'−ksp rtol', '1e−9', '−pc type', 'lu', '−mms', '3',
'−log view', ':%s.py:ascii info detail' % modname]

cmd = './ex5 '+' '.join(options)
if args.debug: print(cmd)
out = subprocess.check output(['./ex5']+options).split(' ')
# This is l 2, out[6] is l infty
errorA.append(float(out[4]))
perfmod = import (modname)
flopsA.append(perfmod.Stages['Main Stage']['summary'][0]['flops'])

for k in range(args.kmax):
Nx = 10 ∗ 2∗∗k
modname = 'perfB%d' % k
options = ['−snes type', 'newtonls', '−snes grid sequence', str(k), '−da refine', '1',

'−snes max linear solve fail', '10', '−ksp rtol', '1e−9', '−pc type', 'mg',
'−pc mg levels', '3', '−pc mg galerkin',
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'−mg levels ksp norm type', 'unpreconditioned',
'−mg levels ksp chebyshev esteig', '0.5,1.2',
'−mg levels pc type', 'sor', '−pc mg type', 'full', '−mms', '3',
'−log view', ':%s.py:ascii info detail' % modname]

cmd = './ex5 '+' '.join(options)
if args.debug: print(cmd)
out = subprocess.check output(['./ex5']+options).split(' ')
# This is l 2, out[6] is l infty
errorB.append(float(out[4]))
perfmod = import (modname)
flopsB.append(perfmod.Stages['Main Stage']['summary'][0]['flops'])

FA = np.array(flopsA)
FB = np.array(flopsB)

from pylab import legend,plot,loglog,show,title,xlabel,ylabel,savefig
loglog(flopsA, errorA, 'r', FA, 0.5 ∗ FA ∗∗ −1., 'r−−',

flopsB, errorB, 'g', FB, 5.0 ∗ FB ∗∗ −1., 'g−−')
title('SNES ex5')
xlabel('Flops executed $F$')
ylabel('Error $\|u − u^∗\|$')
legend(['Newton/LU', '$h^2 = N^{−1}$', 'Newton GMRES/GMG', '$h^{−2} = N^{−1}$'],

'upper right', shadow = True)
if args.save:
savefig('hw4 1 log3.png')

else:
show()

Looking at Figure 12.2, we see that geometric multigrid (GMG) never becomes
practical for any problem size which can fit in the memory of my laptop.

Problem VI.2

Part I Carry out the MMS procedure for an equation similar to Lane-Emden
Equation by modifying the Bratu example,

−∆u− uλ = 0, (12.35)

where λ = 1, 2, 5. Use the same exact solutions as shown in the text,

u∗ = x(1− x)y(1− y) u∗ = sin(πx) sin(πy). (12.36)

Create convergence graphs for the solutions in both the `2 and `∞ norms, as in
the text.

Part II Update the flop counting in the residual and Jacobian evaluation to
account for the additional flops in the new equation. Using the total flop count

https://en.wikipedia.org/wiki/Lane%E2%80%93Emden_equation
https://en.wikipedia.org/wiki/Lane%E2%80%93Emden_equation
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Figure 12.2: A work precision diagram for the modified Bratu equation
−∇ tanh

(
x− 1

2

)
∇u− λeu = 0 using two different solver configurations.
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output for each run, plot a work-precision diagram for this solve. The x-axis
should show the total work, and as a proxy we will use the flops executed. The
y-axis shows the precision of the result, and here we will use the error. Make
this plot comparing two different solvers: SNES Newton using LU, and SNES
Newton using GMRES/GMG.

Extra Cedit Use a higher order approximation of the derivative, predict the
enhanced convergence, and demonstrate it with a convergence graph.

Solution VI.2

Part I If we insert our first MMS solution, u∗ = x(1 − x)y(1 − y), into the
equation, we get

2x(1− x) + 2y(1− y)− xλ(1− x)λyλ(1− y)λ,

and similarly for the other solution

2π2 sin(πx) sin(πy)− sinλ(πx) sinλ(πy).

We can evaluate the mesh convergence of our method using the Python script
below,

#!/usr/bin/env python
import matplotlib.pyplot as plt
import os
import subprocess
import numpy as np
from pylab import annotate, legend, plot, loglog, show, title, xlabel, ylabel, figure, savefig

mmsNames = [5,6]
for l in [1.0, 3.0, 5.0]:
for mms in mmsNames:
print("MMS: ", mms)
sizes = []
errorsl2 = []
errorslinf = []
for k in range(4):
Nx = 10∗2∗∗k
modname = 'perf%d' % k
options = ['−snes type', 'newtonls', '−par', str(l), '−mms', str(mms),

'−da grid x', str(Nx), '−da grid y', str(Nx),
'−log view', ':%s.py:ascii info detail' % modname]

output = subprocess.check output('./ex5 ' + ' '.join(options), shell=True)
if output.find('l2') == −1: raise RuntimeError("l2 norm Not found")
data = output.strip().split(' ')
errorsl2.append(float(data[4]))
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errorslinf.append(float(data[6]))
#perfmod = import (modname)
if not float(data[1]) == Nx∗∗2: raise RuntimeError("Size mismatch found")
sizes.append(float(data[1]))

# Linear Fit
print zip(sizes, errorsl2)
sizes = np.array(sizes)
x = np.log10(np.array(sizes))
yl2 = np.log10(np.array(errorsl2))
ylinf = np.log10(np.array(errorslinf))
X = np.hstack((np.ones((x.shape[0],1)),x.reshape((x.shape[0],1))))
beta = np.dot(np.linalg.pinv(np.dot(X.transpose(),X)),X.transpose())
beta = np.dot(beta, yl2.reshape((yl2.shape[0],1)))
interceptl2 = beta[0][0]
slopel2 = beta[1][0]
beta = np.dot(np.linalg.pinv(np.dot(X.transpose(),X)),X.transpose())
beta = np.dot(beta, ylinf.reshape((ylinf.shape[0],1)))
interceptlinf = beta[0][0]
slopelinf = beta[1][0]
# Plot
loglog(sizes, errorsl2, sizes, 0.9∗sizes∗∗−1.5, sizes, errorslinf, sizes, 0.9∗sizes∗∗−1)
title('SNES ex5 $\lambda$ '+str(l)+' MMS '+str(mms))
xlabel('Number of Dof $N$')
ylabel('Solution Error $e$')
legend(['$\ell 2$', '$h^{−3} = N^{−3/2}$', '$\ell \infty$', '$h^{−2} = N^{−1}$'])
annotate('fit slope %.2f' % slopel2, (sizes[len(sizes)/2], errorsl2[len(sizes)/2]),
(sizes[len(sizes)/2−1], errorsl2[len(sizes)/2]))

annotate('fit slope %.2f' % slopelinf, (sizes[len(sizes)/2], errorslinf[len(sizes)/2]),
(sizes[len(sizes)/2−1], errorslinf[len(sizes)/2]))

savefig(os.path.join('figures', 'fd 2 '+str(mms)+' l'+str(int(l))+'.png'))
show()

which produces the plots in Figure 12.3. Clearly the first MMS solution suffers
from supercovnergence, but we can see that the second shows the expected
convergence behavior.

Part II We change the PetscLogFlops() calls to reflect the additional flops
from the new term, where we count exponentiation and tracendental functions
as a single flop since it is quite complex to do a better job. The script below
generates a work-precision test for the case λ = 5 using the second MMS solution
for the LU and GMG solvers

#! /usr/bin/env python
import argparse
import subprocess, os
import numpy as np
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Figure 12.3: Mesh convergence of solutions to the modified Bratu equation
−∆u− uλ = 0.
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parser = argparse.ArgumentParser(
description = 'CAAM 519 Chapter FD Problem 2',
epilog = 'For more information, visit http://www.mcs.anl.gov/petsc',
formatter class = argparse.ArgumentDefaultsHelpFormatter)

parser.add argument('−−kmax', type=int, default=5,
help='The number of doublings to test')

parser.add argument('−−save', action='store true', default=False,
help='Save the figures')

parser.add argument('−−debug', action='store true', default=False,
help='Turn on debugging')

args = parser.parse args()

errors = {'LU': [], 'GMG': []}
flops = {'LU': [], 'GMG': []}
l = 5.0
mms = 6
for k in range(args.kmax):
Nx = 10 ∗ 2∗∗k
modname = 'perfA%d' % k
options = ['−snes type', 'newtonls', 'par', str(l), '−da refine', str(k+1),

'−ksp rtol', '1e−9', '−pc type', 'lu', '−mms', str(mms),
'−log view', ':%s.py:ascii info detail' % modname]

cmd = './ex5 '+' '.join(options)
if args.debug: print(cmd)
out = subprocess.check output(['./ex5']+options).split(' ')
# This is l 2, out[6] is l infty
errors['LU'].append(float(out[4]))
perfmod = import (modname)
flops['LU'].append(perfmod.Stages['Main Stage']['summary'][0]['flops'])

for k in range(args.kmax):
Nx = 10 ∗ 2∗∗k
modname = 'perfB%d' % k
options = ['−snes type', 'newtonls', 'par', str(l), '−da refine', str(k+1),

'−snes max linear solve fail', '10', '−ksp rtol', '1e−9',
'−pc type', 'mg', '−pc mg levels', '3', '−pc mg galerkin',
'−mg levels ksp norm type', 'unpreconditioned',
'−mg levels pc type', 'sor', '−pc mg type', 'full', '−mms', str(mms),
'−log view', ':%s.py:ascii info detail' % modname]

cmd = './ex5 '+' '.join(options)
if args.debug: print(cmd)
out = subprocess.check output(['./ex5']+options).split(' ')
# This is l 2, out[6] is l infty
errors['GMG'].append(float(out[4]))
perfmod = import (modname)
flops['GMG'].append(perfmod.Stages['Main Stage']['summary'][0]['flops'])
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Figure 12.4: Work-precision comparison of LU and GMG linear solvers inside
of Newton for the modified Bratu equation −∆u− uλ = 0.

FA = np.array(flops['LU'])
FB = np.array(flops['GMG'])
if args.debug: print FA, FB

from pylab import legend,plot,loglog,show,title,xlabel,ylabel,savefig
loglog(flops['LU'], errors['LU'], 'r', FA, 50∗FA ∗∗ −1., 'r−−',

flops['GMG'], errors['GMG'], 'g', FB, 200000∗FB ∗∗ −1.5, 'g−−')
title('SNES ex5 $\lambda$ '+str(l)+' MMS '+str(mms))
xlabel('Flops executed $F$')
ylabel('Error $\|u − u^∗\|$')
legend(['Newton/LU', '$h^2 = N^{−1}$',

'Newton GMRES/GMG', '$h^{−3} = N^{−1.5}$'], 'upper right', shadow = True)
if args.save:
savefig(os.path.join('figures', 'fd 2 wp.png'))

else:
show()

and we run it using

prob4_2_wp.py --kmax=7 --save

to build Figure 12.4. We can see that GAMG is an O(N) method, whereas the
sparse direct solver LU is performing at close to O(N1.5).
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12.7 Data Layout and Discretization II

12.8 Simple Finite Elements

12.9 Performance Modeling

Problem IX.1 The following pseudocode is a naive implementation of a dense
matrix-vector multiplication (assuming matrix dimension of N ×N , vector di-
mension of N).

C

for (i=0; i < N; ++i) {

double sum = 0.0;

for (j=0; j < N; ++j) {

sum += a[i*N+j]*b[j];

}

c[i] = sum;

}

Fortran

for(i=1,N)

sum = 0

for(j=1,N)

sum = sum + a(i,j)*b(j)

c(i) = sum

Based on the above code, answer the following questions:

1. Count the total number of floating point operations, in terms of N . The
unit will be a FLOP, abbreviated with F.

2. Count the total number of bytes transferred to/from memory if each float-
ing point number is 8 bytes, abbreviated with B, in terms of N .

3. Compute the arithmetic intensity, meaning the ratio of floating point op-
erations to total bytes transferred, and approximate for large N . (This
will give you a value in F/B, where F is a FLOP and B is a byte).

4. If a processor flop rate is 2 GF/s, and memory bandwidth is 8 GB/s, is
the program flop rate limited, or memory bandwidth limited?

5. What fraction of peak performance do you estimate can be obtained?

Solution IX.1

1. Each entry of the matrix is multiplied by some element of b. Thus there
are N2 multiplies. Each multiplication is added into the sum variable.
Thus there are N2 additions. Thus there are 2N2 flops.

2. Each element of the matrix is retrieved once. Thus there are N2 matrix
transfers. An element of the vector b is transferred for each matrix el-
ement. Thus there are N2 input vector transfers. Each element of the
output c is written back to memory. Thus there are N output vector
transfers. Thus there are 8(2N2 +N) bytes transferred.

We have not indicated a cache was present for this problem. Suppose that
you had a cache. If the cache is smaller than 8(2N) bytes, you would get
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no reuse, and likely this is the case unless it can hold 8(3N) bytes since
many caches have a Least Recently Used (LRU) policy for eviction. If it is
larger than this, the b vector can remain resident as rows of the matrix are
loaded, and we would have 8(N2 + 2N) bytes transferred which coincides
with the perfect cache model.

3. The arithmetic intensity is the ratio of floating point operations to total
bytes transferred

2N2

8(2N2 +N)
=

1

8(1 + 1
2N )

≈ 1

8
(12.37)

4. In order to run at peak, the processor would require 2 GF/s × 8 B/F =
16 GB/s, but it only has 8 GB/s of memory bandwidth available. Thus
it is a bandwidth limited computation on this architecture.

5. The process is capable of 8 GB/s, so the computation can run at a rate
of 8 GB/s 1

8F/B = 1 GF/s, or 50% of theoretical peak for this processor.

Problem IX.2 Consider the Gram-Schmidt Orthogonalization process. Start-
ing with a set of vectors {vi}, create a set of orthonormal vectors {ni}.

n1 =
v1

||v1||
(12.38)

n2 =
w2

||w2||
where w2 = v2 − (n1 · v2)n1 (12.39)

nk =
wk
||wk||

where wk = vk −
∑
j<k

(nj · vk)nj (12.40)

What is

1. the balance factor β for this algorithm?

2. the bandwidth required to run at peak (breq) on your computer?

3. the maximum achievable flop rate (rmax) on your computer?

Extra Credit Can this algorithm be improved?

Solution IX.2 In order to make the problem precise, lets first write represen-
tative PETSc code for this process

for (i = 0; i <= K; ++i) {
for (j = 0; j < i; ++j) {
VecDot(v[i], n[j], &proj[j]);
}
for (j = 0; j < i; ++j) {
VecAXPY(v[i], −proj[j], n[j]);
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}
VecNorm(n[i], NORM 2, &norm);
VecScale(n[i], 1.0/PetscSqrtReal(norm));
}

For vectors of length N and Br-byte reals (usually 8), the operations used in
the the Gram-Schmidt process have the following computational cost:

• vector norm ||v|| uses 2N − 1 F,

• normalizing a vector uses 3N − 1 F,

• vector dot product uses 2N − 1 F,

• vector subtraction and scaling use N F.

To produce n1, we just normalize the vector, so we read in v1 for the dot product,
read it again to scale, and write back n1, giving

β1 =
3N − 1

3NBr
≈ 3

3Br
Ky =

1

8
Ky. (12.41)

In order to calculate n2, we read v2 and n1 for the dot product, and again for
the subtraction and write w2, then read w2 for normalization, and write n2,

β2 =
(3N − 1) + (4N − 1)

(3 + 5)NBr
≈ 7

64
Ky. (12.42)

For the kth vector, we have normalization and (k−1) subtractions, dot products,
and scales,

βk =
(3N − 1) + (k − 1)(4N − 1)

(5(k − 1) + 3)NBr
≈ 4k − 1

(5k − 2)8
Ky, (12.43)

and the arithmetic intensity for the entire process, as k becomes large, is very
nearly

β =
1

10
Ky. (12.44)

My old Mac Air laptop has rpeak = 1700MF/s and rpeak = 1122MB/s, so
that the bandwidth required to run at peak

breq =
1700MF/s

1
10Ky

= 17, 000MB/s, (12.45)

which obviously exceeds the capacity of the machine. The maximum achievable
flop rate is in fact

rmax = 1122MB/s · 1

10
Ky = 112MF/s, (12.46)

which is 6.7% of peak performance.
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Extra Credit Suppose instead that we perform all operations with vector vk
at once, namely that we calculate k dot products in a single operation (VecMDot)
and k subtractions in a single operation (VecMAXPY).

for (i = 0; i <= K; ++i) {
VecMDot(v[i], i, n, proj);
VecMAXPY(v[i], i, −proj, n);
VecNorm(n[i], NORM 2, &norm);
VecScale(n[i], 1.0/PetscSqrtReal(norm));
}

This would mean that for each round, we would load vk and k vectors for the
dot products, similarly for the subtractions also writing the answer, and after
each round, we normalize wk. The total memory traffic is therefore

N

K∑
k=1

2k + 5 = 2N
K(K + 1)

2
+ 5KN = K(K + 6)N. (12.47)

The total flops done is the same

K∑
k=1

(3N − 1) + (k − 1)(4N − 1) = (3N − 1)K +
1

2
K(K − 1)(4N − 1), (12.48)

so that the total arithemtic intensity is

β =
(3N − 1)K + 1

2K(K − 1)(4N − 1)

K(K + 6)NBr
, (12.49)

≈ 2K + 1

8(K + 6)
. (12.50)

We see that for large K, we can approach limK→∞ β = 1
4Ky so that we increase

performance by more than a factor of 2. This could also happen by calculating
in single precision, where Br = 4.

Problem IX.3 Change the performance model for sparse matrix-vector mul-
tiplication (SpMV) so that the loads from memory are uncached. How does the
dependence on row occupancy change?

Solution IX.3 The common first assumption for SpMV analysis is that ma-
trix data is loaded only once, that vector data is also loaded only once, and that
latency to access vector data is negligible. These assumptions are undermined
if you permute the matrix using a randomized ordering. The matrix data will
still be accessed only once and contiguously, but for large enough matrices the
vector data will almost always generate a cache miss (high latency) and the
vector entry will be evicted before it is used again. Moreover, typically nothing
else on the cache line will be used.
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Our model for the memory must be modified for this case, so that we com-
municate

4(m+ nz) + 8(mV + nz(V + 1))B (12.51)

which gives an arithmetic intensity

β =
2nzV

4(m+ nz) + 8(mV + (V + 1)nz)
Ky =

1(
4 + 2

V

)
m
nz + 6

V + 4
Ky, (12.52)

as compared to the expression given a perfect cache,

βcache =
1(

8 + 2
V

)
m
nz + 6

V

Ky. (12.53)

The new term is comparable to the matrix term for V = 1, and much larger
as the number of vectors grows, and also dominates the other vector terms.
Thus it will control the performance of multivector multiply. In the limit of
a small cache, you get very poor temporal locality for the vector entries when
using any matrix ordering, so that the last term will again appear and dominate
performance.

Problem IX.4 Run the STREAMS benchmark on your personal computer
and graph the results as a function of core count. What do the results tell you
about the architecture of your machine?

Solution IX.4 You can run the benchmark automatically using PETSc,

make NP=<max cores> streams

which on my laptop produced Figure 12.5. We can see that a single core satu-
rates the memory bandwidth of this machine so that the second core does not
do any good for bandwidth constrained computations. However, as discussed on
StackOverflow, the association of cores to memory may be suboptimal, causing
interference or saturating one memory channel at the expense of others. We can
use the MPI_BINDING variable to tell PETSc what to do,

make NP=<max cores> MPI_BINDING="--bind-to socket" streams

but since my machine has a single socket, the results are unchanged.
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Figure 12.5: STREAMS benchmark run for a Mac Air laptop with an Intel Core
i5 processor.
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