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Chapter 1

Introduction

In this course, we will be mainly concerned with discrete binary systems, mean-
ing those for which a measurement returns a 0 or 1, or true/false, heads/tails,
up/down, Hall/Oates, or any other dichotomy you wish to use. It is definitely
possible to use ternary systems, or k-ary, but almost all physical models of quan-
tum computing use binary. We will write the state of such a system in at least
two ways. First, we have the familiar linear-algebraic notation for a two-state
system,

down =

(
0
1

)
up =

(
1
0

)
,

where each possible state is assigned a basis vector. Another popular notation,
known as Dirac notation, names the basis vectors explicitly

down = |0〉 up = |1〉 ,

or even

down = |d〉 up = |u〉 .

We could make our linear algebra look more like Dirac notation by using basis
vectors êi explicitly

down = ê0 up = ê1.

We will call our two-state system a bit , which is a portmanteau of “binary
digit”. Claude E. Shannon first used the word bit in his seminal 1948 paper,
A Mathematical Theory of Communication (Shannon 1948), and attributed its
origin to John W. Tukey. Many times it will be helpful to think of an actual
system, such as a coin. If the coin shows tails, we will say that it is in state ê0
or |T 〉, but for heads it is in state ê1 or |H〉. For a normal, deterministic coin
in order to specify the state, we merely give the appropriate basis vector, heads
or tails. However, this is not the right setting for understanding the quantum
analogue.
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8 CHAPTER 1. INTRODUCTION

Instead, let us imagine flipping the coin. Now we have introduced indeter-
minacy, or stochasticity, into our system. What can we say about the state of
our coin after flipping, before we lift our hand? We would probably say that it
is equally likely to be heads or tails. In our notation above, we could write

1

2
down +

1

2
up =

1

2
|T 〉+

1

2
|H〉

=
1

2
ê0 +

1

2
ê1

where we interpret the coefficient in front of each basis vector as “the chance
our system ends up in this state”. This can be thought of now as a probabilistic
bit, or probit . The chance of observing a certain outcome |j〉 from state |ψ〉 is

then 〈j|ψ〉, or using linear algebra ê†jψ. This is very close to the result for a
quantum mechanical system, for which the chance of observation is the square of
this quantity. We will see in later chapters that the proper classical analogues
to quantum mechanical systems are probabilistic, not deterministic, classical
systems.

Now suppose we want to change the probit system by changing the prob-
abilities of getting either state, from ( 1

2
1
2 ) to ( p1 p2 ). Since the two states are

the only possible outcomes, we would still want the sum of the two coefficients
to be one, meaning that we are guaranteed to get one of them. If, in addition,
we demand that the change be linear. we would have a matrix equation(

q1
q2

)
=

(
u11 u12
u21 u22

)(
p1
p2

)
where the matrix U has nonnegative entries, and its rows must sum to one,
which is called right stochastic matrix . We note that this matrix preserves the
1-norm of the input vector ~p. We will see that quantum evolution uses unitary
matrices that preserve the 2-norm of the input vectors of quantum amplitudes.

We can create a more abstract setting for the ideas we have discussed above.
Let us call a state a description of our system which is sufficient to predict the
outcome of any measurement, and the number of real parameters (or measure-
ments) necessary to define the state will be the number of degrees of freedom
K. The dimension of our system will be the maximum number of states which
can be distinguished by a single measurement. For example, our single coin
system has K = 2 degrees of freedom, p0 and p1, as well as dimension two, p |0〉
and (1 − p) |1〉. Note that the dimension is also the number of basis vectors,
matching the usual definition from linear algebra. We will call the probability
of an event, the relative frequency of its occurrence when the measurement is
performed on a ensemble of n identically prepared systems in the limit as n
becomes infinite.

The important thing to explore is how composite systems behave, namely
those that are composed of collections of simpler systems. Suppose that we have
two coins. Then the possible configurations for this system are

|TT 〉 , |TH〉 , |HT 〉 , |HH〉
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so that it has dimension four. We will be able to specify the outcomes of
measurements using four probability weights ( p1 p2 p3 p4 ), so that K = N . We
expect that if we fix one of the coins, then this system will behave just like a one
probit system with a single coin, which is indeed that case. When we combined
the two coins, we saw that N2 = N1 ·N1 and likewise K2 = K1 ·K1. We will take
this as a general axiom for any two systems. Given these assumptions about
the behavior of composite systems, one can prove (Hardy 2001; Schack 2003)
that

K = Nr

where r is a positive integer. If one additional insists that a reversible, contin-
uous transformation exist between the pure states of the system, we can rule
out r = 1 since there are a finite number of pure states in this case. This situ-
ation is exactly classical probability theory, and the pure states correspond to
the basis vectors. In quantum theory, we have an infinity of of pure states so
that a continuous transformation between them is possible, and a full state is
described by a density matrix which has N2 real parameters.

1.1 The Quantum Mechanical Setting

Complex Hilbert space is the setting for quantum mechanics. Hardy (Hardy
2001) shows that this is related to the behavior of composite systems. In real
Hilbert space, composite systems have too many degrees of freedom, and in
quaternionic Hilbert space they have too few. The signature operation in a
Hilbert space, the inner product 〈φ|psi〉, is defined by three properties:

1. Positivity: 〈ψ|ψ〉 > 0 ∀ψ 6= 0.

2. Conjugate Symmetry: 〈φ|ψ〉 = ¯〈ψ|φ〉

3. Linearity: 〈φ| (a |ψ〉+ b |ω〉) = a 〈φ|ψ〉+ b 〈φ|ω〉

The complex Hilbert space H is complete in the norm induced by the inner
product

‖ψ‖2 = 〈ψ|ψ〉 (1.1)

With this space, we can now define the mathematical objects representing our
physical objects. First we will state the common definitions. These are quite
clean, but misleading, since they only represent isolated systems. We will see
afterwards that for composite systems a more complicated approach is necessary.

States A state of our physical system, meaning the information sufficient to
determine the probabilistic outcome of any measurement. This means that
knowing the state and being able to prepare many identical systems in this
state, I can predict the probability (long run average) of any measurement. Our
state will be a ray in H, meaning the equivalence class of vectors aψ or any
scaling a ∈ C, including scalings eiα which preserve the norm, called a phase.
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Observables An observable is a property of a physical system that can be
measured. In quantum mechanics, an observable is a self-adjoint linear operator.
The eigenstates of a self-adjoint linear operator for an orthonormal basis, and
therefore A has a spectral representation in terms of these states φi

A =
∑
i

λi |φi〉〈φi| =
∑
i

λiPi, (1.2)

where Pi is the orthogonal projector onto the ith eigenspace.

Measurement When we measure A for a quantum state ψ, this collapses
the system into an eigenstate φ of A and the value of the measurement is the
eigenvalue λ. We will define a defineTermmeasurement of an eigenstate φ of
observable A on the state ψ to be a map M from A |ψ〉 to the real numbers

M : H → R

which gives the probability of obtaining state φ and value λ after the operation.
This probability is given by

Pr(λ) = ‖P |ψ〉‖2 = 〈ψ|P |ψ〉 (1.3)

Now we consider a composite system AB composed of two subsystems A
and B. The state ψAB of this composite system lives in the Hilbert space
HAB = HA⊗HB . For the next example, we will consider a two qubit state, but
we can easily generalize this to bigger systems. If we want to measure observable
L only the A qubit, our combined observable L will be

L = LA ⊗ I

where I is the identity operator on HB . If we look at the expectation value of
L,

〈ψ|L|ψ〉 =
(
ā 〈0| ⊗ 〈0|+ b̄ 〈0| ⊗ 〈1|+ c̄ 〈1| ⊗ 〈0|+ d̄ 〈1| ⊗ 〈1|

)
(LA ⊗ I)

(a |0〉 ⊗ |0〉+ b |0〉 ⊗ |1〉+ c |1〉 ⊗ |0〉+ d |1〉 ⊗ |1〉) (1.4)

= |a|2 〈0|LA|0〉+ āc 〈0|LA|1〉+ |b|2 〈0|LA|0〉+ b̄d 〈0|LA|1〉

+ |c|2 〈1|LA|1〉+ c̄a 〈1|LA|0〉+ |d|2 〈1|LA|1〉+ d̄b 〈1|LA|0〉 (1.5)

=
(
|a|2 + |b|2

)
〈0|LA|0〉+ 2 Re

{
āc+ b̄d

}
〈0|LA|1〉

+
(
|c|2 + |d|2

)
〈1|LA|1〉 (1.6)

This expression can be rewritten into a matrix equation

〈ψ|L|ψ〉 =
(
|a|2 + |b|2

)
Tr{LA |0〉〈0|}+

(
|c|2 + |d|2

)
Tr{LA |1〉〈1|}

+ Re
{
āc+ b̄d

}
Tr{LA |0〉〈1|}+ Re

{
āc+ b̄d

}
Tr{LA |1〉〈0|} (1.7)

= Tr

{
LA

(
|a|2 + |b|2 Re

{
āc+ b̄d

}
Re
{
āc+ b̄d

}
|c|2 + |d|2

)}
(1.8)

= Tr{LAρA} (1.9)
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where ρA is called the density operator for system A. Clearly the density op-
erator is self-adjoint, and has real entries. It also has trace 1 since the initial
combined state was normalized, and it has only positive eigenvalues (which
might not be immediately clear).

Since this form for the expectation value of L is true for any observable
acting on system A, we can interpret ρA as defining a statistical ensemble of
quantum states for system A rather than a set of states linked to the states of
system B. For example, suppose we have the simple state

a |0〉 ⊗ |0〉+ b |1〉 ⊗ |1〉 (1.10)

which we call the Bell state, where the off-diagonal terms above vanish. Then
the density operator is diagonal, with entries |a|2 and |b|2. The result of our
expectation value is exactly what we would expect to get if we specified that
systemA was in state |0〉 with probability p0 = |a|2 and state |1〉 with probability

p1 = |b|2. This is quite different from system A being in a superposition of states
|0〉 and |1〉, as we illustrate with a small example.

Suppose we prepare a system in the Bell state from above with |a|2 = |b|2 =
1
2 , so that the density operator ρA is given by

ρA =
1

2

(
1 0
0 1

)
=

1

2
I,

and it looks like an ensemble over the two equally probable states. We distin-
guish this from the single system in the superposition of states,

ψA =
1√
2

(|0〉+ |1〉) .

Then if we measure the probability for the state ψA from the ensemble state,
we get

〈Pψ〉 = Tr{|ψA〉〈ψA| ρA} (1.11)

=
1

4
Tr{(|0〉〈0|+ |0〉〈1|+ |1〉〈0|+ |1〉〈1|) (|0〉〈0|+ |1〉〈1|)} (1.12)

=
1

4
(1 + 1) (1.13)

=
1

2
, (1.14)

whereas if we measured the probability of the original state ψA to be in state
ψA, we would of course get unity, since it is certainly in that state. In fact, we
may take any unitary transformation U of ψA and get the same result

〈PUψ〉 = Tr
{
|UψA〉〈ψA|U†ρA

}
(1.15)

= Tr

{
|ψA〉〈ψA|U†

1

2
IU

}
(1.16)

= Tr{|ψA〉〈ψA| ρA}. (1.17)
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We can now define clearly a pure state, which is a single ray in the Hilbert
space, or something with a density operator which has a single term (diagonal
element) in the eigenbasis. We can also call a state with multiple terms in
the diagonalized density matrix an incoherent superposition, as opposed to a
coherent superposition which is the normal pure state we have seen before.
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Chapter 2

Linear Spaces

Numerical linear algebra is one of the most developed parts of numerical analy-
sis. It is also the solid foundation of numerical computing. The basic outline of
linear algebra has been clear since at least Grassman’s 1862 treatment (Fearnley-
Sander 1979). A vector space V over a field F is defined by the axioms in Ta-
ble 2, and in everything we do F will be either the real or complex numbers. In
addition, linear algebra studies mappings between vector spaces that preserve
the vector-space structure. Given two vector spaces V and W , a linear oper-
ator is a map A : V → W that is compatible with vector addition and scalar
multiplication,

A(u + v) = Au +Av, A(av) = aAv ∀u,v ∈ V, a ∈ F. (2.1)

This should have been covered in detail in your linear algebra courses.

There are two principal jobs in scientific computing: design of the interface
in order to control complexity, and efficiency of the implementation. In this unit
we will try to indicate why the current interface has become the standard, and
what pieces of it are likely to continue going forward. In a later unit, we will
analyze the runtime performance of various implementations. However, none of
this can be accomplished without the ability to run a linear algebra code.

There are many well-known packages which support numerical linear alge-
bra, including BLAS/LAPACK (Lawson et al. 1979; Anderson et al. 1990),
Hypre (Falgout 2017; Falgout n.d.), Trilinos (Heroux and Willenbring 2003;
Heroux et al. n.d.), DUNE (Bastian et al. 2015), Eigen (Jacob and Guennebaud
2015), and Elemental (Poulson et al. 2013; Poulson 2015). We will use the
PETSc libraries (Balay, Abhyankar, et al. 2020; Balay, Abhyankar, et al. 2019;
Balay, Gropp, et al. 1997) for a number of reasons. PETSc supports scal-
able, distributed sparse linear algebra, which will be our focus since we will be
concerned with larger problems that cannot be contained in a single machine
memory and mainly with PDE or graph problems which have a sparse structure.
For dense linear algebra problems, we will use Elemental. PETSc is designed as
a hierarchical set of library interfaces, and uses C to enhance both portability

13



14 CHAPTER 2. LINEAR SPACES

Axiom Signification
Associativity of addition u + (v + w) = (u + v) + w
Commutativity of addition u + v = v + u
Vector identity element ∃0 ∈ V | v + 0 = v ∀v ∈ V
Vector inverse element ∀v ∈ V, ∃ − v ∈ V | v + (−v) = 0
Distributivity for vector addition a(u + v) = au + av
Distributivity for field addition (a+ b)v = av + bv
Scalar and field multiplication a(bv) = (ab)v
Scalar identity element 1v = v

Table 2.1: The definition of a vector space (Wikipedia 2015)

and language interoperability. A discussion of tradeoffs involved in language
choice can be found in (Knepley 2012).

Example: Cartesian vectors We can take arrays of real numbers, indicating
extent in the coordinate directions, as our vectors. Addition then means adding
the numbers pairwise for each coordinates, and scalar multiplication just means
multiplying each entry by the same scalar. We call this space Rn if there are n
coordinates.

Example: Cartesian matrices We take matrices of m rows and n columns
with real entries as our vectors. Addition adds the matrices entrywise, and scalar
multiplication multiplies each entry. This just reproduces Rmn, and corresponds
to unrolling a matrix into a vector of length mn.

Example: Polynomials Let us consider polynomials of degree k with real
coefficients. We will take as our vectors, each representing a particular poly-
nomial, the arrays of k + 1 real coefficients. Pointwise addition of polynomial
functions then corresponds exactly to addition of the coefficients,

p0(x) + p1(x) =
(
a00 + a01x+ . . .+ a0kx

k
)

+
(
a10 + a11x+ . . . a1k + xk

)
= (a00 + a10) + (a01 + a11)x+ . . .+ (a0k + . . . a1k)xk.

Multiplication by a scalar just multiplies each coefficient by the same number.
Thus I have exactly Rk. Notice that I can replace the coefficients by any field,
such as C.

2.0.1 Useful notation

We will indicate the ith entry of a vector v with vi, so that

v =
∑
i

viêi (2.2)
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where êi is the ith basis vector. The Kronecker delta function, written δij is
zero is the two indices are different and unity if they are the same. For example,
the entries of the identity matrix I can be expressed as

Iij = δij . (2.3)

The Kronecker delta is a very useful device for manipulating indices and repre-
senting matrices whose only entries are 0 and 1, such as permutation matrices.
Another very useful notation is the Einstein summation notation. This declares
that repeated indices should be summed over. For example,

Iii =
∑
i

δii

=
∑
i

1

= Tr{I}

and in general

Aii = Tr{A}.

A more complex example would be matrix multiplication, so that C = AB could
be expressed as

Cij = AikBkj

and also

AikBki = Tr{AB}.

2.1 Inner Products, Orthogonality, and Dual Spaces

We can impose some additional structure on our vector space, namely that we
can compare angles between vectors. We will define the inner product of two
vectors as

w · v =
∑
i

wivi. (2.4)

However, we will not use this notation very often, since there is a complication
for complex vector spaces. Instead, we will connect the idea of the inner product
with that of a dual space, arriving at a more compact and useful notation.

We will define the dual space V † as the space of linear functionals on our
vector space V . This means the space of linear mappings from V into the field
of scalars for our vector space, usually R or C. According to the famous Riesz
Representation Theorem, the space V † is isomorphic to V , and we can represent

https://en.wikipedia.org/wiki/Riesz_representation_theorem
https://en.wikipedia.org/wiki/Riesz_representation_theorem
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the action of any function ψ ∈ V † on a vector v ∈ V by the inner product of
some vector w with v, so that

ψ(v) = w̄ · v =
∑
i

w̄ivi. (2.5)

Now we define the Hermitian conjugate of a vector w† so that

w†v =
∑
i

w̄ivi. (2.6)

Thus, the Hermitian conjugate finds the functional represented by that vector.
Sometimes people explain this as having “row” and “column” vectors, but this
a cumbersome and fragile way to explain things.

If we take the inner product of a vector with itself, we get the square of its
length

‖v‖ =
√
v†v (2.7)

which is also the 2-norm of the vector, discussed later on. With this, we can
define the angle α between two vectors as

cosα =
w†v

‖v‖‖w‖
. (2.8)

Clearly, vectors whose inner product is zero correspond to α = π/2 or a right an-
gle. We call these vectors orthogonal . The most important use of orthogonality
is to form bases for the span of a set of linearly independent vectors.

2.2 Bases

A linear combination of vectors is the sum

α0v0 + α1v1 + · · ·+ αnvn =
n∑
i=0

αivi (2.9)

where each αi is a scalar from some field. The only fields we will use in this class
are the real numbers R and the complex numbers C. The span of a set of vectors
{vi} is the subspace of vectors which can be constructed as linear combinations
of {vi}. In the quantum mechanics literature, a linear combination of states is
called a superposition. A linearly independent set is a set of vectors where the
only linear combination that vanishes, namely

λ0v0 + λ1v1 + · · ·λnvn = 0, (2.10)

requires that

λ0 = λ1 = · · · = λn = 0. (2.11)

https://en.wikipedia.org/wiki/Field_(mathematics)
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Thus no combination of linearly independent vectors can add up to zero.

A basis {êi} for a vector space V is a set of linearly independent vectors
whose span is the entire space, such that every vector v ∈ V can be written
as a finite linear combination of êi in a unique way. I am ignoring subtleties
connected with infinite dimensional vector spaces, as I will for this entire course.
A simple procedure to construct a basis is to start with one vector, which is a
trivial linearly independent set. If that vector spans the space, we are done. If
not, add a vector which is not in its span, and repeat. If V is finite dimensional,
then this process is guaranteed to terminate in d steps, where d is the dimension
of the space.

Given that every vector v ∈ V can be expressed as a linear combination of
basis vectors

v =
∑
i

viêi,

how do we find the scalars vi? We can take the inner product of the equation
above with some basis vector êk, so that

ê†kv =
∑
i

viê
†
kêi, (2.12)

v̄k =
∑
i

vieki, (2.13)

where we defined v̄k = ê†kv and eki = ê†kêi, both of which may be calculated if
we know the basis and vector. This may be recast in linear algebraic notation
as a matrix equation

Ev = v̄ (2.14)

v = E−1v̄ (2.15)

where v is the vector of coefficients vi, v̄ is the vector of coefficients v̄i, and E
is the matrix of coefficients eij . Now if we have an orthonormal basis, which we
will assume from here on, then

eij = ê†i êk = δij , (2.16)

which means that

vi = v̄i = ê†iv. (2.17)

Suppose instead that we have two different bases, {êi} and {f̂i}. How would

we get the components vfi of some vector v in the f -basis if we already know the
compnents vei in the e-basis? This is a practical problem, since we often measure
in some basis but do calculations in another. We can derive an expression for
this by expanding basis vectors of the first set in terms of basis vector in the
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second

v =
∑
i

vei êi (2.18)∑
i

vfi fi =
∑
i

vei êi (2.19)∑
i

vfi fi =
∑
i

vei
∑
j

Vjifj (2.20)

where Vji = fj · êi is the expression of the basis vector êi in the f -basis. Now
we can take the dot product with fk,∑

i

vfi fk · fi =
∑
i

vei
∑
j

Vjifk · fj , (2.21)

∑
i

vfi δki =
∑
i

vei
∑
j

Vjiδkj , (2.22)

vfk =
∑
i

vei Vki, (2.23)

vf = V ve. (2.24)

Thus the coefficients in the f -basis can be obtained from the coefficients in the
e-basis by applying the matrix V with coefficients

Vij = fi · êj (2.25)

which we will call the Vandermonde matrix , although Vandermonde was original
talking about a very specific change of basis (see Problem 2).

2.3 Linear Operators

Matrix multiplication is simply the application of a linear operator A between
two vector spaces, to an input vector x, generating an output vector y,

Ax = y. (2.26)

This operation is required to be linear, namely

A(αx + βz) = α(Ax) + β(Az). (2.27)

If we expand the vectors x and y in some basis {ê}, noting that a basis is
guaranteed to exist for any Hilbert space, we have

x =
∑
j

xj êj and y =
∑
j

yj êj , (2.28)
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and plugging into Eq. (2.26) gives

A
∑
j

xj êj =
∑
j

yj êj ,∑
j

xj(Aêj) =
∑
j

yj êj . (2.29)

Now we suppose that our basis is orthonormal, meaning that

êi · êj = δij . (2.30)

We can take the inner product of Eq. 2.29 with êi,

êi ·
∑
j

xj(Aêj) = êi ·
∑
j

yj êj ,∑
j

xj êi · (Aêj) =
∑
j

yj êi · êj ,∑
j

xj êi · (Aêj) =
∑
j

yjδij ,∑
j

aijxj = yi. (2.31)

where used the linearity of the inner product in line 2, the orthongonality of
basis vectors from Eq. 2.30, and we defined the matrix elements

aij = êi · (Aêj). (2.32)

We see that Eq. 2.31 is exactly our rule for matrix multiplication, but we have
derived it from the properties of abstract linear operators and bases. This means
that we can use our insights in domains others than the Euclidean space Rn,
such as vector spaces of functions.

We will define the Hermitian conjugate, or adjoint , A† of the operator A
such that (

w†Av
)†

= v†A†w. (2.33)

Since we have defined the matrix element aij = ê†iAêj , it means that the matrix

element a†ij for the Hermitian conjugate A† should be

a†ij = ê†iA
†êj =

(
ê†jAêi

)†
= a†ji = āji. (2.34)

Thus we get the Hermitian conjugate of a matrix by interchanging rows and
columns and taking the complex conjugate. If the matrix is real, then we call this
the transpose. Suppose that we want the Hermitian conjugate of the product
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of two matrices AB, then

(AB)
†
ij =

(∑
k

aikbkj

)†
(2.35)

=
∑
k

ājk b̄ki (2.36)

=
∑
k

B†ikA
†
kj (2.37)

=
(
B†A†

)
ij

(2.38)

so that AB† = B†A†. A similar thing can be proved for inverses, in a simpler
way,

I = AB (AB)
−1

(2.39)

= ABB−1A−1 (2.40)

= AA−1 (2.41)

= I. (2.42)

2.3.1 Unitary operators

A unitary operator U is defined by

UU† = U†U = I. (2.43)

Notice that this implies that the columns of U are orthonormal, since(
UU†

)
ij

=
∑
k

uikūjk (2.44)

= ui · u†j (2.45)

= δij (2.46)

where ui is the ith column of U . A unitary transformation is an isometry ,
meaning a transformation which preserves the matric on a space or the norm of
every vector. More precisely, unitary operators are L2 isometries because they
preserve the 2-norm of vectors,

‖Ux‖2 = (Ux)†(Ux) (2.47)

= x†U†Ux (2.48)

= x†x (2.49)

= ‖x‖2. (2.50)

A very common type of unitary operator is a permutation matrix, which a
single one in each row. The row represents the new index and the column the
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old index. Since applying the permutation followed by the inverse permutation
gives the identity, it is unitary. We can show this by using the Kronecker delta
to express the elements of a permutation matrix P ,

Pij = δiσ(j) (2.51)

where σ(k) is the permutation function, giving the index for element k after
permutation. We can see this by acting on the basis vector êk with P ,

(P êk)i =
∑
j

Pij(êk)j (2.52)

=
∑
j

δiσ(j)δkj (2.53)

= δiσ(k) (2.54)

so that the output is êσ(k). Now we can look at the matrix product

(
P †P

)
ij

=
∑
k

P †ikPkj (2.55)

=
∑
k

PkiPkj (2.56)

=
∑
k

δkσ(i)δkσ(j) (2.57)

= δσ(i)σ(j) (2.58)

= δij (2.59)

where the last step follows because σ is one-to-one. Thus P †P = I and P is
unitary.

2.3.2 Block Matrices

As a consequence of linearity, we can simplify the presentation of matrices with
block structure. Consider the 4× 4 matrix and vector

A =


a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33

 x =


x0
x1
x2
x3

 .

The expression for Ax is given by

(Ax)i =
∑
j

aijxj ,
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but we can express the loop over j ∈ [0, 4) as two loops by splitting the index
into subindices j = k ∗ 2 + l for k, l ∈ [0, 2),

(Ax)i =
∑
k

∑
l

ai,k∗2+lxk∗2+l,

=
∑
k

∑
l

ai,(kl)x(kl),

where (kl) is multindex, k indicating which block and l the index within that
block. Now suppose we also index the output vector using our multindex (ij),
so that

(Ax)(ij) =
∑
k

∑
l

a(ij),(kl)x(kl),

(Ax)i =
∑
k

ai,kxk,

where

ai,kxk =

(
a(i0),(k0) a(i0),(k1)
a(i1),(k0) a(i1),(k1)

)(
x(k0)
x(k1)

)
so that our usual rule for matrix-vector multiplication applies to the individual
blocks, and we can write

A =

(
a00 a01
a10 a11

)
x =

(
x0
x1

)
,

where each entry is a small vector or matrix, and multiplication is understood to
be matrix-vector multiplication. This same procedure extends to matrix-matrix
multiplication, and on to more general tensors.

2.4 Tensor Product Spaces

The tensor product V ⊗W of two vector spaces V and W (over the same field) is
itself a vector space, together with an operation of bilinear composition, denoted
by ⊗, from ordered pairs in the Cartesian product V ×W into V ⊗W . The
tensor product is defined by the bilinearity of the product operation ⊗,

∀v ∈ V,∀w0,w1 ∈W v ⊗ (α0w0) + v ⊗ (α1w1) = v ⊗ (α0w0 + α1w1),

∀v0,v1 ∈ V,∀w ∈W (α0v0)⊗w + (α1v1)⊗w = (α0v0 + α1v1)⊗w.

Given two linear operators A : V → X and B : W → Y , we define the tensor
product of the operators as a linear map

A⊗B : V ⊗W → X ⊗ Y (2.60)
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such that

(A⊗B)(v ⊗w) = (Av)⊗ (Bw), (2.61)

which also implies that

(A⊗B)(C ⊗D) = (AC)⊗ (BD). (2.62)

We can get the action of the combined operator on a combined vector by in-
serting bases for the two spaces {êi} and {f̂i},

(A⊗B)(
∑
i

viêi ⊗
∑
j

wj f̂j) = (A
∑
i

viêi)⊗ (B
∑
j

wj f̂j), (2.63)

(A⊗B)

∑
i

∑
j

viwj(êi ⊗ f̂j)

 = (
∑
i

viAêi)⊗ (
∑
j

wjBf̂j). (2.64)

Then we can get a matrix representation of the combined operator if we let the
input vector be a tensor product of the basis vectors,

(A⊗B)
(
êi ⊗ f̂j

)
= (Aêi)⊗ (Bf̂j), (2.65)

and look at the (kl) entry of the output vector by taking the dot product with
that basis vector,(

êk ⊗ f̂l

)†
(A⊗B)

(
êi ⊗ f̂j

)
=
(
êk ⊗ f̂l

)† (
(Aêi)⊗ (Bf̂j)

)
, (2.66)

(A⊗B)(kl),(ij) = (ê†kAêi)(f̂
†
l Bf̂j), (2.67)

= akiblj (2.68)

which is precisely the Kronecker product of matrices A and B, defined here.
Notice that we have made a block matrix of exactly the type we saw in Sec-
tion 2.3.2. For example, the Krocker product of two 2 × 2 matrices is given
by (

a0,0 a0,1
a1,0 a1,1

)
⊗
(
b0,0 b0,1
b1,0 b1,1

)
(2.69)

=

a0,0
(
b0,0 b0,1
b1,0 b1,1

)
a0,1

(
b0,0 b0,1
b1,0 b1,1

)
a1,0

(
b0,1 b0,1
b1,0 b1,1

)
a1,1

(
b0,0 b0,1
b1,0 b1,1

)
 (2.70)

=


a0,0b0,0 a0,0b0,1 a0,1b0,0 a0,1b0,1
a0,0b1,0 a0,0b1,1 a0,1b1,0 a0,1b1,1
a1,0b0,0 a1,0b0,1 a1,1b0,0 a1,1b0,1
a1,0b1,0 a1,0b1,1 a1,1b1,0 a1,1b1,1

 . (2.71)

In all of our quantum computing examples, we will be looking at combinations
of 2-state quantum systems, so that all our tensor product operators will look

https://en.wikipedia.org/wiki/Kronecker_product
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like this. Note that A is indexed with the high bit and B the low bit. If we
have a tensor product of several 2× 2 operators, then each one will be indexed
by a given bit of the global index.

Since the action of tensor product operators can be decomposed into action
on separate spaces, we can establish useful theorems about them. For example,
using our definition above for adjoints, we see that

(A⊗B)
†

= A† ⊗B†. (2.72)

Suppose that we have the tensor product of two unitary operators. Is it also
unitary? We can prove this using Eq. (2.72),

(U1 ⊗ U1)
†

(U1 ⊗ U1) =
(
U†1 ⊗ U

†
2

)
(U1 ⊗ U1) (2.73)

=
(
U†1U1 ⊗ U†2U2

)
(2.74)

= (I ⊗ I) (2.75)

= I. (2.76)

2.5 Norms

2.6 SVD

‖A‖2F = Tr
(
A†A

)
(2.77)

= Tr
((
UΣV †

)†
UΣV †

)
(2.78)

= Tr
(
V Σ†U†UΣV †

)
(2.79)

= Tr
(
V Σ†ΣV †

)
(2.80)

= Tr
(
Σ†ΣV †V

)
(2.81)

= Tr (ΣΣ) (2.82)

=
∑
i

σ2
i (2.83)

2.7 Eigenproblems

2.8 Problems

Problem II.1 This problem will familiarize you with the grading system that
we use at UB. Follow the steps below to ensure that your Autolab account is
working correctly.

1. Create your account at https://autograder.cse.buffalo.edu using your UB
email address.

https://autograder.cse.buffalo.edu
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2. An account may have been created for you if you enrolled before you had
an account If Autolab says that you already have an account, click “Forgot
your password?” and enter your email address. Follow instructions to
reset your password.

3. Ensure that you are registered for the course: CSE410: Quantum Algo-
rithms (Fall 19)

4. Submit a pdf to Homework 0 with the following information:

• Name

• Person number

• The equation

xTAx

||x||2
→ λmax

since equation writing will be essential in this course.

The best way to create PDF from LATEX is to use pdflatex,

pdflatex essay.tex
bibtex essay
pdflatex essay.tex
pdflatex essay.tex

where the repetition is necessary to assure that the metadata stored in auxiliary
files is consistent. This process can be handled in an elegant way by using the
latexmk program,

latexmk -pdf essay.tex

If you rely on TEX source or BibTEX files in other locations, you can use

TEXINPUTS=${TEXINPUTS}:/path/to/tex BIBINPUTS=${BIBINPUTS}:/path/to/bib
latexmk -pdf essay.tex

Problem II.2 Show that the original Vandermonde matrix is actually a change
of basis from the monomial basis {xk} to the basis of point evaluation function-
als {ηxi

}

ηz(φ) =

∫
φ(x)δ(x− z)dx (2.84)

Problem II.3 Implement both Classical and Modified Gram-Schmidt orthog-
onalization in PETSc. Use an example to show instability in the classical algo-
rithm that is not present in the modified form.

Problem II.4 NLA 1.1
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Problem II.5 NLA 1.3

Problem II.6 NLA 1.4

Problem II.7 NLA 2.1

Problem II.8 NLA 2.2

Problem II.9 NLA 2.3

Problem II.10 NLA 2.4

Problem II.11 NLA 2.6

Problem II.12 NLA 2.7

Problem II.13 NLA 3.1

Problem II.14 NLA 3.3

Problem II.15 NLA 3.6

Problem II.16 NLA 4.1

Problem II.17 NLA 4.4

Problem II.18 NLA 5.3

Problem II.19 NLA 5.4

Problem II.20 QALA 3.1

Problem II.21 QALA 3.4

Problem II.22 QALA 3.5

Problem II.23 QALA 3.7

Problem II.24 QALA 3.9

Problem II.25 QALA 3.10
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Problem II.26 QALA 3.12

Problem II.27 QALA 3.16

Problem II.28 QALA 3.17

Problem II.29 NLA 6.1

Problem II.30 NLA 6.3

Problem II.31 NLA 6.5

Problem II.32 NLA 7.1

Problem II.33 NLA 7.3

Problem II.34 NLA 7.4

Problem II.35 NLA 12.2

Problem II.36 NLA 14.1

Problem II.37 NLA 15.2
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The central difference between classical and quantum spaces is that there are
N pure states for N degrees of freedom in a classical system, whereas a quantum
system can support an infinite number of pure states and has dimension N2.
Since there are N degrees of freedom, we have N basis vectors in our space,
classical or quantum. Since we will always construct our composite systems from
a combination of two-state systems, our full system will be a tensor product and
N = 2n where n is the number of two-state systems. This also means that we
can make a correspondence between n-bit Boolean strings and basis vectors.
For example, a basis vector of the full system êM where the number M can be
expressed by the bit string

M = m0m1 . . .mn,

is given by the product of basis vectors of the two-state subsystems

êM = êm0 ⊗ êm1 ⊗ · · · ⊗ êmn .
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Chapter 3

Boolean and Hilbert Spaces

Quantum computers are machines for manipulating qubits. A qubit , or quantum
bit, is the basic unit of quantum information, the quantum mechanical version
of the classical binary bit. A qubit is a two-state quantum mechanical system,
such as the spin of the electron in which the two states can be taken as spin up
and spin down, or the polarization of a single photon in which the two states
can be taken to be the vertical polarization and the horizontal polarization.
In a classical system, a bit would have to be either true or false. However,
quantum mechanics allows the qubit to be in a coherent superposition of both
states at the same time, a property that is fundamental to quantum mechanics
and thus quantum computing. In terms of probabilities, as pointed out by
Hardy, quantum amplitudes can be negative, and lead to cancellation, whereas
classical probabilities must be positive. Therefore a qubit corresponds to a line
in a quantum circuit diagram, but not to a row of the permutation matrix
representing our invertible function F . The state space for a full problem is a
tensor product of individual spaces for each qubit. When quantum mechanics
refer to a superposition of states, what they mean is that we have a linear
combination of tensor product basis vectors.

3.1 Boolean Functions

In order to talk about two-state quantum systems, we will use the language
of boolean functions, where we identify the two quantum states with T and
F . A unary Boolean function operates on a single bit and returns a single bit.
There are only two unary functions, NOT and the identity. A binary Boolean
function operates on two input bits and returns a single output bit. These
are the familiar functions, such as AND and OR. We can generalize Boolean
functions to strings of bits in at least two different ways. A bitwise Boolean
function applies a binary function to each pair of bits and collects the output
bits into another string, whereas an n-ary Boolean function operates on all
argument bits to produce a single output bit. For example, n-ary AND returns

31
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T only if all input bits are T , and n-ary OR returns F only if all inputs are F .
The n-ary XOR function returns T only if an odd number of argument bits are
T , which makes sense given its identification with addition modulo 2. We can
define the Boolean inner product of two bit strings as n-ary XOR of the bitwise
AND of the two input strings,

x • y = x1y1 ⊕ · · · ⊕ xmym. (3.1)

This makes some sense in that n-ary XOR looks like addition and bitwise AND
looks like multiplication, and we retain the distributive property,

x y z x ∧ (y ⊕ z) (x ∧ y)⊕ (x ∧ z)
T T T F F
T T F T T
T F T T T
T F F F F
F T T F F
F T F F F
F F T F F
F F F F F

Note that n-ary XOR is addition mod 2 of the input bits, rather than addition
mod 2 of the input numbers represented by the bit strings. The table for x⊕ y
where x and y are single bits is given by

y
x

0 1

0 0 1
1 1 0

If we instead look at two bit strings,

y
x

00 01 10 11

00 0 1 0 1
01 1 0 1 0
10 0 1 0 1
11 1 0 1 0

we have copies of the first table, because only the least significant bits matter
in addition modulo two.

3.2 Matrix Representations

If we imagine a system composed of n two-state quantum systems, the size of
the overall Hilbert space for the combined system is N = 2n, because it is the
tensor product of two-dimensional spaces. We can label each basis function of
the combined system by its number in binary, so the rightmost bit is fastest.
For example, if we combine two electrons, we have states 00, 01, 10, and 11
where 0 and 1 correspond to spin up and spin down basis states.
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In quantum mechanics, linear operators transform basis states into each
other, and in fact we require that the operators be unitary in closed systems so
that the total probability for all measurements remains unity. This mapping can
be seen as a transformation of truth values from input to output. However, if we
want to represent unitary mappings, we must use invertible Boolean functions.
The Boolean function f(x1, . . . , xn) = y is not invertible, so instead we create
an invertible function F from it

F (x1, . . . , xn, z) = (x1, . . . , xn, z ⊕ f(x1, . . . , xn)) (3.2)

which can be shown to be its own inverse

F (F (x1, . . . , xn, z)) = F (x1, . . . , xn, z ⊕ f(x1, . . . , xn))

= (x1, . . . , xn, (z ⊕ f(x1, . . . , xn))⊕ f(x1, . . . , xn))

= (x1, . . . , xn, z) .

As a simple example, the unary NOT function is invertible, and has the repre-
sentation

X =

(
0 1
1 0

)
. (3.3)

We can check that it is invertible (and unitary) by noting that X2 = I. Now
suppose we use our strategy for making invertible Boolean functions on the
identity function so that we have f(x) = x, the we use F (x1, x2) = (x1, x2⊕x!).
Then we have the matrix representation

e00 e01 e10 e11


e00 1 0 0 0
e01 0 1 0 0
e10 0 0 0 1
e11 0 0 1 0

=

(
I 0
0 X

)
. (3.4)

We will call this operation CNOT (controlled NOT), since it negates the second
argument if and only if the first argument is T . Thus the first argument is
controlling the NOT on the second. We also note that this matrix cannot be
written as a Kronecker product of simpler gates.

In general, the matrix associated with F is size 2N × 2N , since we add an
extra argument z. We can label each row by the input x1x2 · · ·xnz, and each
one will have only a single nonzero in column x1x2 · · ·xn(z ⊕ f(x1, . . . , xn)). A
matrix with this structure is a permutation matrix , which we denote P f . Note
that permutation matrices are unitary, which implies the invertibility of F . We
can keep going in this fashion by making extra inputs z1, . . . , zm if the function
f has m outputs.

Rules for Feasibility:

1. Any unitary operator B of size 2k for fixed k is feasible. These are oper-
ations involving a fixed number k of qubits.
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2. A tensor product of B with identity matrices is feasible. We will call this
a basic operator . Note that this is also unitary.

3. The multiplication U1 · · ·U t of a polynomial number of feasible operators,
so that t = nO(1), is feasible. We can generalize this to allow s = nO(1)

qubits instead of just n qubits.

Lets look at a simple quantum circuit

x1 H • y1

x2 y2

which acts on qubit 1 with a Hadamard gate and then feeds both qubits into a
CNOT. There is an implied identity transformation on qubit 2, which could
be included explicitly

x1 H • y1

x2 I y2

in order to make the transition to linear algebra clearer. We can get out linear
algebraic form U for this circuit

U = U2U1 (3.5)

= CNOT (H⊗ I) (3.6)

=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

( 1√
2

(
1 1
1 −1

)
⊗
(

1 0
0 1

))
(3.7)

=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 1√
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

 (3.8)

=
1√
2


1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0

 (3.9)

(3.10)

Suppose that we act on the input state e00 which means that both qubits are
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in the spin up or F state,

Ue00 =
1√
2


1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0




1
0
0
0

 (3.11)

=
1√
2


1
0
0
1

 (3.12)

=
1√
2

(e00 + e11) . (3.13)

The output state is the so-called Bell state, meaning a maximally entangled
state, since if I measure the first qubit and get 0 I know immediately that the
other quibit must be 0, and likewise with 1. Thus the circuit above is routinely
used to construct an entangled pair from a simple initial state.

3.3 Problems

Problem III.1 QALA 2.1

Problem III.2 QALA 2.3

Problem III.3 QALA 2.4

Problem III.4 QALA 2.5

Problem III.5 QALA 2.6

Problem III.6 QALA 2.7

Problem III.7 QALA 2.8

Problem III.8 QALA 4.2

Problem III.9 QALA 4.3

Problem III.10 QALA 4.4

Problem III.11 QALA 4.5

Problem III.12 QALA 4.6
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Problem III.13 QALA 4.8

Problem III.14 QALA 4.9

Problem III.15 QALA 4.10

Problem III.16 QALA 4.12

Problem III.17 QALA 4.13

Problem III.18 QALA 4.14

Problem III.19 QALA 6.1

Problem III.20 QALA 6.2

Problem III.21 QALA 6.4

Problem III.22 QALA 6.5

Problem III.23 QALA 6.6

Problem III.24 QALA 6.7

Problem III.25 QALA 6.8

Problem III.26 QALA 6.9

Problem III.27 QALA 6.10



Chapter 4

Quantum Algorithms

The bag of tricks for quantum computing, I think, arises mainly, not from
quantum properties, but rather from the necessity of reversibility. This is the
origin, for instance, of the famous No-Cloning Theorem of quantum mechanics.
This says that there does not exist a universal unitary transformation which
produce an exact copy an unknown quantum state. To be specific, let us define
a state a, and ask for a transformation UC such that

UC(a⊗ e0) = eiα(a,e0)(a⊗ a)

Now suppose that we cloned two states a and b, and looked at their inner
product

(b⊗ e0)†(a⊗ e0) = (b⊗ e0)†U†CUC(a⊗ e0)

(b†a)(e†0e0) = (UC(b⊗ e0))†(UC(a⊗ e0))

(b†a) = e−iα(b,e0)(b⊗ b)†eiα(a,e0)(a⊗ a)

|b†a| = |b†a|2

This implies that either b†a = 0 or b†a = 1. Hence by the Cauchy-Schwarz
Inequality the states are either parallel or orthogonal. This cannot be the case
for two arbitrary states, and therefore, a single universal UC cannot clone a
general quantum state. Notice that we could design a U to copy a given quantum
state, but the transformation would depend on the state it was copying.

We can, however, create a transform UC that obeys

bij = a′i(i⊕j)

where ⊕ is understood as the bitwise operator. If i and j are single bits, this
is just the action of CNOT, which is our reversibility transform applied to the
identity. If we apply CNOT to each pair of qubits, we can create this state for
2n qubits. Lets look at the effect for a 2-qubit system. Suppose I apply CNOT

37
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to a⊗ e0, 
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



a0
0
a1
0

 =


a0
0
0
a1


so that bii = ai. This means that for any basis vector, UC(ek ⊗ e0) = ek ⊗ ek.
However, lets apply this to the state 1√

2
(e0 + e1)⊗ e0,


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 1√
2


1
0
1
0

 =
1√
2


1
0
0
1


but that is not the cloned state

1√
2

(e0 + e1)⊗ 1√
2

(e0 + e1) =
1

2


1
1
1
1

 .

We can also do the computation symbolically

UC

(
1√
2

(e0 + e1)⊗ e0
)

=
1√
2
UC (e0 ⊗ e0 + e1 ⊗ e0)

=
1√
2

(e0 ⊗ e0 + e1 ⊗ e1)

whereas

1√
2

(e0 + e1)⊗ 1√
2

(e0 + e1) =
1

2
(e0 ⊗ e0 + e0 ⊗ e1 + e1 ⊗ e0 + e1 ⊗ e1).

Suppose we want to select out some qubits from among the output of some
operation U . Then we just act with U ⊗ I on the initial state a ⊗ e0. Then
pick out the qubits we want using Cm, where the CNOT controls are on our
chosen qubits, and the targets are on the m ancillary qubits we are using to
make things reversible. Then act with U† ⊗ I to return the original inputs.
This is called the Copy-Uncompute trick.

By linearity of the tensor product, scaling one part is equivalent to scaling
the other parts

α(v ⊗w) = αv ⊗w = v ⊗ αw
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We can show this explicitly by calculating the Kronecker product of two vectors,

α

((
1
0

)
⊗
(

0
1

))
= α


0
1
0
0



=


0
α
0
0


=

(
α
0

)
⊗
(

0
1

)
=

(
1
0

)
⊗
(

0
α

)
x

F

(−1)f(x)x

e0 X H H X e0

The unitary operator F corresponding to the boolean function f is linear, so
that its action on mixed states is given by the linear combination of the action
on pure states. Moreover, it is a permutation, mapping the input state labeled
by xz to the output state labeled by x(x⊕ f(x)). Thus, we may write

F (x, d) = F(ex ⊗ ed)

=
1√
2

(F(ex ⊗ e0)−F(ex ⊗ e1))

=
1√
2

(F (x0)− F (x1))

=
1√
2

((
ex ⊗ e0⊕f(x)

)
−
(
ex ⊗ e1⊕f(x)

))
=

1√
2

(
ex ⊗

(
e0⊕f(x) − e1⊕f(x)

))
=

1√
2

(
ex ⊗ (−1)f(x) (e0 − e1)

)
= (−1)f(x)

(
ex ⊗

1√
2

(e0 − e1)

)
=
(

(−1)f(x)ex ⊗ d
)

This shows that the Grover Oracle is feasible, since we can start with j, and
then act with this circuit to multiply all entries in the true set S with negative
one.
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4.1 Examples

4.1.1 Create superposition

Quantum Circuit:

0 H y

Functional:

y = He0 =
1√
2

(e0 + e1) (4.1)

Linear Algebraic:

1√
2

(
1
1

)
=

1√
2

(
1 1
1 −1

)(
1
0

)
(4.2)

4.1.2 Create entanglement

Quantum Circuit:

a1 H • y1

a2 I y2

Functional:

y = CNOT (H⊗ I) (e0 ⊗ e0) (4.3)

= CNOT (He0 ⊗ e0) (4.4)

=
1√
2
CNOT (e0 ⊗ e0 + e1 ⊗ e0) (4.5)

=
1√
2
CNOT (e00 + e10) (4.6)

=
1√
2

(e00 + e11) (4.7)
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Linear Algebraic:


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

( 1√
2

(
1 1
1 −1

)
⊗
(

1 0
0 1

))((
1
0

)
⊗
(

1
0

))
(4.8)

=
1√
2


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

((1
1

)
⊗
(

1
0

))
(4.9)

=
1√
2


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1
0
1
0

 (4.10)

=
1√
2


1
0
0
1

 (4.11)

4.1.3 Deutsch’s Algorithm

Quantum Circuit:

0 H

F

H x

1 H z

Linear Algebraic:

1√
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

UF
1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1




0
1
0
0

 (4.12)

=
1

2
√

2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

UF


1
−1
1
−1

 (4.13)
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Now if f is the identity, F (x, z) = (x, x⊕ z), then

1

2
√

2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

UF


1
−1
1
−1

 (4.14)

=
1

2
√

2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1
−1
1
−1

 (4.15)

=
1

2
√

2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1




1
−1
−1
1

 (4.16)

=
1√
2


0
0
1
−1

 (4.17)

and a measurement when the first qubit is 0 will yield 0. Similarly for negation,
F (x, z) = (x, (¬x)⊕ z, we get

1

2
√

2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1




0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1




1
−1
1
−1

 (4.18)

=
1

2
√

2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1



−1
1
1
−1

 (4.19)

=
1√
2


0
0
−1
1

 (4.20)

with the same result. However for f the always true function, F (x, z) = (x,¬z),
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we get

1

2
√

2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0




1
−1
1
−1

 (4.21)

=
1

2
√

2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1



−1
1
−1
1

 (4.22)

=
1√
2


−1
1
0
0

 (4.23)

and a measurement when the first qubit is 0 will yield either state for the second
qubit with probability 1/2, and it is similar for f the always false function,

1

2
√

2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




1
−1
1
−1

 (4.24)

=
1

2
√

2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1




1
−1
1
−1

 (4.25)

=
1√
2


1
−1
0
0

 (4.26)

Functional:

(H⊗ I)F (H⊗H) (ê0 ⊗ ê1) (4.27)

= (H⊗ I)F
1

2
((ê0 + ê1)⊗ (ê0 − ê1)) (4.28)

=
1

2
(H⊗ I)F (ê00 − ê01 + ê10 − ê11) (4.29)

=
1

2
(H⊗ I)

(
ê0f(0) − ê0¬f(0) + ê1f(1) − ê1¬f(1)

)
(4.30)

=
1

2
√

2
(ê0f(0) + ê1f(0) − ê0¬f(0) − ê1¬f(0)+

ê0f(1) − ê1f(1) − ê0¬f(1) + ê1¬f(1)) (4.31)
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so if f is constant, we have

1

2
√

2
(ê0y + ê1y − ê0¬y − ê1¬y + ê0y − ê1y − ê0¬y + ê1¬y) (4.32)

=
1√
2

(ê0y − ê0¬y) (4.33)

whereas if f is not constant, we have

1

2
√

2
(ê0y + ê1y − ê0¬y − ê1¬y + ê0¬y − ê1¬y − ê0y + ê1y) (4.34)

=
1√
2

(ê1y − ê1¬y) (4.35)

We can simplify this derivation by using the expression for the action of the
Hadamard operator. We have for b = H4a,

bx =
1

2

∑
y

−1x
•yay

so if our starting state is ê01, then we have

bx =
1

2
(−1)x

•01

=
1

2
(−1)x·0⊕y·1

=
1

2
(−1)y

Now we use the definition of our reversible Boolean function F ,

F =
∑
xz

(êx ⊗ êz)(ê
†
x ⊗ ê†z⊕f(x))

we have c = Fb,

cxy =
∑
wz

Fxy,wzbwz

= bx(y⊕f(x))

=
1

2
(−1)y⊕f(x).

Then we finally apply a Hadmard gate only on the first quibit, d = (H2 ⊗ I)c,

dxy =
1√
2

∑
wz

(−1)xwδyzcwz

=
1

2
√

2

∑
w

(−1)xw(−1)y⊕f(w).
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Now we are again reduced to plugging in values

dxy =
1

2
√

2

(
(−1)y⊕f(0) + (−1)x(−1)y⊕f(1)

)
dxy =

1

2
√

2
(−1)y

(
(−1)f(0) + (−1)x⊕f(1)

)
.

Now we see that the amplitude for state d0y is given by

1

8

∣∣∣−1f(0) +−1f(1)
∣∣∣2

so that if f is constant, we have amplitude one half for either state y, whereas
if the function changes then the amplitude is 0.

4.1.4 Deutsch-Jozsa Algorithm

Now repeat derivation for n qubits. This is the Deutsch-Jozsa for discriminating
between constant and balanced functions, which are functions having an equal
number of true and false outcomes.

Quantum Circuit:

0 H

F

H x1

0 H H x2

...
...

...
...

0 H H xn

1 H z
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Functional:

(H · · · ⊗H⊗ I)F (H⊗ · · · ⊗H) (ê0 ⊗ · · · ⊗ ê0 ⊗ ê1) (4.36)

=
1√
2N

(H · · · ⊗H⊗ I)F

2N−1∑
(x,z)=0

exz

2N−1∑
(x′,z′)=0

(−1)(x,z)
•(x′,z′)δx′0δz′1 (4.37)

=
1√
2N

(H · · · ⊗H⊗ I)F

2N−1∑
(x,z)=0

exz(−1)(x,z)
•(0,1) (4.38)

=
1√
2N

(H · · · ⊗H⊗ I)F

2N−1∑
(x,z)=0

exz(−1)x
•0(−1)z·1 (4.39)

=
1√
2N

(H · · · ⊗H⊗ I)F

2N−1∑
(x,z)=0

exz(−1)z (4.40)

=
1√
2N

(H · · · ⊗H⊗ I)

2N−1∑
(x,z)=0

exz(−1)z⊕f(x) (4.41)

=
1√
2N

1√
N

(

N−1∑
x′=0

N−1∑
x=0

(−1)x
•x′
ex′ex)⊗ ez(−1)z⊕f(x) (4.42)

=
1√
2N

2N−1∑
(x′)=0

(−1)x
•x′

(−1)z⊕f(x
′)exz (4.43)

Thus, the probability of measuring a state (x, z) is given by

P (x, z) =
1

2N2

∣∣∣∣∣
N−1∑
x′=0

(−1)x
•x′

(−1)z⊕f(x
′)

∣∣∣∣∣
2

, (4.44)

=
1

2N2

∣∣∣∣∣(−1)z
N−1∑
x′=0

(−1)x
•x′

(−1)f(x
′)

∣∣∣∣∣
2

, (4.45)

=
1

2N2

∣∣∣∣∣
N−1∑
x′=0

(−1)x
•x′

(−1)f(x
′)

∣∣∣∣∣
2

. (4.46)

If we ask for P (0, z), we get

P (0, z) =
1

2N2

∣∣∣∣∣
N−1∑
x′=0

(−1)0
•x′

(−1)f(x
′)

∣∣∣∣∣
2

, (4.47)

=
1

2N2

∣∣∣∣∣
N−1∑
x′=0

(−1)f(x
′)

∣∣∣∣∣
2

. (4.48)
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If f is constant, then we get

P (0, z) =
1

2N2

∣∣∣∣∣
N−1∑
x′=0

±1

∣∣∣∣∣
2

, (4.49)

=
1

2N2
|±N |2 , (4.50)

=
1

2
, (4.51)

whereas, if f is balanced, then half the terms in the sum cancel the other half,
and we get zero.

4.1.5 Superdense coding

Quantum Circuit:

b1 b0

0 H • X Z • H x

0 z

First we work through the case where the U is the identity, so we expect
non-zero amplitude only in the (00) state,

(H⊗ I)CNOT(U⊗ I)CNOT(H⊗ I)ê00 (4.52)

=
1√
2

(H⊗ I)CNOT CNOT((ê0 + ê1)⊗ ê0) (4.53)

=
1√
2

(H⊗ I)CNOT CNOT(ê00 + ê10) (4.54)

=
1√
2

(H⊗ I)CNOT(ê00 + ê11) (4.55)

=
1√
2

(H⊗ I)(ê00 + ê10) (4.56)

=
1√
2

(H⊗ I)((ê0 + ê1)⊗ ê0) (4.57)

=(ê0 ⊗ ê0) (4.58)

=ê00 (4.59)
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Then U = X which gives (01),

1√
2

(H⊗ I)CNOT(X⊗ I)(ê00 + ê11) (4.60)

=
1√
2

(H⊗ I)CNOT(ê10 + ê01) (4.61)

=
1√
2

(H⊗ I)(ê11 + ê01) (4.62)

=
1√
2

(H⊗ I)((ê0 + ê1)⊗ ê1) (4.63)

=(ê0 ⊗ ê1) (4.64)

=ê01 (4.65)

U = Z gives (10),

1√
2

(H⊗ I)CNOT(Z⊗ I)(ê00 + ê11) (4.66)

=
1√
2

(H⊗ I)CNOT(ê00 − ê11) (4.67)

=
1√
2

(H⊗ I)(ê00 − ê10) (4.68)

=
1√
2

(H⊗ I)((ê0 − ê1)⊗ ê0) (4.69)

=(ê1 ⊗ ê0) (4.70)

=ê10 (4.71)

and U = ZX gives (11),

1√
2

(H⊗ I)CNOT(ZX⊗ I)(ê00 + ê11) (4.72)

=
1√
2

(H⊗ I)CNOT(ê01 − ê10) (4.73)

=
1√
2

(H⊗ I)(ê01 − ê11) (4.74)

=
1√
2

(H⊗ I)((ê0 − ê1)⊗ ê1) (4.75)

=(ê1 ⊗ ê1) (4.76)

=ê11 (4.77)

In order to work this out in the general case, we need an expression for U
parameterized by the values of the bits (b0b1) that we would like to send across
the channel. Let us define the single qubit operator U as

U =

(
(−1)b0·b1¬b0 (−1)¬b0·b1 b0
(−1)b0·b1 b0 (−1)¬b0·b1¬b0

)
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or equivalently

U = (−1)b0·b1 êb1 ê
†
0 + (−1)b0·¬b1 ê¬b1 ê

†
1 (4.78)

Now we can write this out in the general case

(H⊗ I)CNOT(U⊗ I)CNOT(H⊗ I)ê00 (4.79)

=
1√
2

(H⊗ I)CNOT(U⊗ I)CNOT((ê0 + ê1)⊗ ê0) (4.80)

=
1√
2

(H⊗ I)CNOT(U⊗ I)CNOT(ê00 + ê10) (4.81)

=
1√
2

(H⊗ I)CNOT(U⊗ I)(ê00 + ê11) (4.82)

=
1√
2

(H⊗ I)CNOT((−1)b0·b1 êb10 + (−1)b0·¬b1 ê¬b11) (4.83)

=
1√
2

(H⊗ I)(¬b1ê00 + b1(−1)b0 ê11 + ¬b1(−1)b0 ê10 + b1ê01) (4.84)

=
1√
2

(H⊗ I)((¬b1ê0 + ¬b1(−1)b0 ê1)⊗ ê0 + (b1(−1)b0 ê1 + b1ê0)⊗ ê1) (4.85)

=((¬b1(ê0 + ê1) + ¬b1(−1)b0(ê0 − ê1))⊗ ê0

+ (b1(−1)b0(ê0 − ê1) + b1(ê0 + ê1))⊗ ê1) (4.86)

=¬b1
1 + (−1)b0

2
ê00 + ¬b1

1− (−1)b0

2
ê10

+ b1
1 + (−1)b0

2
ê01 + b1

1− (−1)b0

2
ê11 (4.87)

and check that we obtain the expected amplitudes.

(0, 0)→ ê00

(0, 1)→ ê01

(1, 0)→ ê10

(1, 1)→ ê11

4.1.6 Quantum Teleportation

Quantum Circuit:

c • H b0

0 H • b1

0 X Z c
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Let us define the qubit c = αê0 +βê1, and then write the functional expres-
sion for our circuit, evaluating the circuit up to the measurement step,

(H⊗ I ⊗ I)(CNOT⊗ I)(I ⊗CNOT)(I ⊗H⊗ I)(c⊗ ê0 ⊗ ê0) (4.88)

=(H⊗ I ⊗ I)(CNOT⊗ I)(I ⊗CNOT)
1√
2

(c⊗ (ê0 + ê1)⊗ ê0) (4.89)

=(H⊗ I ⊗ I)(CNOT⊗ I)
1√
2

(c⊗ ê00 + c⊗ ê11) (4.90)

=(H⊗ I ⊗ I)(CNOT⊗ I)
1√
2

(αê000 + βê100 + αê011 + βê111) (4.91)

=(H⊗ I ⊗ I)
1√
2

(αê000 + βê110 + αê011 + βê101) (4.92)

=
1

2
(αê000 + αê100 + βê010 − βê110 + αê011 + αê111 + βê001 − βê101) (4.93)

=
1

2
(ê00 ⊗ (αê0 + βê1) + ê01 ⊗ (βê0 + αê1))

+
1

2
(ê10 ⊗ (αê0 − βê1) + ê11 ⊗ (−βê0 + αê1)) (4.94)

Now if we measure the first two qubits, we select one of the states above. We
could analyze this case-by-case, but instead let us write a parameterized state
based on the bits (b0b1) we get from the measurement

1

2

(
êb0b1 ⊗ (αêb1 + (−1)b0βê¬b1)

)
and we can act on the last qubit using the operator we defined in Eq. (4.78),(

(−1)b0·b1 êb1 ê
†
0 + (−1)b0·¬b1 ê¬b1 ê

†
1

)
(αêb1 + (−1)b0βê¬b1) (4.95)

=¬b1((−1)b0·b1αêb1 + (−1)b0·¬b1(−1)b0βê¬b1)

+ b1((−1)b0·b1(−1)b0βêb1 + (−1)b0·¬b1αê¬b1) (4.96)

=¬b1(αê0 + βê1) + b1(βê1 + αê0) (4.97)

=(¬b1 + b1)(αê0 + βê1) (4.98)

=αê0 + βê1 (4.99)

=c (4.100)

and we have exactly recovered the original state of the first qubit, now in the
third qubit.

4.2 Thoughts on Quantum Weirdness

I don’t think its the fact that a thing can be in a superposition of states that
is weird. It sounds weird if your states are “alive” and “dead”, but it sounds
perfectly normal if you are in a superposition of red and blue (purple). Our
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common experience is filled with objects in a mixed state. The weird thing is
that when I measure something, I can only get out one ofthe pure states, red or
blue, not the mixed state, purple. So again, the structure of the theory is not
weird, its the act of measurement.

Measurement is not really a single act, since quantum systems “measure”
themselves all thetime by interacting with other quantum systems. As long as
we can fully describe the composite system with quantum mechanics, its not
a “measurement”. Really, it seems that measurement is the act of bringing
a quantum system into equilibrium with another very large quantum system,
which destroy correlations it might have had with other systems. I think this is
“decoherence”. So the question is, how can this kind of equilibration eliminate
all states but the pure (basis) states. Suppose the basis states are eigenfunctions
of a quantum operator, and the decoherence process involves applying that
operator over and over again until we asymptote to fixed point. This kind of
power iteration would drive the system to the largest eigenvector represented
in the initial state. The analogy is not perfect, since we would need to drive
the system to some state depending on the amplitude of that basis vector, but
this kind of process could produce the weird behavior of “collapsing” the linear
combination to a single basis state.

Interference is not weird, its just a consequence of demanding continuity of
any transformation (see Lucien Hardy paper).

4.3 Problems

Problem IV.1 QALA 7.1

Problem IV.2 QALA 7.4

Problem IV.3 QALA 7.5

Problem IV.4 QALA 7.6

Problem IV.5 QALA 8.1

Problem IV.6 QALA 8.2

Problem IV.7 QALA 8.4

Problem IV.8 QALA 9.1

Problem IV.9 QALA 9.2

Problem IV.10 QALA 13.1
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Problem IV.11 QALA 13.2

Problem IV.12 QALA 13.3

Problem IV.13 QALA 13.5
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Cauchy-Schwarz Inequality, 37
coherent superposition, 12

degrees of freedom, 8
density matrix, 9
density operator, 11
dimension, 8
Dirac notation, 7
dual space, 15

Einstein summation notation, 15

Grover Oracle, 39

Hermitian conjugate, 16, 19

incoherent superposition, 12
inner product, 15
isometry, 20

Kronecker delta, 15, 21
Kronecker product, 23

linear combination, 16, 31
linearly independent, 16, 17

observable, 10

orthogonal, 16

permutation matrix, 33
phase, 9
probability, 8
probit, 8
pure state, 12

qubit, 31

ray, 9
right stochastic matrix, 8

span, 16
spectral representation, 10
state, 8, 9
superposition, 16, 31

tensor product, 22
transpose, 19

unary Boolean function, 31
unitary, 20

Vandermonde matrix, 18
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