
Quantum Algorithms
through Linear Algebra

Lecture Notes for CSE 410

Matthew G. Knepley

Department of Computer Science and Engineering
University At Buffalo

October 17, 2022

I dedicate these notes to my wonderful wife Margarete, without whose
patience and help they could never have been written.

Acknowledgements

TBD

4

Contents

1 Introduction 7

1.1 The Quantum Mechanical Setting 9

2 Linear Spaces 13

2.1 Definition . 13

2.1.1 Proofs . 14

2.1.2 Useful notation . 16

2.2 Inner Products, Orthogonality, and Dual Spaces 16

2.3 Bases . 17

2.3.1 Orthogonalization . 19

2.4 Linear Operators . 23

2.4.1 Expansion in a Basis . 23

2.4.2 Unitary operators . 25

2.4.3 Block Matrices . 26

2.5 Tensor Product Spaces . 27

2.6 Norms . 29

2.6.1 Vector Norms . 29

2.6.2 Matrix norms . 32

2.7 Projectors . 35

2.8 The Singular Value Decomposition 38

2.8.1 Definition of the SVD . 38

2.8.2 Proof that the SVD exists 40

2.8.3 Bases and Unitary Operators 43

2.9 Eigenproblems . 44

2.10 Problems . 44

3 Boolean and Hilbert Spaces 49

3.1 Boolean Functions . 51

3.2 Matrix Representations . 52

3.3 Hadamard Matrices . 56

3.4 Measuring Entanglement . 57

3.5 Problems . 58

5

6 CONTENTS

4 Quantum Algorithms 61
4.1 Simple Examples . 65

4.1.1 Create superposition . 65
4.1.2 Create entanglement . 65

4.2 Deutsch’s Algorithm . 66
4.3 Deutsch-Jozsa Algorithm . 71
4.4 Superdense coding . 73
4.5 Quantum Teleportation . 76
4.6 Grover’s Algorithm . 78

4.6.1 Grover’s Algorithm for any number of solutions 80
4.7 Measurement . 80
4.8 Thoughts on Quantum Weirdness 83
4.9 Problems . 84

5 Problem Solutions 87
5.1 Introduction . 87

Index 89

Chapter 1

Introduction

In this course, we will be mainly concerned with discrete binary systems, mean-
ing those for which a measurement returns a 0 or 1, or true/false, heads/tails,
up/down, Hall/Oates, or any other dichotomy you wish to use. It is definitely
possible to use ternary systems, or k-ary, but almost all physical models of quan-
tum computing use binary. We will write the state of such a system in at least
two ways. First, we have the familiar linear-algebraic notation for a two-state
system,

down =

(
0
1

)
up =

(
1
0

)
,

where each possible state is assigned a basis vector. Another popular notation,
known as Dirac notation, names the basis vectors explicitly

down = |0〉 up = |1〉 ,

or even

down = |d〉 up = |u〉 .

We could make our linear algebra look more like Dirac notation by using basis
vectors êi explicitly

down = ê0 up = ê1.

We will call our two-state system a bit , which is a portmanteau of “binary
digit”. Claude E. Shannon first used the word bit in his seminal 1948 paper,
A Mathematical Theory of Communication (Shannon 1948), and attributed its
origin to John W. Tukey. Many times it will be helpful to think of an actual
system, such as a coin. If the coin shows tails, we will say that it is in state ê0
or |T 〉, but for heads it is in state ê1 or |H〉. For a normal, deterministic coin
in order to specify the state, we merely give the appropriate basis vector, heads
or tails. However, this is not the right setting for understanding the quantum
analogue.

7

8 CHAPTER 1. INTRODUCTION

Instead, let us imagine flipping the coin. Now we have introduced indeter-
minacy, or stochasticity, into our system. What can we say about the state of
our coin after flipping, before we lift our hand? We would probably say that it
is equally likely to be heads or tails. In our notation above, we could write

1

2
down +

1

2
up =

1

2
|T 〉+

1

2
|H〉

=
1

2
ê0 +

1

2
ê1

where we interpret the coefficient in front of each basis vector as “the chance
our system ends up in this state”. This can be thought of now as a probabilistic
bit, or probit . The chance of observing a certain outcome |j〉 from state |ψ〉 is

then 〈j|ψ〉, or using linear algebra ê†jψ. This is very close to the result for a
quantum mechanical system, for which the chance of observation is the square of
this quantity. We will see in later chapters that the proper classical analogues
to quantum mechanical systems are probabilistic, not deterministic, classical
systems.

Now suppose we want to change the probit system by changing the prob-
abilities of getting either state, from (1

2
1
2) to (p1 p2). Since the two states are

the only possible outcomes, we would still want the sum of the two coefficients
to be one, meaning that we are guaranteed to get one of them. If, in addition,
we demand that the change be linear. we would have a matrix equation(

q1
q2

)
=

(
u11 u12
u21 u22

)(
p1
p2

)
where the matrix U has nonnegative entries, and its columns must sum to one,
which is called a left stochastic matrix . We note that this matrix preserves the
1-norm of the input vector ~p. We will see that quantum evolution uses unitary
matrices that preserve the 2-norm of the input vectors of quantum amplitudes.

We can create a more abstract setting for the ideas we have discussed above.
Let us call a state a description of our system which is sufficient to predict the
outcome of any measurement, and the number of real parameters (or measure-
ments) necessary to define the state will be the number of degrees of freedom
K. The dimension of our system will be the maximum number of states which
can be distinguished by a single measurement. For example, our single coin
system has K = 2 degrees of freedom, p0 and p1, as well as dimension two, p |0〉
and (1 − p) |1〉. Note that the dimension is also the number of basis vectors,
matching the usual definition from linear algebra. We will call the probability
of an event, the relative frequency of its occurrence when the measurement is
performed on a ensemble of n identically prepared systems in the limit as n
becomes infinite.

The important thing to explore is how composite systems behave, namely
those that are composed of collections of simpler systems. Suppose that we have
two coins. Then the possible configurations for this system are

|TT 〉 , |TH〉 , |HT 〉 , |HH〉

1.1. THE QUANTUM MECHANICAL SETTING 9

so that it has dimension four. We will be able to specify the outcomes of
measurements using four probability weights (p1 p2 p3 p4), so that K = N . We
expect that if we fix one of the coins, then this system will behave just like a one
probit system with a single coin, which is indeed that case. When we combined
the two coins, we saw that N2 = N1 ·N1 and likewise K2 = K1 ·K1. We will take
this as a general axiom for any two systems. Given these assumptions about
the behavior of composite systems, one can prove (Hardy 2001; Schack 2003)
that

K = Nr

where r is a positive integer. We will define a pure state as a state that is the
result of a measurement. For example, if I look at the result of a coin toss, I can
only see a head or a tail, not some combination. Thus, even though the state
of my classical probabilistic system can be expressed as an infinite number of
vectors α |H〉+(1−α) |T 〉, there are only two pure states. In quantum mechanics,
however, I can measure a superposition of states. For example, I can measure
light polarization at any angle even though there are only two basis vectors, say
horizontal and vertical polarization. Thus there are an infinity of pure states.

If one insists that a reversible, continuous transformation exist between the
pure states of the system, we can rule out r = 1 since there are a finite number
of pure states in this case. This situation is exactly classical probability theory,
and the pure states correspond to the basis vectors. In quantum theory, we have
an infinity of of pure states so that a continuous transformation between them
is possible, and a full state is described by a density matrix which has N2 real
parameters.

1.1 The Quantum Mechanical Setting

Complex Hilbert space is the setting for quantum mechanics. Hardy (Hardy
2001) shows that this is related to the behavior of composite systems. In real
Hilbert space, composite systems have too many degrees of freedom, and in
quaternionic Hilbert space they have too few. The signature operation in a
Hilbert space, the inner product 〈φ|ψ〉, is defined by three properties:

1. Positivity: 〈ψ|ψ〉 > 0 ∀ψ 6= 0.

2. Conjugate Symmetry: 〈φ|ψ〉 = 〈ψ|φ〉

3. Linearity: 〈φ| (a |ψ〉+ b |ω〉) = a 〈φ|ψ〉+ b 〈φ|ω〉
The complex Hilbert space H is complete in the norm induced by the inner
product

‖ψ‖2 = 〈ψ|ψ〉 (1.1)

With this space, we can now define the mathematical objects representing our
physical objects. First we will state the common definitions. These are quite
clean, but misleading, since they only represent isolated systems. We will see
afterwards that for composite systems a more complicated approach is necessary.

10 CHAPTER 1. INTRODUCTION

States A state of our physical system, meaning the information sufficient to
determine the probabilistic outcome of any measurement. This means that
knowing the state and being able to prepare many identical systems in this
state, I can predict the probability (long run average) of any measurement. Our
state will be a ray in H, meaning the equivalence class of vectors aψ or any
scaling a ∈ C, including scalings eiα which preserve the norm, called a phase.

Observables An observable is a property of a physical system that can be
measured. In quantum mechanics, an observable is a self-adjoint linear operator.
The eigenstates of a self-adjoint linear operator form an orthonormal basis, and
therefore A has a spectral representation in terms of these states φi

A =
∑
i

λi |φi〉〈φi| =
∑
i

λiPi, (1.2)

where Pi is the orthogonal projector onto the ith eigenspace.

Measurement When we measure A for a quantum state ψ, this collapses
the system into an eigenstate φ of A and the value of the measurement is the
eigenvalue λ. We will define a measurement of an eigenstate φ of observable A
on the state ψ to be a map M from A |ψ〉 to the real numbers

M : H → R

which gives the probability of obtaining state φ and value λ after the operation.
This probability is given by

Pr(λ) = ‖P |ψ〉‖2 = 〈ψ|P |ψ〉 (1.3)

where we have used the fact that P is a projector.
Now we consider a composite system AB composed of two subsystems A

and B. The state ψAB of this composite system lives in the Hilbert space
HAB = HA⊗HB . For the next example, we will consider a two qubit state, but
we can easily generalize this to bigger systems. If we want to measure observable
LA only for the A qubit, our combined observable L will be

L = LA ⊗ I

where I is the identity operator on HB . If we look at the expectation value of
L,

〈ψ|L|ψ〉 =
(
ā 〈0| ⊗ 〈0|+ b̄ 〈0| ⊗ 〈1|+ c̄ 〈1| ⊗ 〈0|+ d̄ 〈1| ⊗ 〈1|

)
(LA ⊗ I)

(a |0〉 ⊗ |0〉+ b |0〉 ⊗ |1〉+ c |1〉 ⊗ |0〉+ d |1〉 ⊗ |1〉) (1.4)

= |a|2 〈0|LA|0〉+ āc 〈0|LA|1〉+ |b|2 〈0|LA|0〉+ b̄d 〈0|LA|1〉

+ |c|2 〈1|LA|1〉+ c̄a 〈1|LA|0〉+ |d|2 〈1|LA|1〉+ d̄b 〈1|LA|0〉 (1.5)

=
(
|a|2 + |b|2

)
〈0|LA|0〉+ 2 Re

{
āc+ b̄d

}
〈0|LA|1〉

+
(
|c|2 + |d|2

)
〈1|LA|1〉 (1.6)

1.1. THE QUANTUM MECHANICAL SETTING 11

This expression can be rewritten into a matrix equation

〈ψ|L|ψ〉 =
(
|a|2 + |b|2

)
Tr{LA |0〉〈0|}+

(
|c|2 + |d|2

)
Tr{LA |1〉〈1|}

+ Re
{
āc+ b̄d

}
Tr{LA |0〉〈1|}+ Re

{
āc+ b̄d

}
Tr{LA |1〉〈0|} (1.7)

= Tr

{
LA

(
|a|2 + |b|2 Re

{
āc+ b̄d

}
Re
{
āc+ b̄d

}
|c|2 + |d|2

)}
(1.8)

= Tr{LAρA} (1.9)

where ρA is called the density operator for system A, and multiplication by LA
is component-wise, not matrix multiplication. Clearly the density operator is
self-adjoint, and has real entries. It also has trace 1 since the initial combined
state was normalized, and it has only positive eigenvalues (which might not be
immediately clear).

Since this form for the expectation value of L is true for any observable
acting on system A, we can interpret ρA as defining a statistical ensemble of
quantum states for system A rather than a set of states linked to the states of
system B. For example, suppose we have the simple state

a |0〉 ⊗ |0〉+ b |1〉 ⊗ |1〉 (1.10)

which we call the Bell state, where the off-diagonal terms above vanish. Then
the density operator is diagonal, with entries |a|2 and |b|2. The result of our
expectation value is exactly what we would expect to get if we specified that
systemA was in state |0〉 with probability p0 = |a|2 and state |1〉 with probability

p1 = |b|2. This is quite different from system A being in a superposition of states
|0〉 and |1〉, as we illustrate with a small example.

Suppose we prepare a system in the Bell state from above with |a|2 = |b|2 =
1
2 , so that the density operator ρA is given by

ρA =
1

2

(
1 0
0 1

)
=

1

2
I,

and it looks like an ensemble over the two equally probable states. We distin-
guish this from the single system in the superposition of states,

ψA =
1√
2

(|0〉+ |1〉) .

Then if we measure the probability for the state ψA from the ensemble state,
we get

〈Pψ〉 = Tr{|ψA〉〈ψA| ρA} (1.11)

=
1

4
Tr{(|0〉〈0|+ |0〉〈1|+ |1〉〈0|+ |1〉〈1|) (|0〉〈0|+ |1〉〈1|)} (1.12)

=
1

4
(1 + 1) (1.13)

=
1

2
, (1.14)

12 CHAPTER 1. INTRODUCTION

whereas if we measured the probability of the original state ψA to be in state
ψA, we would of course get unity, since it is certainly in that state. In fact, we
may take any unitary transformation U of ψA and get the same result

〈PUψ〉 = Tr
{
|UψA〉〈ψA|U†ρA

}
(1.15)

= Tr

{
|ψA〉〈ψA|U†

1

2
IU

}
(1.16)

= Tr{|ψA〉〈ψA| ρA}. (1.17)

We can now define clearly a quantum pure state, which is a single ray in the
Hilbert space, or something with a density operator which has a single term
(diagonal element) in the eigenbasis. We can also call a state with multiple terms
in the diagonalized density matrix an incoherent superposition, as opposed to a
coherent superposition which is the normal pure state we have seen before (Peres
2006).

References

Shannon, Claude Elwood (July 1948). “A Mathematical Theory of Communi-
cation”. In: Bell System Technical Journal 27.3, pp. 379–423. doi: 10.1002/

j.1538- 7305.1948.tb01338.x. url: https://web.archive.org/web/19980715013250/http:

//cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf.
Hardy, Lucien (2001). “Quantum theory from five reasonable axioms”. In: eprint:

quant-ph/0101012.
Schack, Rüdiger (2003). “Quantum theory from four of Hardy’s axioms”. In:

Foundations of Physics 33.10, pp. 1461–1468.
Peres, Asher (2006). Quantum theory: concepts and methods. Vol. 57. Springer

Science & Business Media.

https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://web.archive.org/web/19980715013250/http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf
https://web.archive.org/web/19980715013250/http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf
quant-ph/0101012

Chapter 2

Linear Spaces

2.1 Definition

Numerical linear algebra is one of the most developed parts of numerical analy-
sis. It is also the solid foundation of numerical computing. The basic outline of
linear algebra has been clear since at least Grassman’s 1862 treatment (Fearnley-
Sander 1979). A vector space V over a field F is defined by the axioms in
Table 2.1, and in everything we do F will be either the real or complex num-
bers. In addition, linear algebra studies mappings between vector spaces that
preserve the vector-space structure. Given two vector spaces V and W , a linear
operator is a map A : V → W that is compatible with vector addition and
scalar multiplication,

A(u + v) = Au +Av, A(av) = aAv ∀u,v ∈ V, a ∈ F. (2.1)

This should have been covered in detail in your linear algebra courses.
There are two principal jobs in scientific computing: design of the interface

in order to control complexity, and efficiency of the implementation. In this unit
we will try to indicate why the current interface has become the standard, and
what pieces of it are likely to continue going forward. In a later unit, we will
analyze the runtime performance of various implementations. However, none of
this can be accomplished without the ability to run a linear algebra code.

There are many well-known packages which support numerical linear alge-
bra, including BLAS/LAPACK (Lawson et al. 1979; Anderson et al. 1990),
Hypre (Falgout 2017; Falgout n.d.), Trilinos (Heroux and Willenbring 2003;
Heroux et al. n.d.), DUNE (Bastian et al. 2015), Eigen (Jacob and Guennebaud
2015), and Elemental (Poulson et al. 2013; Poulson 2015). We will use the
PETSc libraries (Balay, Abhyankar, et al. 2020; Balay, Abhyankar, et al. 2019;
Balay, Gropp, et al. 1997) for a number of reasons. PETSc supports scal-
able, distributed sparse linear algebra, which will be our focus since we will be
concerned with larger problems that cannot be contained in a single machine
memory and mainly with PDE or graph problems which have a sparse structure.

13

14 CHAPTER 2. LINEAR SPACES

Axiom Signification
(A1) Associativity of addition u + (v + w) = (u + v) + w
(A2) Commutativity of addition u + v = v + u
(A3) Vector identity element ∃0 ∈ V | v + 0 = v ∀v ∈ V
(A4) Vector inverse element ∀v ∈ V, ∃ − v ∈ V | v + (−v) = 0
(A5) Distributivity for vector addition a(u + v) = au + av
(A6) Distributivity for field addition (a+ b)v = av + bv
(A7) Scalar and field multiplication a(bv) = (ab)v
(A8) Scalar identity element 1v = v

Table 2.1: The definition of a vector space (Wikipedia 2015)

For dense linear algebra problems, we will use Elemental. PETSc is designed as
a hierarchical set of library interfaces, and uses C to enhance both portability
and language interoperability. A discussion of tradeoffs involved in language
choice can be found in (Knepley 2012).

Example: Cartesian vectors We can take arrays of real or complex num-
bers, indicating extent in the coordinate directions, as our vectors. Addition
then means adding the numbers pairwise for each coordinates, and scalar mul-
tiplication just means multiplying each entry by the same scalar. We call this
space Rn or Cn if there are n coordinates.

Example: Cartesian matrices We take matrices of m rows and n columns
with real or complex entries as our vectors. Addition adds the matrices entry-
wise, and scalar multiplication multiplies each entry. This just reproduces Rmn
or Cmn, and corresponds to unrolling a matrix into a vector of length mn.

Example: Polynomials Let us consider polynomials of degree k with real
or complex coefficients. We will take as our vectors, each representing a par-
ticular polynomial, the arrays of k + 1 scalar coefficients. Pointwise addition of
polynomial functions then corresponds exactly to addition of the coefficients,

p0(x) + p1(x) =
(
a00 + a01x+ . . .+ a0kx

k
)

+
(
a10 + a11x+ . . . a1k + xk

)
= (a00 + a10) + (a01 + a11)x+ . . .+ (a0k + . . . a1k)xk.

Multiplication by a scalar just multiplies each coefficient by the same number.
Thus we have exactly Rk and Ck. Notice that we can replace the coefficients by
any field, for instance the p-adic numbers.

2.1.1 Proofs

In order to make ourselves familiar with the axioms, we will go over a few simple
proofs. First we will demonstrate a cancellation lemma (C), namely that if two

2.1. DEFINITION 15

different vectors added to the same vector produce the same result, these vectors
must be equal. First we assume the hypothesis (H) that u + v = u + w. Then

−u + (u + v) = −u + (u + v)

−u + (u + v) = −u + (u + w) (H)

(−u + u) + v = (−u + u) + w (A1)

(u +−u) + v = (u +−u) + w (A2)

0 + v = 0 + w (A4)

v = w (A3)

This result can be used to prove many things. For example, the zero vector is
unique because if we had another vector 0′ such that

v + 0 = v = v + 0′,

then we can use the cancellation lemma to conclude

0 = 0′.

This same proof can allow us to conclude that the inverse is unique by consid-
ering a vector −v′,

v +−v = 0 = v +−v′,

and again using the cancellation lemma we have

−v = −v′.

We can also prove (Z) that multiplication by scalar 0 gives us the zero vector 0,

0 + 0v = 0v (A3)

0 + 0v = (0 + 0)v

0 + 0v = 0v + 0v (A5)

0 = 0v (C)

and that multiplication by negative one gives the inverse,

v +−1v = 1v +−1v (A8)

v +−1v = (1− 1)v (A5)

v +−1v = 0v

v +−1v = 0 (Z)

v +−1v = v +−v (A4)

−1v = −v (C)

16 CHAPTER 2. LINEAR SPACES

2.1.2 Useful notation

We will indicate the ith entry of a vector v with vi, so that

v =
∑
i

viêi (2.2)

where êi is the ith basis vector. The Kronecker delta function, written δij is
zero if the two indices are different and unity if they are the same. For example,
the entries of the identity matrix I can be expressed as

Iij = δij . (2.3)

The Kronecker delta is a very useful device for manipulating indices and repre-
senting matrices whose only entries are 0 and 1, such as permutation matrices.
Another very useful notation is the Einstein summation notation. This declares
that repeated indices should be summed over. For example,

Iii =
∑
i

δii

=
∑
i

1

= Tr{I}

and in general

Aii = Tr{A}.

A more complex example would be matrix multiplication, so that C = AB could
be expressed as

Cij = AikBkj

and also

AikBki = Tr{AB}.

2.2 Inner Products, Orthogonality, and Dual Spaces

We can impose some additional structure on our vector space, namely that we
can compare angles between vectors. We will define the inner product of two
vectors as

w · v =
∑
i

wivi. (2.4)

However, we will not use this notation very often, since there is a complication
for complex vector spaces. Instead, we will connect the idea of the inner product
with that of a dual space, arriving at a more compact and useful notation.

2.3. BASES 17

We will define the dual space V † as the space of linear functionals on our
vector space V . This means the space of linear mappings from V into the field
of scalars for our vector space, usually R or C. According to the famous Riesz
Representation Theorem, the space V † is isomorphic to V , and we can represent
the action of any functional ψ ∈ V † on a vector v ∈ V by the inner product of
some vector w with v, so that

ψ(v) = w̄ · v =
∑
i

w̄ivi. (2.5)

Now we define the Hermitian conjugate of a vector w† so that

w†v =
∑
i

w̄ivi. (2.6)

Thus, the Hermitian conjugate finds the functional represented by that vector.
Sometimes people explain this as having “row” and “column” vectors, but this
a cumbersome and fragile way to explain things.

If we take the inner product of a vector with itself, we get the square of its
length

‖v‖ =
√
v†v (2.7)

which is also the 2-norm of the vector, discussed later on. With this, we can
define the angle α between two vectors as

cosα =
w†v

‖v‖‖w‖
. (2.8)

Clearly, vectors whose inner product is zero correspond to α = π/2 or a right an-
gle. We call these vectors orthogonal . The most important use of orthogonality
is to form bases for the span of a set of linearly independent vectors.

2.3 Bases

A linear combination of vectors is the sum

α0v0 + α1v1 + · · ·+ αnvn =

n∑
i=0

αivi (2.9)

where each αi is a scalar from some field. The only fields we will use in this class
are the real numbers R and the complex numbers C. The span of a set of vectors
{vi} is the subspace of vectors which can be constructed as linear combinations
of {vi}. In the quantum mechanics literature, a linear combination of states is
called a superposition. A linearly independent set is a set of vectors where the
only linear combination that vanishes, namely

λ0v0 + λ1v1 + · · ·λnvn = 0, (2.10)

https://en.wikipedia.org/wiki/Riesz_representation_theorem
https://en.wikipedia.org/wiki/Riesz_representation_theorem
https://en.wikipedia.org/wiki/Field_(mathematics)

18 CHAPTER 2. LINEAR SPACES

requires that

λ0 = λ1 = · · · = λn = 0. (2.11)

Thus no combination of linearly independent vectors can add up to zero.
A basis {êi} for a vector space V is a set of linearly independent vectors

whose span is the entire space, such that every vector v ∈ V can be written
as a finite linear combination of êi in a unique way. I am ignoring subtleties
connected with infinite dimensional vector spaces, as I will for this entire course.
A simple procedure to construct a basis is to start with one vector, which is a
trivial linearly independent set. If that vector spans the space, we are done. If
not, add a vector which is not in its span, and repeat. If V is finite dimensional,
then this process is guaranteed to terminate in d steps, where d is the dimension
of the space.

Given that every vector v ∈ V can be expressed as a linear combination of
basis vectors

v =
∑
i

viêi,

how do we find the scalars vi? We can take the inner product of the equation
above with some basis vector êk, so that

ê†kv =
∑
i

viê
†
kêi, (2.12)

v̄k =
∑
i

vieki, (2.13)

where we defined v̄k = ê†kv and eki = ê†kêi, both of which may be calculated if
we know the basis and vector. This may be recast in linear algebraic notation
as a matrix equation

Ev = v̄ (2.14)

v = E−1v̄ (2.15)

where v is the vector of coefficients vi, v̄ is the vector of coefficients v̄i, and E
is the matrix of coefficients eij . Now if we have an orthonormal basis, which we
will assume from here on, then

eij = ê†i êj = δij , (2.16)

which means that

vi = v̄i = ê†iv. (2.17)

Suppose instead that we have two different bases, {êi} and {f̂i}. How would

we get the components vfi of some vector v in the f -basis if we already know the
compnents vei in the e-basis? This is a practical problem, since we often measure

2.3. BASES 19

in some basis but do calculations in another. We can derive an expression for
this by expanding basis vectors of the first set in terms of basis vector in the
second

v =
∑
i

vei êi (2.18)∑
i

vfi fi =
∑
i

vei êi (2.19)∑
i

vfi fi =
∑
i

vei
∑
j

Vjifj (2.20)

where Vji = fj · êi is the j-coefficient of the basis vector êi in the f -basis. Now

we can apply f†k , which is the same as the dot product with fk,∑
i

vfi f
†
kfi =

∑
i

vei
∑
j

Vjif
†
kfj , (2.21)

∑
i

vfi δki =
∑
i

vei
∑
j

Vjiδkj , (2.22)

vfk =
∑
i

vei Vki, (2.23)

vf = V ve. (2.24)

Thus the coefficients in the f -basis can be obtained from the coefficients in the
e-basis by applying the matrix V with coefficients

Vij = fi · êj (2.25)

which we will call the Vandermonde matrix , although Vandermonde was original
talking about a very specific change of basis (see Problem 2).

2.3.1 Orthogonalization

In order to introduce the Gram-Schmidt orthogonalization method, we follow an
excellent presentation by Per-Olof Persson. The purpose of orthogonalization is
to take a set of linearly independent vectors and produce an orthogonal set with
the same span. In fact, we could start with a set of linearly dependent vectors,
but we would produce an orthogonal set which was smaller than the original.

The idea for the Gram-Schmidt process is quite simple. Take each vector in
turn, cut off the pieces in the direction of any prior vector, and normalize the
result. Since the new vector has no part in the direction of any prior vector,
it is orthogonal to them. We can see that the correct piece to remove is the
projection of the candidate vector vj onto the basis vector qi,

v′j = vj − qiq†i vj

=
(
I − qiq†i

)
vj

https://ocw.mit.edu/courses/mathematics/18-335j-introduction-to-numerical-methods-fall-2010/lecture-notes/MIT18_335JF10_lec10a_hand.pdf

20 CHAPTER 2. LINEAR SPACES

input : A set of n vectors {ai}
output: A set of orthonormal vectors {qi} with the same span

for j = 1 to n do
vj = aj ;
for i = 1 to j-1 do

rij = q†i aj (CGS);

rij = q†i vj (MGS);
vj = vj − rijqi;

end
rjj = ‖vj‖2;
qj = vj/rjj ;

end

Algorithm 1: Gram-Schmidt Orthogonalization

which is the same as projecting vj into the space orthogonal to qi using the
complementary projector. We produce the pseudocode for this in Algorithm 1.

It should be clear from the naming scheme that this produces exactly the
QR factorization of the a matrix A with columns equal to our input set {ai},
A = QR. Note that we have included two variants of the algorithm, the Classical
Gram-Schmidt (CGS) and the Modified Gram-Schmidt (MGS). The classical
version calculates all projections of the original vector onto the basis vectors,
and then subtracts these pieces at once. The modified variant subtracts the
projection onto basis vector qi from the candidate vector before calculating the
projection on qi+1. This may seem like a small detail, however the example
below will show that CGS can suffer from catastrophic loss of accuracy when
applying the projector.

Consider the matrix A to be orthogonalized,

A =


1 1 1
ε 0 0
0 ε 0
0 0 ε

.
where we will assume that ε is so small that ε2 can be neglected since it will
not be resolvable by our machine arithmetic. Our first column a1 has norm
1 + ε2 ≈ 1, so we have q1 = a1 at the first iteration. In the second iteration,

r12 = q†1a2 = 1

in both variants, so that

v2 = v2 − r12q1 =


0
−ε
ε
0

.

2.3. BASES 21

Thus we have r22 = ε
√

2 giving

q2 =
1√
2


0
−1
1
0

.
The third iteration is where things diverge between variants. We begin with

r13 = q†1a3 = 1,

so that we update the v3 vector as

v3 = a3 − r13q1 =


0
−ε
0
ε

.
Now the two variants give a different answer for the coefficient r23

r23 =

{
q†2a3 = 0 CGS

q†2v3 = ε/
√

2 MGS

which leads to two different updates

v3 = v3 − 0 · q2 =


0
−ε
0
ε

 vs v3 = v3 − ε/
√

2 · q2 =
1

2


0
−ε
−ε
2ε


leading to different normalizations r33 = ε

√
2 vs ε

√
3
2 , and finally

q3 =
1√
2


0
−1
0
1

 vs q3 =
1√
6


0
−1
−1
2

.
This difference has devastating consequences for orthogonality, as we see that

q†2q3 =
1

2
vs q†2q3 = 0.

To get a better idea how the code actually performs, we can look at the
PETSc implementation of both variants. In PETSc itself, orthogonalization
is only used in the context of Krylov solvers like GMRES. the set of vectors
are stored in the VEC VV array and the coefficients rij are stored in hes which
indicates the Hesseneberg matrix constructed by GMRES. We just look at the
inner loop, acting on vector ait+1. The modified variant is much easier to
recognize, looking almost exactly like our pseudocode.

22 CHAPTER 2. LINEAR SPACES

for (j = 0; j <= it; ++j) {
/∗ (vv(it+1), vv(j)) ∗/
ierr = VecDot(VEC VV(it+1), VEC VV(j), hh);CHKERRQ(ierr);
∗hes++ = ∗hh;
/∗ vv(it+1) <− vv(it+1) − hh[it+1][j] vv(j) ∗/
ierr = VecAXPY(VEC VV(it+1), −(∗hh++), VEC VV(j));CHKERRQ(ierr);
}

On the other hand, the classical variant takes advantage of the fact that all
the dot products from the projectors can be executed simultaneously, as can
all the subtractions. The VecMAXPY call can vectorize of the input vectors, as
well as only load the candidate vector once, saving memory bandwidth. The
VecMDot can use a single reduction for all dot products, reducing the latency of
the operation. These savings can be important, especially in a parallel code.

ierr = VecMDot(VEC VV(it+1),it+1,&(VEC VV(0)),lhh);CHKERRQ(ierr); /∗ <v,vnew> ∗/
for (j = 0; j <= it; ++j) {
lhh[j] = −lhh[j];
}
ierr = VecMAXPY(VEC VV(it+1), it+1, lhh, &VEC VV(0));CHKERRQ(ierr);
/∗ note lhh[j] is −<v,vnew> , hence the subtraction ∗/
for (j = 0; j <= it; ++j) {
hh[j] −= lhh[j]; /∗ hh += <v,vnew> ∗/
hes[j] −= lhh[j]; /∗ hes += <v,vnew> ∗/
}

We can examine the benefit with a simple performance model. For an m×n
matrix, each norm would cost 2m flops and m memory references, along with
m flops and m references for the normalization. However, this cost is lower
order. In the inner loop, we do 2m flops and 2m memory references for each
dot product, and 2m flops and 3m memory references for each subtraction. We
execute the inner loop n(n− 1)/2 times, which means that in total, we have

(2mn(n− 1) + 3m) flops and

(
5

2
mn(n− 1) + 2m

)
bbytes

Thus the arthmetic intensity , the ratio of flops to bytes for our algorithm, is
given by

4mn(n− 1) + 6m

(5mn(n− 1) + 4m)b
≈ 4

5b

which in double precision gives a miserable 0.1 flops/byte. This means that
our orthogonalization computation will be bandwidth bound on any modern
architecture. However, if we take advantage of the multiple dot product and
vector subtraction functions in PETSc, we can reduce the bandwidth cost since

2.4. LINEAR OPERATORS 23

we only load and store the candidate vector once. This means that the required
bandwidth is now (

2

2
mn(n− 1) + 5m

)
bbytes

so that the final arithmetic intensity is more than twice as large,

4mn(n− 1) + 6m

(2mn(n− 1) + 10m)b
≈ 2

b
.

In addition, this algorithm has lower latency since we use a single reduction for
all the dot products.

2.4 Linear Operators

2.4.1 Expansion in a Basis

Matrix multiplication is simply the application of a linear operator A between
two vector spaces, to an input vector x, generating an output vector y,

Ax = y. (2.26)

This operation is required to be linear, namely

A(αx + βz) = α(Ax) + β(Az). (2.27)

If we expand the vectors x and y in some basis {ê}, noting that a basis is
guaranteed to exist for any Hilbert space, we have

x =
∑
j

xj êj and y =
∑
j

yj êj , (2.28)

and plugging into Eq. (2.26) gives

A
∑
j

xj êj =
∑
j

yj êj ,∑
j

xj(Aêj) =
∑
j

yj êj . (2.29)

Now we suppose that our basis is orthonormal, meaning that

êi · êj = δij . (2.30)

24 CHAPTER 2. LINEAR SPACES

We can take the inner product of Eq. 2.29 with êi,

êi ·
∑
j

xj(Aêj) = êi ·
∑
j

yj êj ,∑
j

xj êi · (Aêj) =
∑
j

yj êi · êj ,∑
j

xj êi · (Aêj) =
∑
j

yjδij ,∑
j

aijxj = yi. (2.31)

where used the linearity of the inner product in line 2, the orthogonality of basis
vectors from Eq. 2.30, and we defined the matrix elements

aij = êi · (Aêj). (2.32)

We see that Eq. 2.31 is exactly our rule for matrix multiplication, but we have
derived it from the properties of abstract linear operators and bases. This means
that we can use our insights in domains others than the Euclidean space Rn,
such as vector spaces of functions.

We will define the Hermitian conjugate, or adjoint , A† of the operator A
such that (

w†Av
)†

= v†A†w. (2.33)

Since we have defined the matrix element aij = ê†iAêj , it means that the matrix

element a†ij for the Hermitian conjugate A† should be

a†ij = ê†iA
†êj =

(
ê†jAêi

)†
= a†ji = āji. (2.34)

Thus we get the Hermitian conjugate of a matrix by interchanging rows and
columns and taking the complex conjugate. If the matrix is real, then we call this
the transpose. Suppose that we want the Hermitian conjugate of the product
of two matrices AB, then

(AB)
†
ij =

(∑
k

aikbkj

)†
(2.35)

=
∑
k

ājk b̄ki (2.36)

=
∑
k

B†ikA
†
kj (2.37)

=
(
B†A†

)
ij

(2.38)

2.4. LINEAR OPERATORS 25

so that AB† = B†A†. A similar thing can be proved for inverses, in a simpler
way,

I = AB (AB)
−1

(2.39)

= ABB−1A−1 (2.40)

= AA−1 (2.41)

= I. (2.42)

As practice working with matrices, consider the multiplication of two upper
triangular matrices R and R′, so that

R′′ = RR′

R′′ij =
∑
k

RikR
′
kj

Suppose that i > j. If k > j, R′kj = 0, so if R′′ij is nonzero, then k ≤ j.
However for Rik 6= 0, we need i ≤ k, which together with k ≤ j implies i ≤ j.
This contradicts our assumption, so that R′′ij = 0 for i > j and R′′ is upper
triangular. Thus the product of upper triangular matrices is upper triangular.
By the same argument we can also show that the product of lower triangular
matrices is lower triangular.

2.4.2 Unitary operators

A unitary operator U is defined by

UU† = U†U = I. (2.43)

Notice that this implies that the columns of U are orthonormal, since(
U†U

)
ij

=
∑
k

u†ikukj (2.44)

=
∑
k

ūkiukj (2.45)

= ūi · uj (2.46)

= δij (2.47)

where ui is the ith column of U . A similar calculation with the transpose
identity shows that the rows are also orthogonal. A unitary transformation is
an isometry , meaning a transformation which preserves the metric on a space
or the norm of every vector. More precisely, unitary operators are L2 isometries
because they preserve the 2-norm of vectors,

‖Ux‖22 = (Ux)†(Ux) (2.48)

= x†U†Ux (2.49)

= x†x (2.50)

= ‖x‖22. (2.51)

26 CHAPTER 2. LINEAR SPACES

A very common type of unitary operator is a permutation matrix, which a
single one in each row. The row represents the new index and the column the
old index. Since applying the permutation followed by the inverse permutation
gives the identity, it is unitary. We can show this by using the Kronecker delta
to express the elements of a permutation matrix P ,

Pij = δiσ(j) (2.52)

where σ(k) is the permutation function, giving the index for element k after
permutation. We can see this by acting on the basis vector êk with P ,

(P êk)i =
∑
j

Pij(êk)j (2.53)

=
∑
j

δiσ(j)δkj (2.54)

= δiσ(k) (2.55)

so that the output is êσ(k). Now we can look at the matrix product(
P †P

)
ij

=
∑
k

P †ikPkj (2.56)

=
∑
k

PkiPkj (2.57)

=
∑
k

δkσ(i)δkσ(j) (2.58)

= δσ(i)σ(j) (2.59)

= δij (2.60)

where the last step follows because σ is one-to-one. Thus P †P = I and P is
unitary.

2.4.3 Block Matrices

As a consequence of linearity, we can simplify the presentation of matrices with
block structure. Consider the 4× 4 matrix and vector

A =


a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33

 x =


x0
x1
x2
x3

 .

The expression for Ax is given by

(Ax)i =
∑
j

aijxj ,

2.5. TENSOR PRODUCT SPACES 27

but we can express the loop over j ∈ [0, 4) as two loops by splitting the index
into subindices j = k ∗ 2 + l for k, l ∈ [0, 2),

(Ax)i =
∑
k

∑
l

ai,k∗2+lxk∗2+l,

=
∑
k

∑
l

ai,(kl)x(kl),

where (kl) is multindex, k indicating which block and l the index within that
block. Now suppose we also index the output vector using our multindex (ij),
so that

(Ax)(ij) =
∑
k

∑
l

a(ij),(kl)x(kl),

(Ax)i =
∑
k

ai,kxk,

where

ai,kxk =

(
a(i0),(k0) a(i0),(k1)
a(i1),(k0) a(i1),(k1)

)(
x(k0)
x(k1)

)
so that our usual rule for matrix-vector multiplication applies to the individual
blocks, and we can write

A =

(
a00 a01
a10 a11

)
x =

(
x0
x1

)
,

where each entry is a small vector or matrix, and multiplication is understood to
be matrix-vector multiplication. This same procedure extends to matrix-matrix
multiplication, and on to more general tensors.

2.5 Tensor Product Spaces

The tensor product V ⊗W of two vector spaces V and W (over the same field) is
itself a vector space, together with an operation of bilinear composition, denoted
by ⊗, from ordered pairs in the Cartesian product V ×W into V ⊗W . The
tensor product is defined by the bilinearity of the product operation ⊗,

∀v ∈ V,∀w0,w1 ∈W v ⊗ (α0w0) + v ⊗ (α1w1) = v ⊗ (α0w0 + α1w1),

∀v0,v1 ∈ V,∀w ∈W (α0v0)⊗w + (α1v1)⊗w = (α0v0 + α1v1)⊗w.

Given two linear operators A : V → X and B : W → Y , we define the tensor
product of the operators as a linear map

A⊗B : V ⊗W → X ⊗ Y (2.61)

28 CHAPTER 2. LINEAR SPACES

such that

(A⊗B)(v ⊗w) = (Av)⊗ (Bw), (2.62)

which also implies that

(A⊗B)(C ⊗D) = (AC)⊗ (BD). (2.63)

We can get the action of the combined operator on a combined vector by in-
serting bases for the two spaces {êi} and {f̂i},

(A⊗B)(
∑
i

viêi ⊗
∑
j

wj f̂j) = (A
∑
i

viêi)⊗ (B
∑
j

wj f̂j), (2.64)

(A⊗B)

∑
i

∑
j

viwj(êi ⊗ f̂j)

 = (
∑
i

viAêi)⊗ (
∑
j

wjBf̂j). (2.65)

Then we can get a matrix representation of the combined operator if we let the
input vector be a tensor product of the basis vectors,

(A⊗B)
(
êi ⊗ f̂j

)
= (Aêi)⊗ (Bf̂j), (2.66)

and look at the (kl) entry of the output vector by taking the dot product with
that basis vector,(

êk ⊗ f̂l

)†
(A⊗B)

(
êi ⊗ f̂j

)
=
(
êk ⊗ f̂l

)† (
(Aêi)⊗ (Bf̂j)

)
, (2.67)

(A⊗B)(kl),(ij) = (ê†kAêi)(f̂
†
l Bf̂j), (2.68)

= akiblj (2.69)

which is precisely the Kronecker product of matrices A and B, defined here.
Notice that we have made a block matrix of exactly the type we saw in Sec-
tion 2.4.3. For example, the Krocker product of two 2 × 2 matrices is given
by (

a0,0 a0,1
a1,0 a1,1

)
⊗
(
b0,0 b0,1
b1,0 b1,1

)
(2.70)

=

a0,0
(
b0,0 b0,1
b1,0 b1,1

)
a0,1

(
b0,0 b0,1
b1,0 b1,1

)
a1,0

(
b0,1 b0,1
b1,0 b1,1

)
a1,1

(
b0,0 b0,1
b1,0 b1,1

)
 (2.71)

=


a0,0b0,0 a0,0b0,1 a0,1b0,0 a0,1b0,1
a0,0b1,0 a0,0b1,1 a0,1b1,0 a0,1b1,1
a1,0b0,0 a1,0b0,1 a1,1b0,0 a1,1b0,1
a1,0b1,0 a1,0b1,1 a1,1b1,0 a1,1b1,1

 . (2.72)

In all of our quantum computing examples, we will be looking at combinations
of 2-state quantum systems, so that all our tensor product operators will look

https://en.wikipedia.org/wiki/Kronecker_product

2.6. NORMS 29

like this. Note that A is indexed with the high bit and B the low bit. If we
have a tensor product of several 2× 2 operators, then each one will be indexed
by a given bit of the global index.

Since the action of tensor product operators can be decomposed into action
on separate spaces, we can establish useful theorems about them. For example,
using our definition above for adjoints, we see that

(A⊗B)
†

= A† ⊗B†. (2.73)

Suppose that we have the tensor product of two unitary operators. Is it also
unitary? We can prove this using Eq. (2.73),

(U1 ⊗ U2)
†

(U1 ⊗ U2) =
(
U†1 ⊗ U

†
2

)
(U1 ⊗ U2) (2.74)

=
(
U†1U1 ⊗ U†2U2

)
(2.75)

= (I ⊗ I) (2.76)

= I. (2.77)

2.6 Norms

2.6.1 Vector Norms

A norm is a generalization of the concept of the length of a vector, and has three
defining properties. The norm ‖v‖ or a vector v must always be non-negative

‖v‖ ≥ 0, (2.78)

and further it is only zero if v = 0. This coincides with our idea that distance
is always positive, and that adding the null vector to another should not change
its length. Second, the norm is scaled when we multiply the vector by a scalar,

‖αv‖ = |α|‖v‖. (2.79)

We would expect that two copies of a vector would have twice the length, and
also that the additive inverse, −v, would have the same length but oppositely
oriented. Lastly, our norm must satisfy the triangle inequality ,

‖u + v‖ ≤ ‖u‖+ ‖v‖, (2.80)

which follows from the idea that the length of two sides of a triangle are always
longer than the third.

We can verify these properties for our usually idea of Euclidean distance,

‖v‖2 =

(∑
i

|vi|2
)1/2

=
√
v†v, (2.81)

30 CHAPTER 2. LINEAR SPACES

which we will refer to as the 2-norm. Clearly the sum of squares must be non-
negative, and if we scale the vector

‖αv‖2 =

(∑
i

|αvi|2
)1/2

=

(
|α|2

∑
i

|vi|2
)1/2

= |α|

(∑
i

|vi|2
)1/2

= |α|‖v‖2

To prove the triangle inequality, we first another lemma known as the Cauchy-
Schwarz Inequality . In order to prove this,∣∣u†v∣∣ ≤ ‖u‖2‖v‖2, (2.82)

we start by inserting a linear combination of vectors into Eq. (2.78),

0 ≤ ‖u− λv‖22 (2.83)

= u†u− λu†v − λ̄v†u + |λ|2v†v. (2.84)

If v = 0 in Eq. (2.82), it is trivially true with equality. Thus, we assume that v
is nonzero, and define

λ =
v†u

‖v‖22

so that

0 ≤ u†u− v†u

‖v‖22
u†v − u†v

‖v‖22
v†u +

∣∣v†u∣∣2
‖v‖42

v†v (2.85)

= u†u−
∣∣v†u∣∣2
‖v‖22

−
∣∣v†u∣∣2
‖v‖22

+

∣∣v†u∣∣2
‖v‖22

(2.86)

= u†u−
∣∣v†u∣∣2
‖v‖22

(2.87)

(2.88)

and finally ∣∣v†u∣∣2 ≤ ‖u‖22‖v‖22, (2.89)∣∣v†u∣∣ ≤ ‖u‖2‖v‖2. (2.90)

2.6. NORMS 31

Now we can easily prove the triangle inequality,

‖u + v‖22 = u†u + u†v + v†u + v†v (2.91)

= ‖u‖22 + 2
∣∣u†v∣∣+ ‖v‖22 (2.92)

≤ ‖u‖22 + 2‖u‖‖v‖+ ‖v‖22 (2.93)

= (‖u‖2 + ‖v‖2)
2

(2.94)

‖u + v‖2 ≤ ‖u‖2 + ‖v‖2. (2.95)

Our definition of the 2-norm suggests a generalization,

‖v‖p =

(∑
i

|vi|p
)1/p

, (2.96)

which is called the p-norm. This clearly satisfies the non-negativity and scalar
multiplication axioms, with proofs analogous to the 2-norm case. Thus we have
only to prove the triangle inequality. First, let us define a complementary index
q,

1

p
+

1

q
= 1 (2.97)

which also implies that p− 1 = p
q . Now we can show that

‖u + v‖pp =
∑
i

|ui + vi|p (2.98)

≤
∑
i

|ui||ui + vi|p−1 +
∑
i

|vi||ui + vi|p−1 (2.99)

=
∑
i

|ui||ui + vi|p/q +
∑
i

|vi||ui + vi|p/q (2.100)

Now we will need the Hölder Inequality (Kuttler 2012),

∑
i

|ui||vi| ≤

(∑
i

|ui|p
)1/p(∑

i

|vi|q
)1/q

(2.101)

which will allow us to bound the two terms on the left

‖u + v‖pp ≤

(∑
i

|ui + vi|p/q·q
)1/q (∑

i

|ui|p
)1/p

(2.102)

+

(∑
i

|ui + vi|p/q·q
)1/q (∑

i

|vi|p
)1/p

(2.103)

=
(
‖u + v‖p

)p/q (
‖u‖p + ‖v‖p

)
(2.104)

=
(
‖u + v‖p

)p−1 (
‖u‖p + ‖v‖p

)
(2.105)

‖u + v‖p ≤ ‖u‖p + ‖v‖p. (2.106)

32 CHAPTER 2. LINEAR SPACES

This reasoning extends to the limit p→∞ so that

‖v‖∞ = max
i
|vi| (2.107)

is also a norm called the ∞-norm or max-norm. The unit balls, meaning the
set of vector with length less than one, are nicely displayed for different norms
in (Trefethen and Bau, III 1997).

In the problems, we will see that any non-singular matrix can induce a
norm from some existing norm. With this in mind, we may search for classes
of matrices that leave norms invariant, which are sometimes called isometric
transformations. For example, unitary matrices U leave the 2-norm invariant,

‖Uv‖22 = v†U†Uv = v†v = ‖v‖22. (2.108)

If we consider the 1-norm,

‖v‖1 =
∑
i

|vi| (2.109)

and restrict the vector elements to be non-negative, we see that it is invariant
under the action of a left stochastic matrix S, as remarked in Chapter 1, since
the columns in this matrix have non-negative elements that sum to one,∑

i

sij = 1. (2.110)

Using this property we see that

‖Sv‖1 =
∑
i

∣∣∣∣∣∣
∑
j

sijvj

∣∣∣∣∣∣ (2.111)

=
∑
i

∑
j

sijvj (2.112)

=
∑
j

vj (2.113)

= ‖v‖1 (2.114)

The ∞-norm is invariant under the action of a permutation matrix, as are all
p-norms, since it just permutes the terms in the sum. Note that a permutation
matrix is both unitary and stochastic.

2.6.2 Matrix norms

The simplest idea for a norm on the space of matrices is to treat the matrix as a
vector, by unrolling the table of elements into a list, and using a vector norm on
this list. This is a vector space under element-wise operations, with a canonical
basis êij , and thus we expect this to work. If we think about using the 2-norm

2.6. NORMS 33

on this vector space, called the Frobenius norm on the space of matrices, we
may write

A ·B =
∑
ij

ĀijBij

=
∑
i

(A†B)ii

= Tr
(
A†B

)
,

where was have introduced the trace functional over linear operators. For a
matrix, the trace is defined as the sum of the diagonal elements, but this defini-
tion is invariant under a change of basis. The trace of an operator can be fully
characterized, independent of any given basis, by the following three properties,

Tr(A+B) = Tr(A) + Tr(B), (2.115)

Tr(αA) = αTr(A), (2.116)

Tr(AB) = Tr(BA), (2.117)

In order to prove this, we will again look at the space of matrices as a vector
space, with a canonical basis êij , so that an arbitrary matrix A can be written

A =
∑
ij

aij êij .

Let η be a linear functional on the vector space of square matrices such that

η(AB) = η(BA). (2.118)

Then we will prove that η and Tr are proportional. We can start by observing
that

η(AB −BA) = η(AB)− η(BA) (2.119)

= η(AB)− η(AB) (2.120)

= 0 (2.121)

All the terms êii vanish from AB −BA, so we know that

η(êij) = αiδij , (2.122)

for some scalar αi. In addition, we have that for any permutation matrix P ,

η(PTAP) = η(PPTA) (2.123)

= η(A) (2.124)

meaning that the value of the functional does not change under any permutation
of i, so that all diagonal terms contribute equally,

η(êii) = η(ê00). (2.125)

34 CHAPTER 2. LINEAR SPACES

This means that

η(A) = η(
∑
ij

Aij êij) (2.126)

=
∑
ij

Aijη(êij)δij (2.127)

=
∑
i

Aiiη(êii) (2.128)

= Tr(A)η(ê00) (2.129)

Note that the third property also implies that the trace is the same in any basis
since

Tr
{
P−1AP

}
= Tr

{
APP−1

}
= Tr{A}. (2.130)

We may also define matrix norms by using vector norms defined on the range
space,

‖A‖ = max
v 6=0

‖Av‖
‖v‖

where we note that the norms on the right hand side are vector norms, and
they operate potentially in two different spaces. Note that since A is linear, this
defnition is invariant to the scaling of v,

‖Aαv‖
‖αv‖

=
|α|‖Av‖
|α|‖v‖

=
‖Av‖
‖v‖

so that we can use instead

‖A‖ = max
‖v‖=1

‖Av‖. (2.131)

This definition is clearly non-negative, and cannot be zero while A has any
nonzero columns. It also behaves correctly when multiplying the matrix by a
scalar, so we have only to check the triangle inequality. Using the linearity of
A and B, and the triangle inequality for the vector norm, we have

‖A+B‖ = max
‖v‖=1

‖(A+B)v‖ (2.132)

= max
‖v‖=1

‖Av +Bv‖ (2.133)

≤ max
‖v‖=1

‖Av‖+ ‖Bv‖ (2.134)

≤ max
‖v‖=1

‖Av‖+ max
‖v‖=1

‖Bv‖ (2.135)

= ‖A‖+ ‖B‖. (2.136)

These induced matrix norms measure the deformation of the unit ball defined
by the vector norm by the transformation defined by the matrix. We can try to

2.7. PROJECTORS 35

get closed-form expressions for these matrix norms by looking at specific vector
norms. For example, the matrix 1-norm is the maximum column sum. We can
show this using the definition of matrix multiplication, the triangle inequality,

‖A‖1 = max
‖v‖1=1

‖Av‖1 (2.137)

= max
‖v‖1=1

∥∥∥∥∥∥
∑
j

vjaj

∥∥∥∥∥∥
1

(2.138)

≤ max
‖v‖1=1

∑
j

‖vjaj‖1 (2.139)

= max
‖v‖1=1

∑
j

|vj |‖aj‖1 (2.140)

= max
j

∑
i

|aij |, (2.141)

where we have chosen v = êj to maximize the sum. Likewise, the ∞-norm is
the maximum row sum,

‖A‖∞ = max
‖v‖∞=1

‖Av‖∞ (2.142)

= max
‖v‖∞=1

max
i

∣∣∣∣∣∣
∑
j

aijvj

∣∣∣∣∣∣ (2.143)

= max
i

∑
j

|aij |. (2.144)

The 2-norm is more complicated, but we will see in Section 2.8 that it can be
characterized using the singular value decomposition.

2.7 Projectors

The definition of the projector is P 2 = P meaning that projecting again does
not change the results of the first projection. We can think of a projection as
“cutting off” part of a vector, and once the right part is cut off, we do not need
to do it again. If P is a projector, then its complement I −P is also a projector

(I − P)
2

= I − 2P + P 2 (2.145)

= I − 2P + P (2.146)

= I − P, (2.147)

and it is called the complementary projector .
Remember that the range of an operator is any vector we can make by

applying it, or the span of its columns. Thus the range of P is any vector Pv.

36 CHAPTER 2. LINEAR SPACES

The nullspace of P will be any vector of the form Pv − v, since

P (Pv − v) = P 2v − Pv (2.148)

= Pv − Pv (2.149)

= 0. (2.150)

Now suppose a vector x was in both range(P) and null(P), then x = Px and
x = x− Px, so that

x− Px = Px (2.151)

x = 0, (2.152)

meaning that

range(P) ∩ null(P) = ∅. (2.153)

Another way to see this is to look at the complementary projector, and see that

range(I − P) = null(P). (2.154)

The projectors partitions a space into two disjoint subspaces. We can say that
our space V is the direct sum of range(P) and null(P), written

V = range(P)⊕ null(P), (2.155)

meaning that there is a unique decomposition of any vector v ∈ V such that

v = vr + vn where vr ∈ range(P), vnnull(P). (2.156)

Note here that this definition does not mean that vectors in one space are
orthogonal to those in the other. For that we need an orthogonal projector
which satisfies P = P †. If the projection operator is Hermitian, then vectors in
the range are orthogonal to those in the nullspace

(Pv)
†

(I − P)w = x†P †(I − P)w (2.157)

= x†P (I − P)w (2.158)

= x†(P − P 2)w (2.159)

= x†(P − P)w (2.160)

= 0 (2.161)

The converse is also true, which is proved in the text by explicitly constructing
the SVD of P .

This allows us to see that orthogonal projectors can be represented as P =
QQ† where the columns of Q are orthonormal. Clearly, this representation is
still a projector,

P 2 = (QQ†)(QQ†) = QIQ† = P.

2.7. PROJECTORS 37

In fact, this can be further analyzed into the sum of rank-one projectors.

QQ† =
∑
i

qiq
†
i

since q†i qj = δij . We can imagine this in two steps. First the vector is trans-

formed x→ w where wi = q†ix. Then the output vector is a sum of the columns

weighted by vector entries, y =
∑
i qiq

†
ix, which is exactly how we decomposed

vectors in an orthonormal basis.

Oblique projectors are projectors that are not orthogonal. We can write
them as

uv†

so that the range is span(u) and the nullspace is orthogonal to v. Notice that
the range R and nullspace N are not orthogonal to each other, but we know
the dim(R) = 1 and dim(N) = n − 1. We also know that they do not share a
vector in common. From above, if v ∈ R and v ∈ N we have

v = v − Pv (because it is in the nullspace)

= (I − P)v

= 0 (because it is in the range)

Thus the bases for R and N form a basis for the whole space. However, how
do we know that the resolution of a vector is unique in a non-orthogonal basis?
Suppose that a vector v has two different representations {αi} and {βi} in the
basis. Then {αi−βi} is an expansion for the 0 vector, which is impossible since
the basis vectors are linearly independent.

The unitary reflector matrices, or Householder reflectors, are related to pro-
jectors, and have the form

Qk =

(
Ik−1 0

0 F

)
so that it leaves the first k − 1 rows untouched. The purpose of F is to turn a
column ak into a multiple of the unit vector ek, meaning put all zeros below the
diagonal. Since F will be unitary, the constant must be ‖ak‖ so that the norm
of the vector does not change. Suppose that we define the vector v between our
two points ak − ‖ak‖ek. If we project onto the space orthogonal to v, using the
complementary orthogonal projector

I − vv†

v†v

then we would get the point midway between the two vectors (in 2D, we project
onto the perpendicular bisector of v). If we go twice as far, we will have arrived

38 CHAPTER 2. LINEAR SPACES

at the other point. We can show this explicitly,(
I − 2

vv†

v†v

)
ak = ak − 2

‖ak‖2 − ‖ak‖akk
v†v

(ak − ‖ak‖ek)

= ak − 2
‖ak‖2 − ‖ak‖akk

‖ak‖2 − 2‖ak‖akk + ‖ak‖2
(ak − ‖ak‖ek)

= ak − (ak − ‖ak‖ek)

= ‖ak‖ek.

Also, we can prove that this matrix is orthogonal(
I − 2

vv†

v†v

)†(
I − 2

vv†

v†v

)
=

(
I − 2

vv†

v†v

)(
I − 2

vv†

v†v

)
= I − 4

vv†

v†v
+ 4

vv†vv†

(v†v)2

= I − 4
vv†

v†v
+ 4

vv†

v†v
= I.

We can choose either sign for the nonzero entry in the reflected vector. We
should choose the greatest distance from our original vector, or -sign(xk). These
matrices will be important in Grover’s Algorithm from Section 4.6.

2.8 The Singular Value Decomposition

2.8.1 Definition of the SVD

The singular value decomposition, or SVD, is a matrix factorization. This means
that it takes one matrix as input and produces a set of simpler matrices whose
product is equal to the input matrix. There are many factorizations, including
LU, QR, and the polar decomposition. The SVD has the form

A = USV † (2.162)

where U and V are unitary, and S is diagonal and non-negative. We could guess
that a linear map A would send the unit n-sphere to a connected set (since it
is continuous) and to a convex set (since it is linear). In fact, A sends the unit
ball to an ellipsoid whose axes are determined by U . In the form AV = US, it
is clear that U is a basis for the range space, and V is a basis for the domain.
Multiplying by S on the right scales the columns of U , and thus S tells us
the lengths of the axes in the transformed unit ball. Another way to think of
the SVD is that it is an incremental, best approximation of A in the 2-norm.
The 2-norm is special in that it is unitarily invariant, defined by the inner/dual
product, and related to the eigendecomposition.

2.8. THE SINGULAR VALUE DECOMPOSITION 39

Now that we have the SVD, we can use it to show that the Frobenius norm
of a matrix A is just the sum of the squares of its singular values.

‖A‖2F = Tr
(
A†A

)
(2.163)

= Tr
((
USV †

)†
USV †

)
(2.164)

= Tr
(
V S†U†USV †

)
(2.165)

= Tr
(
V S†SV †

)
(2.166)

= Tr
(
S†SV †V

)
(2.167)

= Tr (SS) (2.168)

=
∑
i

σ2
i (2.169)

We can also prove that the absolute value of the determinant of a square matrix
is the product of the singular values,

|det(A)| =
∣∣det

(
USV †

)∣∣ (2.170)

= |det(U)||det(S)|
∣∣det

(
V †
)∣∣ (2.171)

= |det(S)| (2.172)

=
∏
i

σi (2.173)

and the trace is bounded by the sum of the singular values.

|Tr(A)| =
∣∣Tr
(
USV †

)∣∣ (2.174)

=
∣∣Tr
(
SV †U

)∣∣ (2.175)

= |Tr(SW)| (2.176)

=

∣∣∣∣∣∑
i

σiwii

∣∣∣∣∣ (2.177)

≤
∑
i

|σiwii| (2.178)

≤
∑
i

σi (2.179)

The last line follows from the fact that

|wii| =
∣∣∣v†iui∣∣∣ (2.180)

≤ ‖vi‖‖ui‖ (2.181)

= 1 (2.182)

In fact, all unitary matrices have elements with absolute value less than unity,
since the 2-norm of each column is unity. We will see alternate representations
of the determinant and trace using the eigendecomposition in Section 2.9

40 CHAPTER 2. LINEAR SPACES

Finally, we can use the SVD to solve a system of linear equations

Ax = b.

We first factor the system matrix A using the SVD, and then invert the com-
ponent matrices one-by-one since each has a simple inverse,

USV †x = b

SV †x = U†b

V †x = S−1U†b

x = V S−1U†b

This strategy can also be used to solve a least-squares problem

min ‖b−Ax‖2 = min
∥∥b− USV †x∥∥

2
= min

∥∥U†b− SV †x∥∥
2
.

We will use the full SVD, so that for a rank r matrix, the bottom n− r rows of
the second term cannot be cancelled. Thus

(U†b)i for i ≥ r

is the residual of our least-squares solution. If this is zero, we say that the rhs
b is consistent with the system A. Looking at the first r rows, which we label
“top”, we have

(U†b)top = SV †x

x = V S−1(U†b)top.

2.8.2 Proof that the SVD exists

Most factorizations are justified using constructive arguments which proceed
inductively, making the factorization one column or row at a time. This is
exactly how we will proceed for the SVD. We start by setting

σ1 = ‖A‖2.

Remember that this value arises from taking a maximum over a continuous set
of directions, we repeat Eq. (2.131),

‖A‖2 = max
‖v‖=1

‖Av‖2.

A “compactness argument” tells us that the maximizing vector v actually exists
in the vector space, so that Av1 = σ1u1 with ‖v1‖ = ‖u1‖ = 1. We will go
through this in detail since it is usually omitted. The compactness argument is
that the unit sphere in Rn and Cn is compact, and thus a continuous function on
it attains in the space its maximum (and minimum) over the unit sphere. The
unit sphere is compact because it is closed and bounded. It is closed because

2.8. THE SINGULAR VALUE DECOMPOSITION 41

it is the complement of an open set, all the points not on a sphere. That set
is open because I can draw a ball around any point in it without intersecting
the sphere. The vector norm is continuous because that is how we understand
normed spaces, namely that the norm maps an open set of vectors into an open
interval of real numbers. Starting with these vectors, v1 and u1, we can build
orthonormal bases for both the domain and range spaces. Let V1 and U1 be
unitary matrices representing these bases. This means that we have

U†1AV1 = S1 =

(
σ1 w†1
0 B

)
where 0 has dimension m− 1, w1 dimension n− 1, and B dimension (m− 1)×
(n− 1).

Next, we use properties of the 2-norm to show that our division is, in fact,
block diagonal. Let us define a vector

w =

(
σ1
w1

)
,

and act with S1 and take the norm,

‖S1w‖2 =

∥∥∥∥(σ1 w†1
0 B

)(
σ1
w1

)∥∥∥∥
2

=

∥∥∥∥(σ2
1 + w†1w1

Bw1

)∥∥∥∥
2

≥ σ2
1 + w†1w1

=

√
σ2
1 + ‖w1‖22

∥∥∥∥(σ1w1

)∥∥∥∥
2

The inequality gives us a bound on the norm of S1, using again Eq. (2.131),
namely

‖S1‖2 ≥
√
σ2
1 + ‖w1‖22.

However, since U1 and V1 are unitary, we know that

‖S1‖2 =
∥∥∥U†1AV1∥∥∥

2

= ‖A‖2
= σ1.

This, together with Eq. (2.78), implies that w1 = 0.
Lastly, we recurse on B. If B has nonzero dimension, we can employ the

same factorization for B,

U†2BV2 = S2.

42 CHAPTER 2. LINEAR SPACES

This allow us to telescope the factorization

A = U1

(
1 0
0 U2

)(
σ1 0
0 S2

)(
1 0

0 V †2

)
V †1 ,

= U1

(
1 0
0 U2

)σ1 0 0

0 σ2 w†2
0 0 C

(1 0

0 V †2

)
V †1 .

We can keep recursing until the matrix in the lower right vanishes. The product
of unitary matrices on the left and right can be written as a single unitary
matrix.

We can understand this sequence of operations as generating better and
better approximations of the matrix A. This notion can be made precise by
looking at the accuracy of the approximation. For ν in 0 ≤ ν ≤ r where
rank(A) = r, define

Aν =

ν∑
i=1

σiuiv
†
i , (2.183)

where {ui} are the left singular vectors (columns of U), {vi} are the right
singular vectors (columns of V), and σr+1 = 0. Now we can compute the
approximation error

‖A−Aν‖2 = inf
rank(B)≤ν

‖A−B‖2 = σν+1. (2.184)

Suppose, in contradiction to our hypothesis, that there exists a matrix B which
better approximates A, namely

‖A−B‖2 < ‖A−Aν‖2 = σν+1.

If rank(B) ≤ ν, then there must exist an (n− ν)-dimensional subspace W such
that

Bw = 0 ∀w ∈W.

We can then bound the norm of the action of A on any vector from W ,

‖Aw‖2 = ‖(A−B)w‖2
≤ ‖A−B‖2‖w‖2
< σν+1‖w‖2

In sum, W is an (n − ν)-dimensional subspace in which ‖Aw‖2 < σν+1‖w‖2.
However, there is an (ν+ 1)-dimensional subspace in which ‖Av‖2 ≥ σν+1‖v‖2,
namely the space spanned by the first (ν + 1) right singular vectors. Since the
sum of the dimensions exceeds n, there must be some vector lying in the inter-
section, which contradicts the norm bounds, and thus no better approximation
B can exist.

‖A−Aν‖F = inf
rank(B)≤ν

‖A−B‖F =
√
σ2
ν+1 + · · ·+ σ2

r . (2.185)

2.8. THE SINGULAR VALUE DECOMPOSITION 43

2.8.3 Bases and Unitary Operators

If I have an orthogonal basis {bi}, it means that b†i bj = 0 if i 6= j. If in addition

the basis is orthonormal, then we have the more compact expression b†i bj = δij .
Now suppose we create a matrix B whose columns are the basis vectors,

B = (b0|b1| . . . |bn) .

Since this is a basis, we will have n vectors for an n-dimensional space, and B
is square. If we look at the matrix product B†B,

(B†B)ij =
∑
k

(B†)ik(B)kj

=
∑
k

(B)ki(B)kj

=
∑
k

(bi)k(bj)k

= b†i bj

= δij

we see that B†B = I. Note that this also implies BB† = I by conjugating both
sides. Thus I may think of any unitary operator as an orthonormal basis, and
vice versa.

We can express the vector x in the U basis, meaning get the set of coefficients
for the U basis vectors, using U†x since the ith component in the u-basis is the
inner

x =
∑
j

xjuj

so that

u†ix = u†i
∑
j

xjuj (2.186)

=
∑
j

xju
†
iuj (2.187)

=
∑
j

xjδij (2.188)

= xi. (2.189)

Using the same reasoning, the change of basis for an operator A is U†AU . Note
that this is the root of the two views of quantum mechanics. We can see the
wave function changing, or the operators changing.

44 CHAPTER 2. LINEAR SPACES

2.9 Eigenproblems

The eigendecomposition of a matrix, when it exists, is given by

X−1AX = Λ (2.190)

where X is non-singular and Λ is diagonal.
We can use the eigendecomposition to show that the determinant is the

product of the eigenvalues,

det(A) = det
(
XΛX−1

)
(2.191)

= det
(
ΛX−1X

)
(2.192)

= det(Λ) (2.193)

=
∏
i

λi. (2.194)

Likewise, the trace of a matrix is the sum of its eigenvalues,

Tr(A) = Tr
(
XΛX−1

)
(2.195)

= Tr
(
ΛX−1X

)
(2.196)

= Tr(Λ) (2.197)

=
∑
i

λi. (2.198)

This also shows that both the determinant and trace are invariants, since they
do not depend on the basis used to define the matrix.

2.10 Problems

Problem II.1 This problem will familiarize you with the grading system that
we use at UB. Follow the steps below to ensure that your Autolab account is
working correctly.

1. Create your account at https://autograder.cse.buffalo.edu using your UB
email address.

2. An account may have been created for you if you enrolled before you had
an account If Autolab says that you already have an account, click “Forgot
your password?” and enter your email address. Follow instructions to
reset your password.

3. Ensure that you are registered for the course: CSE410: Quantum Algo-
rithms (Fall 19)

4. Submit a pdf to Homework 0 with the following information:

• Name

https://autograder.cse.buffalo.edu

2.10. PROBLEMS 45

• Person number

• The equation

xTAx

||x||2
→ λmax

since equation writing will be essential in this course.

The best way to create PDF from LATEX is to use pdflatex,

pdflatex essay.tex
bibtex essay
pdflatex essay.tex
pdflatex essay.tex

where the repetition is necessary to assure that the metadata stored in auxiliary
files is consistent. This process can be handled in an elegant way by using the
latexmk program,

latexmk -pdf essay.tex

If you rely on TEX source or BibTEX files in other locations, you can use

TEXINPUTS=${TEXINPUTS}:/path/to/tex BIBINPUTS=${BIBINPUTS}:/path/to/bib
latexmk -pdf essay.tex

Problem II.2 Show that the original Vandermonde matrix, defined by

V =



1 x0 x20 · · · xn0
1 x1 x21 · · · xn1
1 x2 x22 · · · xn2
...

...
...

. . .
...

1 xn x2n · · · xnn


(2.199)

is actually a change of basis from the monomial basis {xk} to the basis of point
evaluation functionals {ηxi

}

ηz(φ) =

∫
φ(x)δ(x− z)dx (2.200)

Problem II.3 Implement both Classical and Modified Gram-Schmidt orthog-
onalization in PETSc. Use an example to show instability in the classical algo-
rithm that is not present in the modified form.

Problem II.4 NLA 1.1

Problem II.5 NLA 1.3

Problem II.6 NLA 1.4

46 CHAPTER 2. LINEAR SPACES

Problem II.7 NLA 2.1

Problem II.8 NLA 2.2

Problem II.9 NLA 2.3

Problem II.10 NLA 2.4

Problem II.11 NLA 2.6

Problem II.12 NLA 2.7

Problem II.13 NLA 3.1

Problem II.14 NLA 3.3

Problem II.15 NLA 3.6

Problem II.16 NLA 4.1

Problem II.17 NLA 4.4

Problem II.18 NLA 5.3

Problem II.19 NLA 5.4

Problem II.20 QALA 3.1

Problem II.21 QALA 3.4

Problem II.22 QALA 3.5

Problem II.23 QALA 3.7

Problem II.24 QALA 3.9

Problem II.25 QALA 3.10

Problem II.26 QALA 3.12

Problem II.27 QALA 3.16

REFERENCES 47

Problem II.28 QALA 3.17

Problem II.29 NLA 6.1

Problem II.30 NLA 6.3

Problem II.31 NLA 6.5

Problem II.32 NLA 7.1

Problem II.33 NLA 7.3

Problem II.34 NLA 7.4

Problem II.35 NLA 12.2

Problem II.36 NLA 14.1

Problem II.37 NLA 15.2

References

Fearnley-Sander, Desmond (1979). “Hermann Grassmann and the Creation of
Linear Algebra”. In: The American Mathematical Monthly 86, pp. 809–
817. url: http : / / www . maa . org / sites / default / files / pdf / upload library / 22 / Ford /

DesmondFearnleySander.pdf.
Wikipedia (2015). Linear Algebra. https://en.wikipedia.org/wiki/Linear algebra. url:

https://en.wikipedia.org/wiki/Linear algebra.
Lawson, C. L., R. J. Hanson, D. Kincaid, and F. T. Krogh (1979). “Basic linear

algebra subprograms for Fortran usage”. In: ACM Transactions on Mathe-
matical Software 5, pp. 308–323.

Anderson, E., Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A.
Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen (May 1990).
LAPACK: A portable linear algebra library for high-performance computers.
Tech. rep. CS-90-105. Computer Science Dept., University of Tennessee.

Falgout, R. (2017). hypre Users Manual. Tech. rep. Revision 2.11.2. Lawrence
Livermore National Laboratory.

— (n.d.). hypre Web page. http://www.llnl.gov/CASC/hypre.
Heroux, Michael A. and James M. Willenbring (2003). Trilinos Users Guide.

Tech. rep. SAND2003-2952. Sandia National Laboratories. url: http://trilinos.

sandia.gov/.
Heroux et al., M. (n.d.). Trilinos Web page. http://trilinos.sandia.gov/.

http://www.maa.org/sites/default/files/pdf/upload_library/22/Ford/DesmondFearnleySander.pdf
http://www.maa.org/sites/default/files/pdf/upload_library/22/Ford/DesmondFearnleySander.pdf
https://en.wikipedia.org/wiki/Linear_algebra
https://en.wikipedia.org/wiki/Linear_algebra
http://www.llnl.gov/CASC/hypre
http://trilinos.sandia.gov/
http://trilinos.sandia.gov/

48 CHAPTER 2. LINEAR SPACES

Bastian, Peter, Markus Blatt, Andreas Dedner, Christian Engwer, Jorrit Fahlke,
Christoph Gersbacher, Carsten Gräser, Christoph Grüninger Robert Klöfkorn,
Steffen Müthing, Martin Nolte, Mario Ohlberger, and Oliver Sander (2015).
DUNE Web page. http://www.dune-project.org/. url: http://www.dune-project.org/.

Jacob, Benoit and Gaël Guennebaud (2015). Eigen Web page. http : / / eigen .

tuxfamily.org/. url: http://eigen.tuxfamily.org/.
Poulson, Jack, Bryan Marker, Jeff R. Hammond, Nichols A. Romero, and Robert

van de Geijn (2013). “Elemental: A New Framework for Distributed Mem-
ory Dense Matrix Computations”. In: ACM Transactions on Mathematical
Software 39.2.

Poulson, Jack (2015). Elemental: Distributed memory dense linear algebra. http:

//libelemental.org. url: http://libelemental.org/.
Balay, Satish, Shrirang Abhyankar, et al. (2020). PETSc Users Manual. Tech.

rep. ANL-95/11 - Revision 3.14. Argonne National Laboratory.
— (2019). PETSc Web page. https://www.mcs.anl.gov/petsc. url: https://www.mcs.

anl.gov/petsc.
Balay, Satish, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith

(1997). “Efficient Management of Parallelism in Object Oriented Numerical
Software Libraries”. In: Modern Software Tools in Scientific Computing. Ed.
by E. Arge, A. M. Bruaset, and H. P. Langtangen. Birkhauser Press, pp. 163–
202.

Knepley, Matthew G. (2012). “Programming Languages for Scientific Comput-
ing”. In: Encyclopedia of Applied and Computational Mathematics. Ed. by
Björn Engquist. Springer. doi: 10.1007/978-3-540-70529-1. url: http://arxiv.org/

abs/1209.1711.
Kuttler, Kenneth (2012). Linear algebra: theory and applications. url: http :

//www.math.byu.edu/∼klkuttle/Linearalgebra.pdf.
Trefethen, Lloyd N. and David Bau, III (1997). Numerical Linear Algebra.

Philadelphia, PA: Society for Industrial and Applied Mathematics, pp. xii
+ 361. isbn: 0-89871-361-7.

http://www.dune-project.org/
http://www.dune-project.org/
http://eigen.tuxfamily.org/
http://eigen.tuxfamily.org/
http://eigen.tuxfamily.org/
http://libelemental.org
http://libelemental.org
http://libelemental.org/
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
https://doi.org/10.1007/978-3-540-70529-1
http://arxiv.org/abs/1209.1711
http://arxiv.org/abs/1209.1711
http://www.math.byu.edu/~klkuttle/Linearalgebra.pdf
http://www.math.byu.edu/~klkuttle/Linearalgebra.pdf

Chapter 3

Boolean and Hilbert Spaces

Science does not advance by derivation, but mainly by intuition and inspired
guessing. Derivation is very useful to become certain of a result, but it rarely
is the impetus. Thus mental models are incredibly important when thinking
about new scientific phenomena. Our mental model of quantum mechanics will
greatly influence our ability to think about and create new quantum algorithms.
Therefore, we will examine some differences between our mental models of clas-
sical and quantum mechanics. In an insightful paper (Hardy 2001), Hardy lays
out the fundamental distinction between the classical and quantum settings.

What is a state? A state is something with enough information to determine
all possible (probabilistic) measurements. It is specified by K numbers, where
K is called the number of degrees of freedom.

What is the dimension? The dimension is the number of states that can be
reliably distinguished from each other by a one-shot experiment or measurement.
Here we are using “one-shot” to distinguish a single measurement from a series
of measurements used to build up a probability distribution. For example, we
can tell the difference between a head or tail with a single measurement, or
between horizontal and vertical polarization of a photon, but I could not tell
whether the photon is polarized at a slant even though this is a valid state of
the quantum system.

What is a pure state? A pure state is an extremal point in the state space,
namely one that cannot be made as a convex combination of other states. These
represent definite states of the system, meaning those that cannot be composed
of statistical combinations of other states. It seems to be a fundamental differ-
ence between classical and quantum mechanics that there are an finite number
of pure states in the former. An excellent discussion of classical and quantum
pure states appears in (Mallesh et al. 2012).

49

50 CHAPTER 3. BOOLEAN AND HILBERT SPACES

What is a mixed state? A mixed state is a statistical combination of pure
states. Another way of looking at this is that a mixed state is made from a
pure state by taking the partial trace over the part of the system that we do not
know about. A central difference between classical and quantum spaces is that
there are K pure states for K = N degrees of freedom in a classical system,
whereas a quantum system can support an infinite number of pure states and
has K = N2 degrees of freedom. Having dimension N means that we have N
basis vectors in our space, classical or quantum. In fact, this is why we use
complex Hilbert spaces to describe states in quantum mechanics, since they
have the right relation between the dimension and number of states.

Since we will always construct our composite systems from a combination of
two-state systems, our full system will be a tensor product and N = 2n where
n is the number of two-state systems. This also means that we can make a
correspondence between n-bit Boolean strings and basis vectors. For example,
a basis vector of the full system êM where the number M can be expressed by
the bit string,

M = m0m1 . . .mn,

is given by the product of basis vectors of the two-state subsystems

êM = êm0
⊗ êm1

⊗ · · · ⊗ êmn
.

We will call a two-state quantum system a qubit , or quantum bit, since a two-
state classical system is known as a bit . We can use the density matrix formalism
to model incoherent superpositions of qubits, meaning statistical ensembles of
qubits. However, measurements of qubits are inherently probabilistic, even for
pure states, and thus it seem like to correct classical analogy would be a proba-
bilistic classical two-state system, which we will call a probit . Notice, however,
that qubits and probits are quite different. Qubits need not be part of statistical
ensembles, and the probabilities between measurements can interfere and can-
cel, which cannot happen with either a probit or with the probabilities arising
from statistical collections of qubits.

Quantum computers are machines for manipulating qubits. A qubit is the
basic unit of quantum information. A qubit is a two-state quantum mechanical
system, such as the spin of the electron in which the two states can be taken
as spin up and spin down, or the polarization of a single photon in which the
two states can be taken to be the vertical polarization and the horizontal po-
larization. In a classical system, a bit would have to be either true or false.
However, quantum mechanics allows the qubit to be in a coherent superposition
of both states at the same time, a property that is fundamental to quantum
mechanics and thus quantum computing. In terms of probabilities, as pointed
out by Hardy, quantum amplitudes can be negative, and lead to cancellation,
whereas classical probabilities must be positive. Therefore a qubit corresponds
to a line in a quantum circuit diagram, but not to a row of the permutation
matrix representing our invertible function F , introduced in what follows. The
state space for a full problem is a tensor product of individual spaces for each

3.1. BOOLEAN FUNCTIONS 51

qubit. When quantum mechanics refer to a superposition of states, what they
mean is that we have a linear combination of tensor product basis vectors.

Evolution of a quantum system is expressed by the action of a unitary oper-
ator. This is so because we want the total probability to be conserved, so that
the probability of something happening is always unity,

‖ψ(t)‖ = ‖Utψ(0)‖ = ‖ψ(0)‖

and the 2-norm of ψ(0) is the probability of beginning in any state. In the case
of probits, evolution using stochastic matrices preserves the total probability.

3.1 Boolean Functions

In order to talk about two-state quantum systems, we will use the language
of boolean functions, where we identify the two quantum states with T and
F . A unary Boolean function operates on a single bit and returns a single bit.
There are only two unary functions, NOT and the identity. A binary Boolean
function operates on two input bits and returns a single output bit. These
are the familiar functions, such as AND and OR. We can generalize Boolean
functions to strings of bits in at least two different ways. A bitwise Boolean
function applies a binary function to each pair of bits and collects the output
bits into another string, whereas an n-ary Boolean function operates on all
argument bits to produce a single output bit. For example, n-ary AND returns
T only if all input bits are T , and n-ary OR returns F only if all inputs are F .
The n-ary XOR function returns T only if an odd number of argument bits are
T , which makes sense given its identification with addition modulo 2. We can
define the Boolean inner product of two bit strings as n-ary XOR of the bitwise
AND of the two input strings,

x • y = x1y1 ⊕ · · · ⊕ xmym. (3.1)

This makes some sense in that n-ary XOR looks like addition and bitwise AND
looks like multiplication, and we retain the distributive property,

x y z x ∧ (y ⊕ z) (x ∧ y)⊕ (x ∧ z)
T T T F F
T T F T T
T F T T T
T F F F F
F T T F F
F T F F F
F F T F F
F F F F F

Note that n-ary XOR is addition mod 2 of the input bits, rather than addition
mod 2 of the input numbers represented by the bit strings. The table for x⊕ y
where x and y are single bits is given by

52 CHAPTER 3. BOOLEAN AND HILBERT SPACES

y
x

0 1

0 0 1
1 1 0

If we instead look at two bit strings,

y
x

00 01 10 11

00 0 1 0 1
01 1 0 1 0
10 0 1 0 1
11 1 0 1 0

we have copies of the first table, because only the least significant bits matter
in addition modulo two.

3.2 Matrix Representations

If we imagine a system composed of n two-state quantum systems, the size of
the overall Hilbert space for the combined system is N = 2n, because it is the
tensor product of two-dimensional spaces. We can label each basis function of
the combined system by its number in binary, so the rightmost bit is fastest.
For example, if we combine two electrons, we have states 00, 01, 10, and 11
where 0 and 1 correspond to spin up and spin down basis states.

In quantum mechanics, linear operators transform basis states into each
other, and in fact we require that the operators be unitary in closed systems so
that the total probability for all measurements remains unity. This mapping can
be seen as a transformation of truth values from input to output. However, if we
want to represent unitary mappings, we must use invertible Boolean functions.
The Boolean function f(x1, . . . , xn) = y is not invertible, so instead we create
an invertible function F from it

F (x1, . . . , xn, z) = (x1, . . . , xn, z ⊕ f(x1, . . . , xn)) (3.2)

which can be shown to be its own inverse

F (F (x1, . . . , xn, z)) = F (x1, . . . , xn, z ⊕ f(x1, . . . , xn))

= (x1, . . . , xn, (z ⊕ f(x1, . . . , xn))⊕ f(x1, . . . , xn))

= (x1, . . . , xn, z) .

As a simple example, the unary NOT function is invertible, and has the repre-
sentation

X =

(
0 1
1 0

)
. (3.3)

We can check that it is invertible (and unitary) by noting that X2 = I. Now
suppose we use our strategy for making invertible Boolean functions on the

3.2. MATRIX REPRESENTATIONS 53

identity function so that we have f(x) = x, the we use F (x1, x2) = (x1, x2⊕x1).
Then we have the matrix representation

e00 e01 e10 e11


e00 1 0 0 0
e01 0 1 0 0
e10 0 0 0 1
e11 0 0 1 0

=

(
I 0
0 X

)
. (3.4)

We will call this operation CNOT (controlled NOT), since it negates the second
argument if and only if the first argument is T . Thus the first argument is
controlling the NOT on the second. We also note that this matrix cannot be
written as a Kronecker product of simpler gates.

In general, the matrix associated with F is size 2N × 2N , since we add an
extra argument z. We can label each row by the input x1x2 · · ·xnz, and each
one will have only a single nonzero in column x1x2 · · ·xn(z ⊕ f(x1, . . . , xn)). A
matrix with this structure is a permutation matrix , which we denote P f . Note
that permutation matrices are unitary, which implies the invertibility of F . We
can keep going in this fashion by making extra inputs z1, . . . , zm if the function
f has m outputs.

We can repeat the same invertibility trick for the AND function f(x, y) = xy,
since conjunction is equivalent to bit multiplication. We use F (x1, x2, x3) =
(x1, x2, x3 ⊕ (x1x2)), so that the matrix representation is given by

e000 e001 e010 e011 e100 e101 e110 e111



e000 1 0 0 0 0 0 0 0
e001 0 1 0 0 0 0 0 0
e010 0 0 1 0 0 0 0 0
e011 0 0 0 1 0 0 0 0
e100 0 0 0 0 1 0 0 0
e101 0 0 0 0 0 1 0 0
e110 0 0 0 0 0 0 0 1
e111 0 0 0 0 0 0 1 0

=

(
I6 0
0 X

)
.

(3.5)

This is known as the Toffoli gate, and is similar to CNOT except the first two
inputs are controls. It turns out that we can make any Boolean function out of
Toffoli gates since we can emulate both NOT and AND gates,

NOT(x) = TOF(1, 1, x) (3.6)

AND(x, y) = TOF(x, y, 0) (3.7)

It is shown in (Lipton and Regan 2014) that only a polynomial number of ancilla
are needed for any circuit, so the Toffoli gate can be considered universal for
quantum computation.

54 CHAPTER 3. BOOLEAN AND HILBERT SPACES

We say a Boolean function is feasible if the circuit which computes it has
polynomial size. We would like the same idea for quantum computing, but as
Reagan and Lipton note, the reasoning is more slippery. For now we will make
due with some Rules for Feasibility:

1. Any unitary operator B of size 2k for fixed k is feasible. These are oper-
ations involving a fixed number k of qubits.

2. A tensor product of B with identity matrices is feasible. We will call this
a basic operator . Note that this is also unitary.

3. The multiplication U1 · · ·U t of a polynomial number of feasible operators,
so that t = nO(1), is feasible. We can generalize this to allow s = nO(1)

qubits instead of just n qubits.

We note here that there are exponentially many diagonal matrices, but only
polynomially many of them can be feasible, so there are a lot of infeasible
diagonal matrices.

We now have at least three separate representations of the operations used
in quantum algorithms. First, the quantum circuit picture in terms of quantum
wires and gates; second, the linear algebraic representation in the tensor basis of
all qubits; and third the Boolean function representation F (x1, . . . , xn, z1, . . . , zm).
Let’s look at a simple quantum circuit, in order to look at the three different
presentations,

x1 H • y1

x2 y2

which acts on qubit 1 with a Hadamard gate and then feeds both qubits into a
CNOT. There is an implied identity transformation on qubit 2, which could
be included explicitly

x1 H • y1

x2 I y2

in order to make the transition to linear algebra clearer. We can get out linear

3.2. MATRIX REPRESENTATIONS 55

algebraic form U for this circuit

U = U2U1 (3.8)

= CNOT (H⊗ I) (3.9)

=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

(1√
2

(
1 1
1 −1

)
⊗
(

1 0
0 1

))
(3.10)

=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 1√
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

 (3.11)

=
1√
2


1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0

 (3.12)

(3.13)

Suppose that we act on the input state e00 which means that both qubits are
in the spin up or F state,

Ue00 =
1√
2


1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0




1
0
0
0

 (3.14)

=
1√
2


1
0
0
1

 (3.15)

=
1√
2

(e00 + e11) . (3.16)

The output state is the so-called Bell state, meaning a maximally entangled
state, since if I measure the first qubit and get 0 I know immediately that the
other quibit must be 0, and likewise with 1. Thus the circuit above is routinely
used to construct an entangled pair from a simple initial state.

In the Boolean function representation, we have the invertible function for
CNOT,

FCNOT (x1, x2) = (x1, x1 ⊕ x2)

so how do we use this? We should think of this as acting on the index of the
input vector. For example, if we give ê10 to this gate, then we get ê11 out. For
an arbitrary input, we would have

FCNOT êij = êi,i⊕j

56 CHAPTER 3. BOOLEAN AND HILBERT SPACES

and for a general F

F êi1i2···inj1···jm = êi1···in,j1⊕f1(i1,...,in),··· ,jm⊕fm(i1,...,in). (3.17)

We do not have a Boolean formula representation of H, but we can express the
operation on indices just as we can with F . In our example H operates on only
the first index of the input. Putting everything together for this circuit, we have

FCNOT (H⊗ I) ê00 = FCNOT
1√
2

(e00 + e10) (3.18)

=
1√
2

(FCNOT e00 + FCNOT e10) (3.19)

=
1√
2

(e00 + e11) (3.20)

which gives us the same Bell state on output. This Boolean function notation
is noticeably more compact than the linear algebraic notation, and one of the
key innovations by Reagan and Lipton.

3.3 Hadamard Matrices

We define the smallest Hadamard matrix H2

H2 =
1√
2

(
1 1
1 −1

)
, (3.21)

and then recursively define all Hadamard matrices with power-of-two size

HN = HN/2 ⊗H2 =

(
HN/2 HN/2

HN/2 −HN/2

)
. (3.22)

We can see that HN is unitary based upon the unitarity of HN/2 and the form
above, or by noting that HN = H2⊗· · ·⊗H2 with n copies of H2 and that tensor
products of unitary matrices are unitary. In fact, we can obtain an expression
of any entry of HN

HN
ij =

1√
N

(−1)i
•j (3.23)

Let’s verify this formula first for H2. In this case, i and j are single bits, and
thus only one when they are both one. Since there is only a negative sign in
(1, 1) entry, the formula is correct. Now for H4, there is a copy of H2 for the

3.4. MEASURING ENTANGLEMENT 57

high order bit, with a negation when both high order bits are 1. Thus we have

H4
ij =

1√
2

(−1)i1∧j1H2
i2j2

=
1√
4

(−)1i1∧j1(−1)i2∧j2

=
1√
4

(−1)(i1∧j1)⊕(i2∧j2)

=
1√
4

(−1)i
•j .

We can proceed by induction, where i′ = i2 . . . iN ,

HN
ij =

1√
2

(−1)i1∧j1HN−1
i′j′

=
1√
4

(−1)i1∧j1(−1)i
′ •j′

=
1√
4

(−1)(i1∧j1)⊕i
′ •j′

=
1√
4

(−1)i
•j .

Using this expression, the action of H on a vector x is given by

yi =
∑
j

HN
ij xj (3.24)

=
1√
N

∑
j

(−1)i
•jxj . (3.25)

3.4 Measuring Entanglement

The simplest measure of entanglement is the determination that two states are
indeed entangled. For qubits this means that that the four dimensional product
state is not factorizable into the tensor product of two qubit states. Let’s look
at the first Bell state as an example. We can write the equations which have to
be satisfied for the state to be a tensor product.

1√
2


1
0
0
1

 =

(
α
β

)
⊗
(
γ
δ

)
(3.26)

1√
2


1
0
0
1

 =


αγ
αδ
βγ
βδ

 (3.27)

(3.28)

58 CHAPTER 3. BOOLEAN AND HILBERT SPACES

However, these equations cannot be solved. The second equation states that

αδ = 0 (3.29)

so that either α = 0 or δ = 0. If α = 0, then the first equation cannot be
satisfied, but if δ = 0 then the last equation cannot be satisfied. A similar
conclusion is reached looking at the third equation.

Next, lets write the first Bell state in the sign basis, meaning the basis that
is rotated 45◦ from the standard basis,

ê+ =
1√
2

(ê0 + ê1) , (3.30)

ê− =
1√
2

(ê0 − ê1) , (3.31)

or in reverse

ê0 =
1√
2

(ê+ + ê−) , (3.32)

ê1 =
1√
2

(ê+ − ê−) . (3.33)

Now we can expand our Bell state in this new basis

B0 =
1√
2

(ê00 + ê11) , (3.34)

=
1√
2

(
1√
2

(ê+ + ê−)⊗ 1√
2

(ê+ + ê−) + ê11

)
, (3.35)

=
1

2
√

2
(ê++ + ê+− + ê−+ + ê−− + ê11) , (3.36)

=
1

2
√

2
(ê++ + ê+− + ê−+ + ê−− + ê++ − ê+− − ê−+ + ê−−) , (3.37)

=
1√
2

(ê++ + ê−−) . (3.38)

Thus we seem the same entanglement in this new basis. In fact, our state will
be entangled in any basis.

3.5 Problems

Problem III.1 QALA 2.1

Problem III.2 QALA 2.3

Problem III.3 QALA 2.4

3.5. PROBLEMS 59

Problem III.4 QALA 2.5

Problem III.5 QALA 2.6

Problem III.6 QALA 2.7

Problem III.7 QALA 2.8

Problem III.8 QALA 4.2

Problem III.9 QALA 4.3

Problem III.10 QALA 4.4

Problem III.11 QALA 4.5

Problem III.12 QALA 4.6

Problem III.13 QALA 4.8

Problem III.14 QALA 4.9

Problem III.15 QALA 4.10

Problem III.16 QALA 4.12

Problem III.17 QALA 4.13

Problem III.18 QALA 4.14

Problem III.19 QALA 6.1

Problem III.20 QALA 6.2

Problem III.21 QALA 6.4

Problem III.22 QALA 6.5

Problem III.23 QALA 6.6

Problem III.24 QALA 6.7

60 CHAPTER 3. BOOLEAN AND HILBERT SPACES

Problem III.25 QALA 6.8

Problem III.26 QALA 6.9

Problem III.27 QALA 6.10

References

Hardy, Lucien (2001). “Quantum theory from five reasonable axioms”. In: eprint:
quant-ph/0101012.

Mallesh, KS, Subhash Chaturvedi, R Simon, and N Mukunda (2012). “States of
physical systems in classical and quantum mechanics”. In: Resonance 17.1,
pp. 53–75.

Lipton, Richard J and Kenneth W Regan (2014). “Quantum Algorithms via
Linear Algebra: A Primer”. In: p. 206.

quant-ph/0101012

Chapter 4

Quantum Algorithms

The bag of tricks for quantum computing, I think, arises mainly, not from
quantum properties, but rather from the necessity of reversibility. This is the
origin, for instance, of the famous No-Cloning Theorem of quantum mechanics.
This says that there does not exist a universal unitary transformation which
produce an exact copy an unknown quantum state. To be specific, let us define
a state a, and ask for a transformation UC such that

UC(a⊗ ê0) = eiα(a,ê0)(a⊗ a)

Now suppose that we cloned two states a and b, and looked at their inner
product

(b⊗ ê0)†(a⊗ ê0) = (b⊗ e0)†U†CUC(a⊗ e0)

(b†a)(ê†0ê0) = (UC(b⊗ e0))†(UC(a⊗ e0))

(b†a) = e−iα(b,e0)(b⊗ b)†eiα(a,e0)(a⊗ a)

|b†a| = |b†a|2

This implies that either b†a = 0 or b†a = 1. Hence by the Cauchy-Schwarz
Inequality the states are either parallel or orthogonal. This cannot be the case
for two arbitrary states, and therefore, a single universal UC cannot clone a
general quantum state. Notice that we could design a U to copy a given quantum
state, but the transformation would depend on the state it was copying.

We can, however, design a transform to clone only the basis vectors. If we
feed êk ⊗ ê0 to CNOT, we get back êk ⊗ êk. If we apply CNOT to successive
pairs of qubits, we can create this state for 2n qubits. Lets look at the effect for
a 2-qubit system. Suppose I apply CNOT to a⊗ ê0,

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



a0
0
a1
0

 =


a0
0
0
a1


61

https://en.wikipedia.org/wiki/No-cloning_theorem

62 CHAPTER 4. QUANTUM ALGORITHMS

so that bii = ai. This means that for any basis vector, UC(ek ⊗ e0) = ek ⊗ ek.
However, lets apply this to the state 1√

2
(e0 + e1)⊗ e0,


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 1√
2


1
0
1
0

 =
1√
2


1
0
0
1


but that is not the cloned state

1√
2

(e0 + e1)⊗ 1√
2

(e0 + e1) =
1

2


1
1
1
1

 .

We can also do the computation symbolically

UC

(
1√
2

(e0 + e1)⊗ e0
)

=
1√
2
UC (e0 ⊗ e0 + e1 ⊗ e0)

=
1√
2

(e0 ⊗ e0 + e1 ⊗ e1)

whereas

1√
2

(e0 + e1)⊗ 1√
2

(e0 + e1) =
1

2
(e0 ⊗ e0 + e0 ⊗ e1 + e1 ⊗ e0 + e1 ⊗ e1).

This trick of copying the basis can be used to extract a subset of qubits in
a reversible way. Suppose we want to select out some qubits from among the
output of an operation U . This is not reversible, since we are discarding the
other qubits. We want somehow to remove the information in the other qubits
before we proceed. Suppose that we act with U ⊗ I on the initial state a⊗ e0m .
Then pick the m qubits we want from that output using Cm, where the CNOT
controls are on our chosen qubits, and the targets are on the m ancillary qubits
we are using to make things reversible. Then act with U† ⊗ I to return the
input qubits to their original state. This is called the Copy-Uncompute trick,
and can be expressed in our function notation as(

U† ⊗ I
)
CNOTm (U ⊗ I) . (4.1)

Let’s try a simple example to see if we can predict the action using our tools.
I want to act with a two qubits Boolean operator U , but only retain the result
in the first qubit, say f(x1, x2), whereas the second qubit was some g(x1, x2).

63

The quantum circuit for this setup would be

x1

U

•

U†

x1

x2 x2

e0 f(x1, x2)

In the function notation, this would be(
U† ⊗ I

)
CNOT1,3 (U ⊗ I) (x1 ⊗ x2 ⊗ ê0)

=
(
U† ⊗ I

)
CNOT1,3

(
êf(x1,x2) ⊗ êg(x1,x2) ⊗ ê0

)
=
(
U† ⊗ I

) (
êf(x1,x2) ⊗ êg(x1,x2) ⊗ êf(x1,x2)

)
=x1 ⊗ x2 ⊗ êf(x1,x2)

Notice that this works because the Boolean operator output is in a definite
basis state. This is really just the same trick as making a reversible F for our
non-invertible Boolean function, but done more explicitly with gates.

By linearity of the tensor product, scaling one part is equivalent to scaling
the other parts

α(v ⊗w) = αv ⊗w = v ⊗ αw

We can show this explicitly by calculating the Kronecker product of two vectors,

α

((
1
0

)
⊗
(

0
1

))
= α


0
1
0
0



=


0
α
0
0


=

(
α
0

)
⊗
(

0
1

)
=

(
1
0

)
⊗
(

0
α

)
This is a strange property since it means we may move multipliers among the
factors in a tensor product. Thus the vector a⊗b does not uniquely correspond
to the tensor product of a and b, but to all pairs of vectors αa and α−1b.

64 CHAPTER 4. QUANTUM ALGORITHMS

We can use this strangeness to get the effect of altering one output qubit,
when it looks like we are altering another. Let F be the unitary operator created
from a Boolean function f(x1, . . . , xn), and consider the circuit

x1

F

(−1)f(x1,...,xn)x1

...
...

xn (−1)f(x1,...,xn)xn

e0 X H H X e0

The unitary operator F corresponding to the Boolean function f is linear, so
that its action on mixed states is given by the linear combination of the action
on pure states. Moreover, it is a permutation, mapping the input state labeled
by xz to the output state labeled by x(z⊕f(x)). In order to calculate the effect
of the entire circuit, we first notice that

(I ⊗H) (I ⊗X) (x⊗ ê0) = x⊗ 1√
2

(e0 − e1) = x⊗ d

F (x, d) = F (x⊗ d)

=
1√
2

(F (x⊗ ê0)− F (x⊗ ê1))

=
1√
2

(F (x, 0)− F (x, 1))

=
1√
2

((
x⊗ e0⊕f(x)

)
−
(
x⊗ e1⊕f(x)

))
=

1√
2

(
x⊗

(
e0⊕f(x) − e1⊕f(x)

))
Now we could look at the two cases, f(x) = 0 and f(x) = 1, so that

e0⊕f(x) − e1⊕f(x) =

{
e0 − e1 f(x) = 0

e1 − e0 f(x) = 1
.

Looking at this, we can see a clever way to unify the classes, using a power of

4.1. SIMPLE EXAMPLES 65

minus one,

F (x, d) =
1√
2

(
x⊗ (−1)f(x) (e0 − e1)

)
= (−1)f(x)

(
x⊗ 1√

2
(e0 − e1)

)
=
(

(−1)f(x)x⊗ d
)

We have used the QALA notation F (x, y) for F (ex ⊗ ey) in order to illustrate
the book’s notation in our format. Now if we finish off with the Hadamard and
NOT gates (which is just the uncompute trick), we are left with the input vector
x scaled by an x-dependent sign. Later we will see that this can be seen as a
reflector, known as the Grover Oracle. This calculation shows that the Grover
Oracle is feasible, since we can start with j, and then act with this circuit to
multiply all entries in the true set S with negative one.

4.1 Simple Examples

We would like to look at very simple circuits that often appear as subsystems for
full algorithms. For each, we will analyze the quantum circuit using both linear
algebra and Boolean algebra. We call the later analysis a functional approach
since Boolean functions play a central role.

4.1.1 Create superposition

Quantum Circuit:

0 H y

Linear Algebraic:

1√
2

(
1
1

)
=

1√
2

(
1 1
1 −1

)(
1
0

)
(4.2)

Functional:

y = He0 =
1√
2

(e0 + e1) (4.3)

4.1.2 Create entanglement

Quantum Circuit:
e0 H • y1

e0 I y2

66 CHAPTER 4. QUANTUM ALGORITHMS

Linear Algebraic:
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

(1√
2

(
1 1
1 −1

)
⊗
(

1 0
0 1

))((
1
0

)
⊗
(

1
0

))
(4.4)

=
1√
2


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

((1
1

)
⊗
(

1
0

))
(4.5)

=
1√
2


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1
0
1
0

 (4.6)

=
1√
2


1
0
0
1

 (4.7)

Functional:

y = CNOT (H⊗ I) (ê0 ⊗ ê0) (4.8)

= CNOT (Hê0 ⊗ ê0) (4.9)

=
1√
2
CNOT (ê0 ⊗ ê0 + ê1 ⊗ ê0) (4.10)

=
1√
2
CNOT (ê00 + ê10) (4.11)

=
1√
2

(ê00 + ê11) (4.12)

4.2 Deutsch’s Algorithm

We would like to distinguish what is possible classically from quantum mechan-
ically, but it has been hard to define exactly what kinds of computations are
possible and fast on a quantum computer. Classically, the theory started with
Gödel, Post, Church and recursively enumerable sets. It turned out that these
sets were described by exactly the kinds of functions that people wanted to
compute, and that this computation could be completely described by a Turing
Machine (TM). Since we can build circuits out of logic gates for these compu-
tations, they are also equivalent to evaluating Boolean functions. We have seen
that we can reversibly compute Boolean functions with little overhead, and that
we can build quantum gates that mimic the classical gates for Boolean func-
tions (with little overhead). Thus we can do any TM computation on a quantum
computer. The difference is that we cannot read out the answer, but only make

4.2. DEUTSCH’S ALGORITHM 67

a quantum measurement. If we model a quantum measurement as the action of
a linear functional on the quantum state, we know that all such functionals can
be realized as integrals by the Reisz-Markov-Kakutani Theorem. This is exactly
what is happening in Deutsch’s Algorithm and the Deutsch-Josza Algorithm.

We would like to determine whether a given unary Boolean function is con-
stant. Since there are only four unary functions, we will distinguish between the
constant functions (always true and always false) and the non-constant func-
tions (identity and negation). Classically, you must measure the output for both
possible inputs, since the outcome of one measurement will always be consistent
with both a constant and non-constant function. However, Deutsch (Deutsch
and Jozsa 1992) showed that a quantum computer could accomplish this in a
single measurement.

The Deutsch algorithm, actually formulated in this final form by Deutsch
and Jozsa, can be expressed by the following quantum circuit,

0 H

F

H e0

0 X H z

in which F is unitary operator corresponding to our unary Boolean function, and
we introduce a new element on the first qubit. We will measure the probability
that the first output qubit is ê0. In our analysis, this means we will sum over
the probability of getting ê0 ⊗ z for any z.

First we will analyze the circuit using the linear algebraic representation.
We have explictly formed matrices for the operators I ⊗X, H ⊗H, and H ⊗ I.

1√
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

UF
1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0




1
0
0
0



=
1√
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

UF
1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1




0
1
0
0



=
1

2
√

2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

UF


1
−1
1
−1



68 CHAPTER 4. QUANTUM ALGORITHMS

Now if f is the identity, then F (x, z) = (x, x⊕ z) and

1

2
√

2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

UF


1
−1
1
−1



=
1

2
√

2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1
−1
1
−1



=
1

2
√

2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1




1
−1
−1
1



=
1√
2


0
0
1
−1

 .

Here, a measurement when the first qubit is 0 is just the projection on ê0 ⊗ z,

1√
2

(
z0 z1 0 0

)
0
0
1
−1

 = 0.

Similarly for negation, F (x, z) = (x, (¬x)⊕ z), we get

1

2
√

2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1




0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1




1
−1
1
−1



=
1

2
√

2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1



−1
1
1
−1



=
1√
2


0
0
−1
1


with the same result. However for f the always true function, F (x, z) = (x,¬z),

4.2. DEUTSCH’S ALGORITHM 69

we get

1

2
√

2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0




1
−1
1
−1



=
1

2
√

2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1



−1
1
−1
1



=
1√
2


−1
1
0
0


and a measurement when the first qubit is 0 will yield either state for the second
qubit with probability 1/2, since

∣∣∣∣∣∣∣∣
1√
2

(
1 0 0 0

)
−1
1
0
0


∣∣∣∣∣∣∣∣
2

=
1

2
,

∣∣∣∣∣∣∣∣
1√
2

(
0 1 0 0

)
−1
1
0
0


∣∣∣∣∣∣∣∣
2

=
1

2
.

Similarly for the always false function,

1

2
√

2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




1
−1
1
−1

 (4.13)

=
1

2
√

2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1




1
−1
1
−1

 (4.14)

=
1√
2


1
−1
0
0

 (4.15)

If we use the functional representation, we can get an even more compact

70 CHAPTER 4. QUANTUM ALGORITHMS

representation.

(H⊗ I)F (H⊗H) (ê0 ⊗ ê1) (4.16)

= (H⊗ I)F
1

2
((ê0 + ê1)⊗ (ê0 − ê1)) (4.17)

=
1

2
(H⊗ I)F (ê00 − ê01 + ê10 − ê11) (4.18)

=
1

2
(H⊗ I)

(
ê0f(0) − ê0¬f(0) + ê1f(1) − ê1¬f(1)

)
(4.19)

=
1

2
√

2
(ê0f(0) + ê1f(0) − ê0¬f(0) − ê1¬f(0)+

ê0f(1) − ê1f(1) − ê0¬f(1) + ê1¬f(1)) (4.20)

If f is constant, f(0) = f(1) = y, we have

1

2
√

2
(ê0y + ê1y − ê0¬y − ê1¬y + ê0y − ê1y − ê0¬y + ê1¬y) (4.21)

=
1√
2

(ê0y − ê0¬y) (4.22)

whereas if f is not constant, f(0) = y and f(1) = ¬y, we have

1

2
√

2
(ê0y + ê1y − ê0¬y − ê1¬y + ê0¬y − ê1¬y − ê0y + ê1y) (4.23)

=
1√
2

(ê1y − ê1¬y) (4.24)

We can simplify this derivation by using the expression for the action of the
Hadamard operator from QALA. Remember that for systems of qubits, we can
write our linear algebraic indices as Boolean strings. Thus if we have b = H4a,
we can index a by the bit string z and b by x, so that

bx =
1

2

∑
z

−1x
•zaz.

If our starting state is ê01, then we have

bx =
1

2
(−1)x

•01

=
1

2
(−1)x·0⊕y·1

=
1

2
(−1)y

where we have used the properties of powers of minus one which you proved in
the homework. Now we use the definition of our reversible Boolean function F ,

F =
∑
xz

(êx ⊗ êz)(ê
†
x ⊗ ê†z⊕f(x))

4.3. DEUTSCH-JOZSA ALGORITHM 71

we have c = Fb,

cxy =
∑
wz

Fxy,wzbwz

= bx(y⊕f(x))

=
1

2
(−1)y⊕f(x).

Then we finally apply a Hadmard gate only on the first quibit, d = (H2 ⊗ I)c,

dxy =
1√
2

∑
wz

(−1)xwδyzcwz

=
1

2
√

2

∑
wz

(−1)xwδyz(−1)z⊕f(w)

=
1

2
√

2

∑
w

(−1)xw(−1)y⊕f(w).

Now we are again reduced to plugging in values

dxy =
1

2
√

2

(
(−1)y⊕f(0) + (−1)x(−1)y⊕f(1)

)
=

1

2
√

2
(−1)y

(
(−1)f(0) + (−1)x⊕f(1)

)
.

Now we see that the amplitude for state d0y is given by

1

8

∣∣∣−1f(0) +−1f(1)
∣∣∣2

so that if f is constant, we have amplitude one half for either state y, whereas
if the function changes then the amplitude is 0.

4.3 Deutsch-Jozsa Algorithm

The Deutsch-Jozsa algorithm is just the Deutsch repeated for n qubits. This
time we are looking to discriminate between constant functions and balanced
functions, which are functions having an equal number of true and false out-
comes. If I just sample classically, I would need to look at one more than half
the bits in order to assure myself that the function is not constant. However,
the quantum algorithm can distinguish between them with a single sample.

The circuit for this algorithm is given below. The strategy is the same as
before, namely to act with a Hadamard gate on all inputs, then the Boolean
function, and then with a final Hadamard gate on all outputs except z. We

72 CHAPTER 4. QUANTUM ALGORITHMS

again measure the probability for 0z, which will vanish for balanced functions.

0 H

F

H e0

0 H H e0

...
...

...
...

0 H H e0

1 H z

This example shows the power of our functional notation. Treating an arbi-
trary number of qubits in the linear algebraic notation is quite cumbersome.

(H · · · ⊗H⊗ I)F (H⊗ · · · ⊗H) (ê0 ⊗ · · · ⊗ ê0 ⊗ ê1) (4.25)

=
1√
2N

(H · · · ⊗H⊗ I)F

2N−1∑
(x,z)=0

exz

2N−1∑
(x′,z′)=0

(−1)(x,z)
•(x′,z′)δx′0δz′1 (4.26)

=
1√
2N

(H · · · ⊗H⊗ I)F

2N−1∑
(x,z)=0

exz(−1)(x,z)
•(0,1) (4.27)

=
1√
2N

(H · · · ⊗H⊗ I)F

2N−1∑
(x,z)=0

exz(−1)x
•0(−1)z·1 (4.28)

=
1√
2N

(H · · · ⊗H⊗ I)F

2N−1∑
(x,z)=0

exz(−1)z (4.29)

=
1√
2N

(H · · · ⊗H⊗ I)

2N−1∑
(x,z)=0

exz(−1)z⊕f(x) (4.30)

=
1√
2N

1√
N

(
N−1∑
x′=0

N−1∑
x=0

(−1)x
•x′
ex

)
⊗
∑
z

ez(−1)z⊕f(x
′) (4.31)

=
1√
2N

2N−1∑
(x,z)=0

N−1∑
x′=0

(−1)x
•x′

(−1)z⊕f(x
′)exz (4.32)

4.4. SUPERDENSE CODING 73

Thus, the probability of measuring a state (x, z) is given by

P (x, z) =
1

2N2

∣∣∣∣∣
N−1∑
x′=0

(−1)x
•x′

(−1)z⊕f(x
′)

∣∣∣∣∣
2

, (4.33)

=
1

2N2

∣∣∣∣∣(−1)z
N−1∑
x′=0

(−1)x
•x′

(−1)f(x
′)

∣∣∣∣∣
2

, (4.34)

=
1

2N2

∣∣∣∣∣
N−1∑
x′=0

(−1)x
•x′

(−1)f(x
′)

∣∣∣∣∣
2

. (4.35)

If we ask for P (0, z), we get

P (0, z) =
1

2N2

∣∣∣∣∣
N−1∑
x′=0

(−1)0
•x′

(−1)f(x
′)

∣∣∣∣∣
2

, (4.36)

=
1

2N2

∣∣∣∣∣
N−1∑
x′=0

(−1)f(x
′)

∣∣∣∣∣
2

. (4.37)

If f is constant, then we get

P (0, z) =
1

2N2

∣∣∣∣∣
N−1∑
x′=0

±1

∣∣∣∣∣
2

, (4.38)

=
1

2N2
|±N |2 , (4.39)

=
1

2
, (4.40)

whereas, if f is balanced, then half the terms in the sum cancel the other half,
and we get zero.

4.4 Superdense coding

There are several algorithms similar to the Deutsch-Josza algorithms, in that
they begin with a superposition or entanglement, act with a Boolean function,
and then uncompute the initial action. This pattern is followed in superdense
coding , so named because we can send two classical bits using a single qubit
gate.

We start by producing the Bell state, as shown in the circuit below. We
then use two classical bits to decide which transformation to apply to the first
qubit. If the classical bit is true, the connected gate is active. For example,
if both bits are true, we apply U = ZX to the input. Finally, we uncompute
the entanglement. Since the qubits were entangled when we acted on the first

74 CHAPTER 4. QUANTUM ALGORITHMS

qubit, information can be retrieved from both.

b1 b0

0 H • X Z • H x

0 z

First we work through the case when the transformation U is the identity,
meaning b0 = b1 = 0, so we expect non-zero amplitude only in the (00) state,

(H⊗ I)CNOT(U⊗ I)CNOT(H⊗ I)ê00 (4.41)

=
1√
2

(H⊗ I)CNOT CNOT((ê0 + ê1)⊗ ê0) (4.42)

=
1√
2

(H⊗ I)CNOT CNOT(ê00 + ê10) (4.43)

=
1√
2

(H⊗ I)CNOT(ê00 + ê11) (4.44)

=
1√
2

(H⊗ I)(ê00 + ê10) (4.45)

=
1√
2

(H⊗ I)((ê0 + ê1)⊗ ê0) (4.46)

=(ê0 ⊗ ê0) (4.47)

=ê00 (4.48)

Then U = X which gives (01),

1√
2

(H⊗ I)CNOT(X⊗ I)(ê00 + ê11) (4.49)

=
1√
2

(H⊗ I)CNOT(ê10 + ê01) (4.50)

=
1√
2

(H⊗ I)(ê11 + ê01) (4.51)

=
1√
2

(H⊗ I)((ê0 + ê1)⊗ ê1) (4.52)

=(ê0 ⊗ ê1) (4.53)

=ê01 (4.54)

4.4. SUPERDENSE CODING 75

U = Z gives (10),

1√
2

(H⊗ I)CNOT(Z⊗ I)(ê00 + ê11) (4.55)

=
1√
2

(H⊗ I)CNOT(ê00 − ê11) (4.56)

=
1√
2

(H⊗ I)(ê00 − ê10) (4.57)

=
1√
2

(H⊗ I)((ê0 − ê1)⊗ ê0) (4.58)

=(ê1 ⊗ ê0) (4.59)

=ê10 (4.60)

and U = ZX gives (11),

1√
2

(H⊗ I)CNOT(ZX⊗ I)(ê00 + ê11) (4.61)

=
1√
2

(H⊗ I)CNOT(ê01 − ê10) (4.62)

=
1√
2

(H⊗ I)(ê01 − ê11) (4.63)

=
1√
2

(H⊗ I)((ê0 − ê1)⊗ ê1) (4.64)

=(ê1 ⊗ ê1) (4.65)

=ê11 (4.66)

In order to work this out in the general case, we need an expression for U
parameterized by the values of the bits (b0b1) that we would like to send across
the channel. Let us define the single qubit operator U as

U =

(
(−1)b0·b1¬b0 (−1)¬b0·b1 b0
(−1)b0·b1 b0 (−1)¬b0·b1¬b0

)

or equivalently

U = (−1)b0·b1 êb1 ê
†
0 + (−1)b0·¬b1 ê¬b1 ê

†
1 (4.67)

76 CHAPTER 4. QUANTUM ALGORITHMS

Now we can write this out in the general case

(H⊗ I)CNOT(U⊗ I)CNOT(H⊗ I)ê00 (4.68)

=
1√
2

(H⊗ I)CNOT(U⊗ I)CNOT((ê0 + ê1)⊗ ê0) (4.69)

=
1√
2

(H⊗ I)CNOT(U⊗ I)CNOT(ê00 + ê10) (4.70)

=
1√
2

(H⊗ I)CNOT(U⊗ I)(ê00 + ê11) (4.71)

=
1√
2

(H⊗ I)CNOT((−1)b0·b1 êb10 + (−1)b0·¬b1 ê¬b11) (4.72)

=
1√
2

(H⊗ I)(¬b1ê00 + b1(−1)b0 ê11 + ¬b1(−1)b0 ê10 + b1ê01) (4.73)

=
1√
2

(H⊗ I)((¬b1ê0 + ¬b1(−1)b0 ê1)⊗ ê0 + (b1(−1)b0 ê1 + b1ê0)⊗ ê1) (4.74)

=((¬b1(ê0 + ê1) + ¬b1(−1)b0(ê0 − ê1))⊗ ê0

+ (b1(−1)b0(ê0 − ê1) + b1(ê0 + ê1))⊗ ê1) (4.75)

=¬b1
1 + (−1)b0

2
ê00 + ¬b1

1− (−1)b0

2
ê10

+ b1
1 + (−1)b0

2
ê01 + b1

1− (−1)b0

2
ê11 (4.76)

and check that we obtain the expected amplitudes.

(0, 0)→ ê00

(0, 1)→ ê01

(1, 0)→ ê10

(1, 1)→ ê11

4.5 Quantum Teleportation

Quantum teleportation is the replication of an unknown quantum state, perhaps
at a remote location. On the first qubit, the sender has an unknown state c. The
second qubit, owned by the sender, is entangled with the third qubit, owned
by the received. The sender measures the first two qubits after the familiar
operations, and send those bits to the receiver. The receiver can then decide
what transformation to apply in order to reconstruct the state c on the third
qubit. Note that we have to destroy the state c at the sender (by measuring it)
in order to reconstruct it at the receiver. Also, we use the same operator at the
receiver as we used to do encoding in our Superdense coding circuit.

4.5. QUANTUM TELEPORTATION 77

Quantum Circuit:

c • H b0

0 H • b1

0 X Z c

Let us define the qubit c = αê0 +βê1, and then write the functional expres-
sion for our circuit, evaluating the circuit up to the measurement step,

(H⊗ I ⊗ I)(CNOT⊗ I)(I ⊗CNOT)(I ⊗H⊗ I)(c⊗ ê0 ⊗ ê0) (4.77)

=(H⊗ I ⊗ I)(CNOT⊗ I)(I ⊗CNOT)
1√
2

(c⊗ (ê0 + ê1)⊗ ê0) (4.78)

=(H⊗ I ⊗ I)(CNOT⊗ I)
1√
2

(c⊗ ê00 + c⊗ ê11) (4.79)

=(H⊗ I ⊗ I)(CNOT⊗ I)
1√
2

(αê000 + βê100 + αê011 + βê111) (4.80)

=(H⊗ I ⊗ I)
1√
2

(αê000 + βê110 + αê011 + βê101) (4.81)

=
1

2
(αê000 + αê100 + βê010 − βê110 + αê011 + αê111 + βê001 − βê101) (4.82)

=
1

2
(ê00 ⊗ (αê0 + βê1) + ê01 ⊗ (βê0 + αê1))

+
1

2
(ê10 ⊗ (αê0 − βê1) + ê11 ⊗ (−βê0 + αê1)) (4.83)

Now if we measure the first two qubits, we select one of the states above. We
could analyze this case-by-case, but instead let us write a parameterized state
based on the bits (b0b1) we get from the measurement

1

2

(
êb0b1 ⊗ (αêb1 + (−1)b0βê¬b1)

)
and we can act on the last qubit using the operator we defined in Eq. (4.67),(

(−1)b0·b1 êb1 ê
†
0 + (−1)b0·¬b1 ê¬b1 ê

†
1

)
(αêb1 + (−1)b0βê¬b1) (4.84)

=¬b1((−1)b0·b1αêb1 + (−1)b0·¬b1(−1)b0βê¬b1)

+ b1((−1)b0·b1(−1)b0βêb1 + (−1)b0·¬b1αê¬b1) (4.85)

=¬b1(αê0 + βê1) + b1(βê1 + αê0) (4.86)

=(¬b1 + b1)(αê0 + βê1) (4.87)

=αê0 + βê1 (4.88)

=c (4.89)

78 CHAPTER 4. QUANTUM ALGORITHMS

and we have exactly recovered the original state of the first qubit, now in the
third qubit.

4.6 Grover’s Algorithm

There is a good description of Grover’s Algorithm in QALA, but the algorithmic
parts are somewhat spread out in the book. We will attempt to bring it all
together in these notes. First, the point of the algorithm is to pick an item
from an unordered N -item list. This item should satisfy some “hit” criterion,
which we assume can be encoded in a Boolean function f . Thus, if I have some
item in the list, I can feed it to f and determine if it is in our special set S of
solutions. This also means that f must be feasible, but f−1 cannot be feasible,
otherwise I could get at least some member of S by computing f−1(1). This
kind of asymmetry should remind us of hash functions, and indeed we could try
to find some number whose hash had a known value using Grover’s algorithm.
Note that S is refered to as the characteristic set of f .

Suppose there are a large number N of possible answers, and k � N correct
solutions. Classically, in the worst case, I would need to test N −k items before
I hit a solution. If I randomly guess, I could cut this down to N/2− k guesses.
However, we will see that I can use O(

√
N) iterations of Grover’s algorithm to

have a good chance of finding a solution.

The key insight for this algorithm is linear algebraic at heart. We will create
a vector space where each coordinate direction represents a possible guess, so
that the space has dimension N . Suppose we define the characteristic vector ĥ
for S, or hit vector,

ĥi =

{
1√
k

i ∈ S
0 otherwise

where k = |S|, and the orthogonal miss vector m̂,

m̂i =

{
0 i ∈ S

1√
N−k otherwise

.

Note that we can make the constant vector ĵ from these two

ĵ =
1√
N

(√
k ĥ +

√
N − k m̂

)
.

That means that ĥ, m̂, and ĵ all lie in a two-dimensional subspace of our original
N -dimensional space. If we imagine m̂ as the x-axis, and ĥ as the y-axis, then
ĵ is in the positive quadrant between them. We can easily begin with ĵ, so our
aim is to rotate this vector into ĥ, which when measured will assure us of a
solution.

4.6. GROVER’S ALGORITHM 79

If we have coplanar vectors separated by an angle α, then a reflection about
each one in sequence yields a rotation of angle 2α (the reader should prove this).
We know the angle between ĵ and m̂,

cos(α) = ĵ†m̂ =

√
N − k
N

,

or we could write this as sin2(α) = k/N , so That

α = sin−1
(
k

N

)
.

Since k � N , we see that ĵ is very close to m̂, and far from ĥ. In fact, if we
rotate by 2α for tk times, where

2αtk + α =
π

2

tk =
π

4α
− 1

2

tk ∼= b
π

4α
c

We can reflect about ĵ using the simple reflector definition 2̂ĵj† − I since
we have an explicit representation of the vector. However, we do not know the
miss vector m̂, since if we did then we would know ĥ and have already solved
the problem. We will show, in a few steps, that this reflection can be feasibly
computed by a quantum circuit. To start, we observe that any vector in our
two-dimensional subspace is constant for directions in S, and for directions not
in S. This is true because it is true for ĥ and m̂, and thus must be true for any
linear combination. QALA calls this the solution smoothness property.

Second, we will look at the reflection of a vector with the solution smoothness
property about m̂. So we take a vector v where every entry not in S has value
e. Then we have

m̂†v =
e(N − k)√
N − k

= e
√
N − k,

which means that the projection of v on m̂ is

(
m̂m̂†v

)
i

=

{
0 i ∈ S
e otherwise

.

This means that a reflection about m̂ would give

(
2m̂m̂†v − v

)
i

=

{
−vi i ∈ S
vi otherwise

,

so that we have negated all coefficients of directions in our solution set S. We can
think of this as a large diagonal matrix, with -1 on the diagonal for each solution

80 CHAPTER 4. QUANTUM ALGORITHMS

state, and 1 for all other states. We will prove that this is feasible by explicitly
constructing the quantum circuit, which is refered to as the Grover Oracle.
We note here that even though they are simple, not all diagonal operators are
feasible, since there are simply too many to be constructable by a polynomial
number of gates. At the start of this chapter, we considered a circuit which
effects this transformation, where F is the quantum analgoue of our Boolean
function f defining the set S.

x1

F

(−1)f(x1,...,xn)x1

...
...

xn (−1)f(x1,...,xn)xn

e0 X H H X e0

4.6.1 Grover’s Algorithm for any number of solutions

If we do not know k, we can easily rotate to a region of low probability. If we try
to measure at every t, we would have to count up, since the state is destroyed
each time you measure, and the number of steps is quadratic in t, which destroys
the quantum advantage. Likewise, if we try to preserve the states by copying,
we need a quadratic number of ancilliary qubits.

Suppose we randomly choose θ ∈ [0, 2π]. There is a 50% chance that θ
within 45 degrees of the y-axis. We can see this by cutting the circle into four
equal parts using two diagonal lines, y = x and y = −x. If θ is in the north or
south cone, then sin2(θ) ≥ 1

2 . This gives an overall chance of success of 25%.

So could we just choose t uniformly from 1 ≤ t ≤
√
N? The problem is

that if k ≥ N/2, which means α ≥ π
4 , then the number of iterations t we would

choose is less than one. This means we are really not sampling θ uniformly.
We fix this by guessing at the beginning. If α ≥ π

6 , our guess succeeds with
probability 1

4 , corresponding to k ≥ N/4. Now assume that 1√
N
≤ α ≤ π

6 ,

which corresponds to 1 ≤ k ≤ N
4 . We will choose t uniformly from 1 to

√
N
4 .

So what is the rotation t · 2α?
Suppose 2α = 2√

N
. Then θ ranges from 2√

N
to 1. Whereas if 2α = π

3 , then

t ranges from π
3 to

√
N π

6 .

4.7 Measurement

Any measurement of the properties of a quantum mechanical system must obey
certain strange rules, determined from experiment, that are not needed when

4.7. MEASUREMENT 81

measuring properties of classical systems. These restrictions are subsumed un-
der the heading, the Born Rule, named after Max Born from the University
of Göttingen (Born 1926). In quantum mechanics, observables, or properties
we can measure, are represented by Hermitian operators. Why would this be?
Thinking back to (Hardy 2001), we know that for an N -dimensional quantum
space, it takes N2 pieces of information to determine the outcome of a measure-
ment, which is exactly the number of free parameters in a Hermitian operator
on the space. We also know that only N outcomes can be distinguished by the
measurement, and these are identified with the N orthogonal eigenvectors of
the operator 1. Precisely, the Born Rule states that

1. the result of the measurement will be one of the eigenvalues λi of the
Hermitian operator A,

2. the probability of measuring a given eigenvalue λi will equal Tr(Piρ),
where Pi is the orthogonal projection onto the eigenspace of A corre-
sponding to λi and ρ is the density operator for the state, and finally
that

3. the system after the measurement will lie in the range of Pi.

In the simple case thatA has a non-degenerate, discrete spectrum, the eigenspaces
are one-dimensional, say spanned by φ̂i, so that

Tr(Piρ) = Tr
(
φ̂iφ̂
†
iρ
)

= φ̂†iρφ̂i.

If we are in a pure state ψ, then the density operator has rank one, and this
expression becomes

φ̂†iψψ
†φ̂i =

∣∣∣ψ†φ̂i∣∣∣2.
The naturalness of the Born Rule is questionable. Would other schemes work

just as well and be less artificial? Andrew Gleason settled this question when
he proved Gleason’s Theorem, which states that all assignments of probabilities
to unit vectors (or, equivalently, to the operators that project onto them) that
satisfy certain criteria take the form of applying the Born rule to some density
operator. First, we require that probabilities are associated with each unit vector
in the Hilbert space in such a way that they sum to one for any set of unit vectors
comprising an orthonormal basis. This is just an uncontroversial normalization.
Second, the probability associated with a unit vector is a function of the density
operator and the unit vector, and not of any additional information such as the
choice of basis for that vector or the order of measurements. This requirement
is called noncontextuality , and it is at the heart of the argument over no-go
theorems for hidden variables.

1If the operator has a continuous spectrum, we can still identify outcomes with a projection-
valued measure (find discussion of this and POVMs)

https://en.wikipedia.org/wiki/Born_rule
https://en.wikipedia.org/wiki/Gleason%27s_theorem

82 CHAPTER 4. QUANTUM ALGORITHMS

By hidden variable theory , we mean a deterministic theory which reproduces
the experimental results of quantum mechanics, but where the statistical nature
arises from our ignorance of other variables influencing the outcomes, not from
indeterminacy in the theory. Einstein and Bell both believed strongly that
the world works in this way. A no-hidden-variables theorem, or no-go theorem,
would like to show that these theories are impossible. However, we already know
that the hidden-variables theory of David Bohm reproduces all the results of
quantum mechanics. Thus the best we can hope for is to outlaw hidden-variable
theories which have certain characteristics, such as being local or noncontextual.

Noncontextuality, the idea that making a measurement should be indepen-
dent of the other measurements I make for a set of commuting operators, seems
reasonable on its face. However, Bell points out that when measuring A in
a set of commuting operators A,B,C, I would likely have a different experi-
mental setup than measuring A in A,F,G. In the most famous and successful
hidden variable theory, Bohmian mechanics, the theory is explicitly nonlocal
which makes it noncontextual. In (Mermin 1993), we summarizes the theory
beautifully

The wave function guides the particles like this: each particle obeys
a first order equation of motion specifying that its velocity is pro-
portional to the gradient with respect to its position coordinates
of the phase of the N -particle wave function, evaluated at the in-
stantaneous positions of all the other particles. It is the italicized
phrase which is responsible for the “hideous” non-locality whenever
the wave function is correlated. If the wave function factors then
the phase is a sum of phases associated with the individual particles
and the non-locality goes away.

The Bell-Kochen-Specker Theorem is a simple demonstration that, for some
collection of operators (or you can think of them as directions), there is no
assignment of probabilities that will preserve the summability and noncontex-
tuality conditions. Mermin has an elegant proof of this for a four dimensional
system. He also points out that noncontextuality can be converted to locality
by using a special input state. If the input is actually the tensor product state
consisting of two particles, which can then be separated by a space-like interval,
then the violation of noncontextuality is also a violation of locality, as he points
out in the quote above.

As (Hardy 2001) shows, a crucial difference between the quantum and clas-
sical settings is that the dimension of the our state space N is less than the
number of degrees of freedom K, in fact K = N2. Hardy shows that this is
a possible outcome of his axioms. The dimension N of the state space is the
maximum number of states that can be reliably distinguished from one another
in a single shot measurement. What this means is that we have a collection of
states {|ψi〉} and a set of commuting observables {Oi} such that each observable
will always pick out its corresponding state, so that we can do one measurement

4.8. THOUGHTS ON QUANTUM WEIRDNESS 83

and know for sure which state we had. We can state this formally as

〈ψi|Oi|ψi〉 = 1 (4.90)∑
i

Oi = 1 (4.91)

since the observables exhaust the space. Now

〈ψ1|ψ1〉 = 1

〈ψ1|
∑
i

Oi|ψ1〉 = 1∑
i

〈ψ1|Oi|ψ1〉 = 1

〈ψ1|O1|ψ1〉+
∑
i 6=1

〈ψ1|Oi|ψ1〉 = 1

1 +
∑
i 6=1

〈ψ1|Oi|ψ1〉 = 1

〈ψ1|Oi|ψ1〉 = 0∀i 6= 1√
Oiψ1 = 0

so that each observable must annihilate all other states. Suppose we decompose
|ψ2〉 = α |ψ1〉 + β |φ〉 where |φ〉 is orthogonal to |ψ1〉 and |alpha|2 + |β|2 = 1.
Now if |ψ1〉 is not orthogonal to |ψ2〉 then |beta| < 1. However, this is a problem
since

〈ψ2|O2|ψ2〉 = |β|2 〈φ|O2|φ〉 (4.92)

≤ |β|2 (4.93)

< 1 (4.94)

which contradicts our assumption that this measurement would succeed with
probability one. This means that only orthogonal states can be reliably distin-
guished this way, and is a consequence of the linearity of measurement.

4.8 Thoughts on Quantum Weirdness

It may not be the fact that a thing can be in a superposition of states that
is weird. It sounds weird if your states are “alive” and “dead”, but it sounds
perfectly normal if you are in a superposition of red and blue (purple). Our
common experience is filled with objects in a mixed state. The weird thing
is that when I make a certain measurement of this thing, I can only get out
one of the initial states, red or blue, but not purple. However I could make
a different measurement and only get purple or cyan, and not red or blue.
Thus it seems that the structure of the theory is not weird, it’s the act of

84 CHAPTER 4. QUANTUM ALGORITHMS

measurement. In addition, Hardy argues (Hardy 2001) that this superposition
is really a consequence of demanding continuity among the pure states.

Measurement is not really a single act, since quantum systems “measure”
themselves all the time by interacting with other quantum systems. As long
as we can fully describe the composite system with quantum mechanics, it’s
not a “measurement”. Really, it seems that measurement is the act of bringing
a quantum system into equilibrium with another very large quantum system,
which destroys correlations it might have had with other systems. I think this is
“decoherence”. So the question is, how can this kind of equilibration eliminate
all states but the eigenstates of the operator. Suppose the basis states are
eigenfunctions of a quantum operator, and the decoherence process involves
applying that operator over and over again until we asymptote to fixed point.
This kind of power iteration would drive the system to the largest eigenvector
represented in the initial state. The analogy is not perfect, since we would need
to drive the system to some state depending on the amplitude of that basis
vector, but this kind of process could produce the weird behavior of “collapsing”
the linear combination to a single basis state.

4.9 Problems

Problem IV.1 QALA 7.1

Problem IV.2 QALA 7.4

Problem IV.3 QALA 7.5

Problem IV.4 QALA 7.6

Problem IV.5 QALA 8.1

Problem IV.6 QALA 8.2

Problem IV.7 QALA 8.4

Problem IV.8 QALA 9.1

Problem IV.9 QALA 9.2

Problem IV.10 QALA 13.1

Problem IV.11 QALA 13.2

Problem IV.12 QALA 13.3

REFERENCES 85

Problem IV.13 QALA 13.5

References

Deutsch, David and Richard Jozsa (1992). “Rapid solution of problems by quan-
tum computation”. In: Proceedings of the Royal Society of London. Series
A: Mathematical and Physical Sciences 439.1907, pp. 553–558.

Born, Max (1926). “Zur Quantenmechanik der Stoßvorgänge”. In: Zeitschrift
für Physik 37.12, pp. 863–867. doi: 10.1007/BF01397477.

Hardy, Lucien (2001). “Quantum theory from five reasonable axioms”. In: eprint:
quant-ph/0101012.

Mermin, N. David (1993). “Hidden variables and the two theorems of John
Bell”. In: Reviews of Modern Physics 65.3, p. 803.

https://doi.org/10.1007/BF01397477
quant-ph/0101012

86 CHAPTER 4. QUANTUM ALGORITHMS

Chapter 5

Problem Solutions

5.1 Introduction

87

88 CHAPTER 5. PROBLEM SOLUTIONS

Index

n-ary Boolean function, 51
p-norm, 31

adjoint, 24
arthmetic intensity, 22

balanced functions, 71
basic operator, 54
Bell state, 11, 55, 73
Bell-Kochen-Specker Theorem, 82
binary Boolean function, 51
bit, 7, 50
bitwise Boolean function, 51
Boolean inner product, 51

Cauchy-Schwarz Inequality, 30, 61
characteristic set, 78
coherent superposition, 12
complementary projector, 35, 36

degrees of freedom, 8, 49
density matrix, 9
density operator, 11
dimension, 8, 49
Dirac notation, 7
direct sum, 36
dual space, 17

Einstein summation notation, 16

feasible, 54
Frobenius norm, 33, 39

Grover Oracle, 65, 80

Hölder Inequality, 31
Hermitian conjugate, 17, 24
hidden variable theory, 82

incoherent superposition, 12
inner product, 16
isometric, 32
isometry, 25

Kronecker delta, 16, 26
Kronecker product, 28

left stochastic matrix, 8, 32
linear combination, 17, 51
linearly independent, 17, 18

measurement, 10

no-hidden-variables theorem, 82
noncontextuality, 81
norm, 29

Oblique projectors, 37
observable, 10
observables, 81
one-shot experiment, 49
orthogonal, 17
orthogonal projector, 36

permutation matrix, 53
phase, 10
probability, 8
probit, 8, 50
pure state, 9, 12, 49

Quantum teleportation, 76
qubit, 50

ray, 10

sign basis, 58
solution smoothness, 79

89

90 INDEX

span, 17
spectral representation, 10
state, 8, 10, 49
Superdense coding, 76
superdense coding, 73
superposition, 17, 51

tensor product, 27
Toffoli gate, 53
trace, 33
transpose, 24
triangle inequality, 29

unary Boolean function, 51
unitary, 25

Vandermonde matrix, 19

	1 Introduction
	1.1 The Quantum Mechanical Setting

	2 Linear Spaces
	2.1 Definition
	2.1.1 Proofs
	2.1.2 Useful notation

	2.2 Inner Products, Orthogonality, and Dual Spaces
	2.3 Bases
	2.3.1 Orthogonalization

	2.4 Linear Operators
	2.4.1 Expansion in a Basis
	2.4.2 Unitary operators
	2.4.3 Block Matrices

	2.5 Tensor Product Spaces
	2.6 Norms
	2.6.1 Vector Norms
	2.6.2 Matrix norms

	2.7 Projectors
	2.8 The Singular Value Decomposition
	2.8.1 Definition of the SVD
	2.8.2 Proof that the SVD exists
	2.8.3 Bases and Unitary Operators

	2.9 Eigenproblems
	2.10 Problems

	3 Boolean and Hilbert Spaces
	3.1 Boolean Functions
	3.2 Matrix Representations
	3.3 Hadamard Matrices
	3.4 Measuring Entanglement
	3.5 Problems

	4 Quantum Algorithms
	4.1 Simple Examples
	4.1.1 Create superposition
	4.1.2 Create entanglement

	4.2 Deutsch's Algorithm
	4.3 Deutsch-Jozsa Algorithm
	4.4 Superdense coding
	4.5 Quantum Teleportation
	4.6 Grover's Algorithm
	4.6.1 Grover's Algorithm for any number of solutions

	4.7 Measurement
	4.8 Thoughts on Quantum Weirdness
	4.9 Problems

	5 Problem Solutions
	5.1 Introduction

	Index

