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1. Introduction. Linear algebra contains many geometric ideas that carry over
from Euclidean space \BbbR 3 to any complete linear space V with an inner product \langle \cdot , \cdot \rangle .
One such idea is orthogonality. We say that two vectors a and b in V are orthogonal
if \langle a, b\rangle = 0, and we write this as a \bot b to suggest intuitively that the vectors are
perpendicular to each other. The norm \| a\| =

\sqrt{} 
\langle a, a\rangle measures the length of a

vector a. Then the Pythagorean theorem is true in this linear space: if a \bot b, then
\| a+ b\| 2 = \| a\| 2 + \| b\| 2. (See the books [1], [2], [3] for linear space axioms.)

Orthogonality makes a list of several vectors easier to work with. It disentangles
them by making the inner product zero for every pair of distinct vectors. Consider a
list of linearly independent vectors a1, a2, . . . , an that span a subspace A in V. (Such
a list is called a basis of A.) To orthogonalize them, we use the classic Gram--Schmidt
process (we cover this in detail in the next section). It transforms the original list
into an orthogonal list, \=a1, \=a2, . . . , \=an, such that \=aj \bot \=ak for every pair with j \not = k,
and \langle \=ak, \=ak\rangle = \| \=ak\| 2 = 1.

The new list spans the same subspace A. This means that any vector b in A is
equal to a linear combination of the vectors, that is, b =

\sum n
k=1 \alpha k\=ak for some scalar

combining coefficients \alpha k. Now, using orthogonality, we can take the inner product of
each \=aj with both sides of the equality and easily find that \alpha j = \langle \=aj , b\rangle . Orthogonality
gives us the simple formula

b =

n\sum 
k=1

\langle \=ak, b\rangle \=ak.(1.1)

How could we express any vector b in A as a linear combination of the original,
unorthogonalized vectors? It might sound like a messy job, but it is again surprisingly
easy, this time using orthogonality in a new way. We transform the original list into
a biorthogonal list, \^a1, \^a2, . . . , \^an, such that \^aj \bot ak for every pair with j \not = k, and
\langle \^ak, ak\rangle = 1. The new list still spans the subspace A. We call it the dual list. It
complements the original (primal) list, rather than replacing it.

Since b is any vector in A, we can expand it in terms of the original basis as
b =

\sum n
k=1 \alpha kak for some scalar combining coefficients \alpha k. What are the coefficients?

Using biorthogonality, we can take the inner product of each dual vector \^aj with both
sides of the equality and easily find that \alpha j = \langle \^aj , b\rangle . Biorthogonality gives us a
second simple formula,

b =

n\sum 
k=1

\langle \^ak, b\rangle ak.(1.2)

This paper is about how to compute the dual list for any given list of vectors. It
turns out that the Gram--Schmidt method produces orthogonal vectors that belong
to successive dual (biorthogonal) lists. To handle the general case of independent or
dependent vectors, we build the theory of the dual on two axioms. General purpose
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A GENERALIZED DUAL TRANSFORM 1033

versions of the dual transform methods result. Worked examples and figures are given
to illustrate the theory and methods.

Because the dual list is an abstract linear-algebraic entity, it has a wide spectrum
of applications and it enables algebraic computing methods. Applications include
(pseudo)inverting a matrix, solving linear least squares problems, (bi)orthogonalizing
polynomials [1], [2], [3], and operating on frames [4]. The dual is also used in crys-
tallography [5], beamforming for antenna arrays [6], [7], and general relativity [8],
[9].

Here is the outline of the rest of this paper. We begin with the important special
case of independent vectors in section 2 and find a new butterfly identity and parallel
linear-space algorithm for the dual transform. In section 3, we give linear-space axioms
for the general dual and show their equivalence to the axioms of Moore and Penrose for
the pseudoinverse of a matrix. Two kinds of linear operators, orthogonal projectors
P and protractors Q, are our tools for developing the theory of the dual list in section
4. A highlight here is finding a hidden stereographic projection when we update the
generalized biorthogonality coefficients. This geometric insight yields new facts about
their analysis. Linear-space recipes to compute the generalized dual are provided in
section 5, with two appendices, including a general (and reversible) Gram--Schmidt
process, a vector version of the Greville process, and a general parallel butterfly
process. As an example, we show that the Greville process implies a complete Levinson
recursion to solve a linear prediction problem.

2. The Dual Transform of Independent Vectors. Let's begin with the dual
transform of a list or sequence of independent vectors, a1, a2, . . . , an in V, an inner
product space with a scalar field consisting of the complex numbers \BbbC [1], [3]. An
example is the space \BbbC m, with the complex-valued inner product of any two vectors
c, d \in \BbbC m given by \langle c, d\rangle =

\sum m
k=1 c

\ast 
kdk. Here z\ast denotes the complex conjugate of

z \in \BbbC . Everything in this paper reduces in an obvious manner for scalars in the field
of real numbers \BbbR .

Let A = span\{ a1, . . . , an\} be the subspace of V spanned by all the linear combi-
nations of our list of independent vectors. We define the dual transform of the given
list as the complementary list \^a1, \^a2, . . . , \^an \in A that has the biorthogonal relations

(2.1) \langle \^aj , ak\rangle = \delta jk

for j, k = 1, . . . , n, where \delta jk is 1 when j = k, and 0 otherwise [1], [3].
There is an interesting geometric way to construct the dual list, using orthogonal

complements and orthogonal projections. Let's review these concepts. The orthogonal
complement of a set A in V is defined as the set A\bot = \{ v \in V : v \bot a for all a \in A\} .
If A is a linear subspace of V, then A\bot is a subspace too, and we have A\cap A\bot = \{ 0\} .
An example we can visualize is in \BbbR 3. Choose a vector v \not = 0, and let A be the one-
dimensional subspace span\{ v\} . Then A\bot is the plane of vectors orthogonal to its
normal vector v and passing through the origin (0), a two-dimensional subspace.

Given any vector v in a linear space V of dimension 3 or higher, there are lots of
right triangles with one leg a in A and the other leg w perpendicular to a, and with
hypotenuse (sum of the legs) equal to v. That is, we can decompose v as v = a+ w,
w \bot a, in many ways. But we have not required w \bot A, that is, w \in A\bot . A
remarkable fact is that we can decompose every vector v as v = a + w for unique
a \in A, w \in A\bot . Only one right triangle with one leg in A and one leg in A\bot can be
built on a given hypotenuse v. To prove this, we use the orthogonal basis \=a1, \=a2, . . . , \=an
of the subspace A from formula (1.1) and verify that the unique a \in A and w \in A\bot 
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1034 L. P. WITHERS, JR.

that sum to v are actually given by (see [1])

a =

n\sum 
k=1

\langle \=ak, v\rangle \=ak, w = v  - 
n\sum 

k=1

\langle \=ak, v\rangle \=ak.(2.2)

Now we are ready to define the orthogonal projector P\bfA by (see [3])

P\bfA (a+ w) = a for all a \in A, for all w \in A\bot .(2.3)

P\bfA is a linear operator that projects vectors orthogonally onto a subspace A of V.
Clearly it comes as a pair with the projector onto the orthogonal complement, P\bfA \bot =
I - P\bfA , where I is the identity operator. For we have P\bfA \bot (a+w) = w = (a+w) - a =
(I  - P\bfA )(a+ w).

An orthogonal projector is characterized by two properties. First, it is disposable
or idempotent in that after using it once, you can throw it away; using it again has
no effect: P 2

\bfA = P\bfA . This is true because P\bfA (P\bfA (a+w)) = P\bfA (a) = a = P\bfA (a+w).
The second property is that it is self-adjoint or Hermitian: P \ast 

\bfA = P\bfA . The adjoint
O\ast of a linear operator O is defined in terms of exchanging their roles inside inner
products, such that \langle O\ast x, y\rangle = \langle x,Oy\rangle for all x, y \in V. A projector P\bfA is its own
adjoint, because for any v = a + w, x = a\prime + w\prime , we have \langle P\bfA x, v\rangle = \langle a\prime , a + w\rangle =
\langle a\prime , a\rangle = \langle a\prime + w\prime , a\rangle = \langle x, P\bfA v\rangle . For proofs of the converse, that the two properties
imply that P is an orthogonal projector, see [1], [2], [3].

Now back to the dual transform. We get a little technical and consider subspaces
of A spanned by all but one of the independent vectors a1, a2, . . . , an. We leave out
the jth vector and define A(j) = span\{ a1, . . . , aj - 1, aj+1, . . . , an\} for j = 1, . . . , n.
Then, as promised, here is the geometric formula for the dual transform \{ \^aj\} nj=1 of
the vectors \{ aj\} nj=1 (see [3]):

(2.4) \^aj =
P\bfA \bot 

(j)
aj

\| P\bfA \bot 
(j)
aj\| 2

.

Geometrically, each dual vector is just the component of the original vector aj normal
to the subspace spanned by the rest of the vectors, with a scale factor. Figure 1 depicts
this for three vectors in \BbbR 3. The dual vector \^a1 is the projection p1 = Pspan\{ a2,a3\} \bot a1,
scaled by dividing by \| p1\| 2. Scaling the projections this way, we can demonstrate
that they fulfill the biorthogonal relations (2.1),

\langle \^aj , ak\rangle = \langle P\bfA \bot 
(j)
aj/\| P\bfA \bot 

(j)
aj\| 2, ak\rangle = \langle aj , P\bfA \bot 

(j)
ak\rangle / \| P\bfA \bot 

(j)
aj\| 2 = \delta jk,

since P\bfA \bot 
(j)
ak = 0 for j \not = k, and otherwise, for j = k, \langle aj , P\bfA \bot 

(j)
ak\rangle = \langle aj , P 2

\bfA \bot 
(j)

aj\rangle =
\langle P\bfA \bot 

(j)
aj , P\bfA \bot 

(j)
aj\rangle = \| P\bfA \bot 

(j)
aj\| 2.

First we will show that the forward and inverse transforms are the same. We use
the fact that biorthogonality is a unique symmetric relation.

Lemma 1. Let a1, . . . , an be linearly independent vectors that span a subspace
A \subseteq V. If, for j, k = 1, . . . , n, bj and ck are in the subspace A and there are
biorthogonal relations \langle ak, bj\rangle = \delta kj, \langle bj , ck\rangle = \delta jk, then ck = ak.

Proof. Since \{ ai\} ni=1 is a basis of A, for each k we have ck =
\sum n

i=1 \alpha ikai for some
scalars \alpha ik. Then \delta jk = \langle bj , ck\rangle =

\sum n
i=1 \alpha ik\langle bj , ai\rangle = \alpha jk. Therefore ck = ak.
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A GENERALIZED DUAL TRANSFORM 1035

a2

a3

a1
p1

a1^

Fig. 1 Geometry of the dual transform. For n = 3 independent vectors a1, a2, a3 in \BbbR 3, one dual
vector \^a1 is shown. It is the component p1 of a1 orthogonal to the subspace span\{ a2, a3\} ,
divided by \| p1\| 2. The other two dual vectors, \^a2 and \^a3, are constructed similarly.

This implies that the dual transform is reflexive.

Theorem 2. For k = 1, . . . , n, ak = \^\^ak.

Proof. By definition the dual vectors \^ak \in A = span\{ ak\} nk=1 and satisfy the

biorthogonal relations (2.1). Similarly, \^\^ak \in span\{ \^ak\} nk=1, so
\^\^ak \in span\{ ak\} nk=1 and

\langle \^aj , \^\^ak\rangle = \delta jk. The conclusion follows by Lemma 1.

We also have span\{ \^ak\} nk=1 = span\{ ak\} nk=1, since span\{ ak\} = span\{ \^\^ak\} \subseteq span\{ \^ak\} .
Thus the \^ak are independent and may be called the dual or reciprocal basis of the
subspace A with basis \{ ak\} nk=1.

We have defined a concrete dual basis, one that occupies the same subspace A as
the original basis. A more abstract dual basis lives in the dual space \^A of all linear
mappings \alpha of vectors in A into scalars. Then the dual basis for \^A is defined by the

mappings \^\alpha k(aj) = \delta jk (biorthogonal relations) and
\^\^A is isomorphic to A [1].

For independent vectors a1, . . . , an \in \BbbC m,m \geq n, the dual transform can be
thought of as a matrix transform instead of a vector transform. It maps the column

matrix A = [a1
...a2

... \cdot \cdot \cdot 
...an] \mapsto \rightarrow \^A = [\^a1

...\^a2
... \cdot \cdot \cdot 

...\^an]. The conjugated dual vectors turn
out to be the rows of the Moore--Penrose pseudoinverse A+; that is, A+ = ( \^A)\ast . We
will cover the relationship of the dual transform to matrix inversion in general in
section 3.

We now turn to the relationship of the dual transform to Gram--Schmidt orthog-
onalization.

Gram–Schmidt Orthogonality. The basic principle of orthogonality in the
Gram--Schmidt process is expressed by an eponymous identity for orthogonal pro-
jectors [10]. From this identity, we can derive the Gram--Schmidt process and show
that the orthogonal vectors it generates as its list of given vectors expands are actu-
ally dual vectors. Other interesting facts about dual vectors of a set of independent
vectors also come from the Gram--Schmidt identity, leading to a parallel butterfly
process for computing the whole dual transform.

Theorem 3 (Gram--Schmidt identity). For the orthogonal projectors as defined
above,

P\bfA \bot = P\bfA \bot 
(j)

 - PP
\bfA \bot 

(j)
aj
.(2.5)
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1036 L. P. WITHERS, JR.

Proof. For any subspace H of V decomposed into orthogonal complements M
and N, P\bfH = P\bfM +P\bfN [3]. A special case of this is an identity to inflate the subspace
H of a projector by a vector g,

Pspan\{ \bfH ,g\} = P\bfH +span\{ P
\bfH \bot g\} = P\bfH + PP

\bfH \bot g.

Subtracting each side from the identity operator I gives another version,

Pspan\{ \bfH ,g\} \bot = P\bfH \bot  - PP
\bfH \bot g.

Now the projector on the left-hand side and the projector subtracted on the right-hand
side project onto orthogonal subspaces, since the identity implies Pspan\{ \bfH ,g\} \bot (P\bfH \bot g)
= 0. The identity (2.5) follows when we put H = A(j) and g = aj .

The right-hand term of the Gram--Schmidt identity (2.5) appears a bit convoluted,
but it is only a projector onto the span of a single vector (namely, the projection
pj = P\bfA \bot 

(j)
aj). What makes the Gram--Schmidt identity so valuable is that this is a

projector we know how to compute! The formula for the orthogonal projection of a
vector a onto the span of one vector v \not = 0 is

Pva =
\langle v, a\rangle 
\| v\| 2

v.(2.6)

This formula is easy to derive, for we have Pva = \alpha v for some scalar \alpha and a - \alpha v \bot v.
How do we orthogonalize a list of several independent vectors a1, a2, . . . , an? An

immediate answer in the language of orthogonal projectors is to write down the list

a1, Pspan\{ a1\} \bot a2, Pspan\{ a1,a2\} \bot a3, . . . , Pspan\{ a1,...,an - 1\} \bot an.(2.7)

Note that this is an orthogonal list, because each successive projection is orthogonal
to all of its predecessors. Let us label the projections as pk = P\bfA \bot 

k - 1
ak, where the

subspaces are denoted by Ak = span\{ a1, . . . , ak\} , k = 1, . . . , n. Now we can rescale
this list (2.7) by dividing each vector pk by its squared norm \| pk\| 2. Then, by our
earlier geometric formula (2.4), pk/\| pk\| 2 = \^akk, the last dual vector in the dual list of
a1, . . . , ak. The rescaled orthogonal list (2.7) is a sequence of dual vectors,

\^a11, \^a
2
2, . . . , \^a

n
n.(2.8)

The dual vectors \^akk are an orthogonal basis for the subspace A spanned by the ak's.
An easy induction shows that Ak = span\{ a1, . . . , ak\} = span\{ \^a11, . . . , \^akk\} . Initially
(for k = 1) we have \^a11 = a1/\| a1\| 2, whose span equals that of a1. By hypothesis,
for any k  - 1, Ak - 1 can be expressed as either kind of span. Because the projection
pk = P\bfA \bot 

k - 1
ak = (I  - P\bfA k - 1

)ak = ak  - P\bfA k - 1
ak, we evidently have \^akk \propto pk \in 

span\{ a1, . . . , ak\} and ak \in span\{ \^a11, . . . , \^akk\} . So the two spans contain each other,
and must be equal.

How can we compute the orthogonal list (2.8)? This is where the Gram--Schmidt
identity (2.5) goes to work. Before we rescale them as dual vectors \^akk, the projections
pk in this list (2.8) are pk = P\bfA \bot 

k - 1
ak = ak  - P\bfA k - 1

ak. The projector P\bfA k - 1
can be

expressed by the formula

P\bfA k - 1
=

k - 1\sum 
j=1

\langle \^ajj , \cdot \rangle pj .(2.9)
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A GENERALIZED DUAL TRANSFORM 1037

We can prove (2.9) by induction. For k = 1, we have P\emptyset = 0. Assume (2.9) is true
for k  - 1. Then we must show it is true for the case k. Subtracting both sides of the
Gram--Schmidt identity (2.5) from the identity operator I tells us that we can replace
the projector P\bfA k - 1

by P\bfA k - 2
+Ppk - 1

. Also, from our formula (2.6) to project onto a

single vector, we have Ppk - 1
= \langle pk - 1, \cdot \rangle pk - 1/\| pk - 1\| 2 = \langle \^ak - 1

k - 1, \cdot \rangle pk - 1. This completes
the induction.

Now we substitute (2.9) into pk = ak  - P\bfA k - 1
ak, to get the formula

pk = ak  - 
k - 1\sum 
j=1

\langle \^ajj , ak\rangle pj .(2.10)

This gives us a way to compute the orthogonal list (2.8) from scratch: the Gram--
Schmidt orthogonalization process. At each step, it projects a new vector to make it
orthogonal to its predecessors [1], [2]. In fact, it computes one dual vector at each
step, using the original linearly independent vectors a1, a2, . . . , an:

Gram--Schmidt process

\^a11 = a1/\| a1\| 2
for k = 2, . . . , n

pk = ak - 
\sum k - 1

j=1 \~\alpha jkpj , where \~\alpha jk = \langle \^ajj , ak\rangle 
\^akk = pk/\| pk\| 2

end

In this version of the process, the projected components pk are not scaled as
usual by their inverse norms to make them unit vectors. Instead, they are scaled by
their inverse squares as in formula (2.4), so that each \^akk is the last dual vector in
the dual transform of the first k vectors a1, . . . , ak. This scaling convention has the
virtue that it preserves information about the vector lengths, rather than erasing it
as normalizing the vectors does. The Gram--Schmidt process becomes reversible. To
recover the original vectors, one runs the process again for the dual vectors. (Taking
the dual of the dual returns the original vector ak at each step.)

Example 1. The Gram--Schmidt process can orthogonalize the list of polynomials
x0, x1, x2, . . . , xn, considered as functions of x defined over the closed interval [ - 1, 1].

We choose the inner product \langle f, g\rangle =
\int 1

 - 1
f(x)g(x) dx for integrable functions f, g.

Then the Gram--Schmidt process produces the orthogonal polynomials P0(x), P1(x),
P2(x), . . . , Pn(x), named for Legendre. (Together with their derivatives, they are the
main ingredients for constructing the spherical harmonics used in physics [11].) These
are the first few Legendre polynomials, scaled as dual polynomials:

\^a11 = 1
2 \cdot 1 = 1

2 \cdot P0(x),

\^a22 = 3
2 \cdot x = 3

2 \cdot P1(x),

\^a33 = 15
4 \cdot 1

2 (3x
2  - 1) = 15

4 \cdot P2(x),

\^a44 = 35
4 \cdot 1

2x(5x
2  - 3) = 35

4 \cdot P3(x),

\^a55 = 315
16 \cdot 1

8 (35x
4  - 30x2 + 3) = 315

16 \cdot P4(x).

Next we show that biorthogonal relations are fulfilled uniquely by the dual trans-
form given by formula (2.4).
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1038 L. P. WITHERS, JR.

Theorem 4. Suppose \{ aj\} nj=1 span a subspace A of V. If, for a vector bk \in A,
\langle aj , bk\rangle = \delta jk for j = 1, . . . , n, then bk = \^ak, and ak is independent of the other
vectors a1, . . . , ak - 1, ak+1, . . . , an.

Proof. From the biorthogonal relations, bk \not = 0 (otherwise it would nullify them)
and P\bfA (k)

bk = 0. Since bk \in A, P\bfA bk = bk. Substituting these two expressions

in the Gram--Schmidt identity, we find bk = PP
\bfA \bot 

(k)
ak
bk =

\bigl( \langle pk,bk\rangle 
\langle pk,pk\rangle 

\bigr) 
pk, where pk =

P\bfA \bot 
(k)

ak \not = 0. This implies that ak is independent of the other vectors, i.e., that it

does not belong to A(k). Since an orthogonal projector is self-adjoint, \langle pk, bk\rangle =

\langle P\bfA \bot 
(k)

ak, bk\rangle = \langle ak, P\bfA \bot 
(k)

bk\rangle = \langle ak, bk\rangle = 1, so that bk =
\bigl( 

1
\langle pk,pk\rangle 

\bigr) 
pk = \^ak.

Another characterization of the dual vectors now follows.

Corollary 5. For each k, the vector bk with minimum norm \| bk\| , which satis-
fies the biorthogonal constraints \langle bk, aj\rangle = \delta kj for j = 1, . . . , n, is given uniquely by
bk = \^ak.

Proof. The minimum is attained for some vector, since the norm is continuous
over the closed subspace of vectors that satisfy the constraints. We will show that
a vector of minimum norm has to be in the subspace A. The conclusion will then
follow by Theorem 4.

Let b be any vector that satisfies the biorthogonal constraints. We may write it
as a sum b = b\| + b\bot , where b\| \in A and b\bot \bot A. Then \delta kj = \langle b, aj\rangle = \langle b\| , aj\rangle , so
b\| also satisfies the constraints. However (by the Pythagorean theorem), its norm is

less if b\bot \not = 0: \| b\| 2 = \| b\| \| 2 + \| b\bot \| 2 > \| b\| \| 2. Therefore a vector with smallest norm
must be in A.

To construct the dual list for a given list of several vectors, we must include new
vectors one at a time. When we introduce a new vector ak, this identity updates
the dual list. We let \^aj(k) denote the vector dual to aj in the dual transform of
a1, . . . , ak - 1, ak+1, . . . , an.

Theorem 6 (butterfly identity). Let aj , ak each be independent of \{ ai\} ni=1,i\not =j,k.
For j, k = 1, . . . , n, j \not = k,

\gamma \^ak = \^ak(j)  - \alpha \ast 
kj\^aj(k),(2.11)

\gamma \^aj = \^aj(k)  - \alpha \ast 
jk\^ak(j),

where \alpha jk = \langle \^aj(k), ak\rangle , \alpha kj = \langle \^ak(j), aj\rangle , and \gamma = 1 - \alpha \ast 
jk\alpha 

\ast 
kj \in [0.1].

Proof. Take the Gram--Schmidt identity, with ak left out for now. It separates
the projection onto the component of aj normal to the remaining vectors:

Pspan\{ ai ;i\not =k\} \bot = Pspan\{ ai ;i\not =j,k\} \bot  - Ppj(k)
,

where pj(k) = Pspan\{ ai ;i \not =j,k\} \bot aj . Now we use this Gram--Schmidt identity to project
ak, to find

pk = pk(j)  - \alpha jkpj(k),(2.12)

pj = pj(k)  - \alpha kjpk(j),

where the projection pk = Pspan\{ ai ;i \not =k\} \bot ak and the inner products are \alpha jk =

\langle pj(k)

\| pj(k)\| 2 , ak\rangle = \langle \^aj(k), ak\rangle and \alpha kj = \langle pk(j)

\| pk(j)\| 2 , aj\rangle = \langle \^ak(j), aj\rangle . The similar identity

D
ow

nl
oa

de
d 

01
/3

1/
23

 to
 6

9.
12

.2
3.

15
1 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A GENERALIZED DUAL TRANSFORM 1039

below (2.12) follows by exchanging the roles of aj and ak. Note that pk is orthog-
onal to pj(k). Taking squared norms of both sides of (2.12), using the Pythagorean
theorem, we find

\| pk\| 2 =
\bigm\| \bigm\| pk(j)\bigm\| \bigm\| 2  - | \alpha jk| 2 \cdot 

\bigm\| \bigm\| pj(k)\bigm\| \bigm\| 2.(2.13)

The same projection, normal to the span of all the vectors except aj and ak, operates
inside both inner products \alpha jk and \alpha kj . Using self-adjointness of the projector, it is
easy to check that

\alpha \ast 
kj

\bigm\| \bigm\| pk(j)\bigm\| \bigm\| 2 = \alpha jk

\bigm\| \bigm\| pj(k)\bigm\| \bigm\| 2.(2.14)

Substituting the left side of (2.14) directly into (2.13) gives

\| pk\| 2 =
\bigm\| \bigm\| pk(j)\bigm\| \bigm\| 2 \bigl( 1 - \alpha \ast 

kj\alpha 
\ast 
jk

\bigr) 
.(2.15)

(This implies \gamma = 1  - \alpha \ast 
kj\alpha 

\ast 
jk \geq 0, which for n = 2 vectors is the Cauchy--Schwarz

inequality.) Dividing both sides of (2.12) by corresponding sides of (2.15), multiplying
both sides of the result by \gamma , and substituting (2.14) again, we have the butterfly
identities (2.11). The lower identity of the pair comes from exchanging j and k. We
will prove the bounds on \gamma in the general case in section 5; it is nonzero when all the
vectors are independent.

Butterfly

âral 
^

ar
^Ral

^L

(a) The vector butterfly updates at one pro-
cessing node from its left (L) and right (R)
parent nodes.

234 412

123

341

3 1

2

4

(b) Parallel processor configuration for the butter-
fly dual transform.

Fig. 2 Butterfly dual process.

A parallel process for the dual transform can be built using butterfly identities
on a cylinder of n rings of n processors each, shown for n = 4 in Figure 2(b). Each
processing node is labeled by the indices of the list of vectors whose dual vectors
it computes. For example, the node labeled 1234 computes the left and right dual
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1040 L. P. WITHERS, JR.

vectors of its dual list, \^a41 and \^a44, but not the rest of the dual list; i.e., in this case, \^a42
and \^a43 are left out. Only the left and right dual vectors of the node's own dual list
are actually known and updated in each node. We begin with just one vector in each
of the n nodes at the top level. (It serves initially as both the left and right vector of
each node.) As we go from one level down to the next, the lists for the left and right
parent nodes merge to form a new list. Each node on the next level then has a list
with one more vector than either of its parent nodes.

In each node, the left and right outer dual vectors \^a\ell and \^ar are computed from
those in the left and right (L and R) parent nodes in a butterfly pattern (shown in
Figure 2(a)):

\gamma \^a\ell = \^aL\ell  - \alpha L\ast 
\ell \^aRr ,

\gamma \^ar = \^aRr  - \alpha R\ast 
r \^aL\ell ,(2.16)

where \gamma = 1 - \alpha L\ast 
\ell \alpha R\ast 

r , and the inner products \alpha L
\ell = \langle \^aL\ell , ar\rangle and \alpha R

r = \langle \^aRr , a\ell \rangle . This
butterfly is the pair of vector differences from Theorem 6 for j, k = \ell , r. Here is the
process for the case that a1, . . . , an are linearly independent:

Butterfly dual process

for node j = 1, . . . , n ! initialize the first level
\^aj = aj/\| aj\| 2

end
for level k = 2, . . . , n

for each node
\alpha L
\ell = \langle \^aL\ell , ar\rangle 

\alpha R
r = \langle \^aRr , al\rangle 

\gamma = 1 - \alpha L\ast 
\ell \alpha R\ast 

r

\^a\ell = \gamma  - 1
\bigl( 
\^aL\ell  - \alpha L\ast 

\ell \^aRr
\bigr) 

! butterfly for left,right dual vectors
\^ar = \gamma  - 1

\bigl( 
\^aRr  - \alpha R\ast 

r \^aL\ell 
\bigr) 

end
end

At each level, each node inherits its left index \ell from its left parent node, and its right
index r from its right parent node. The vectors (primal and dual) with both of these
indices are also inherited, but no other vectors are needed. The butterfly identity
updates the dual vectors \^a\ell , \^ar in every node. These two vectors belong to the dual
transform of the primal list a\ell , . . . , ar. For each node in level k, the list has length
k, though only the two outer dual vectors are ever used or known inside the node.
The butterfly net illustrated in Figure 2(b) acts as a kind of distributed, collective
memory. No node has full information about its own dual list, but as a group, the
nodes are able to compute a complete dual list.

At the bottom level, the end result is two copies of every vector of the dual
transform of the original set of vectors. Thus, in particular, a matrix of full column
rank can be inverted merely by linearly combining pairs of vectors! The next example
will show how this works.

Example 2. We take a 3\times 3 Hilbert matrix [2],

A =

\left[  1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5

\right]  .
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A GENERALIZED DUAL TRANSFORM 1041

To invert this matrix, using the butterfly recipe, we begin with its column vectors,
labeled a1, a2, a3, so that we can write A = [a1 a2 a3]. We can get the dual list of
vectors in three steps or levels (n = 3). Since the given matrix A has all rational en-
tries, we can compute using rational arithmetic. (Here the MATLAB Symbolic Math
Toolbox was used.) Then our answers are exact at every step. No approximations or
convergence are necessary.

Level 1 (initial level):

\| a1\| 2 = 49/36, \| a2\| 2 = 61/144, \| a3\| 2 = 769/3600

\^a1 =

\left[  36/49
18/49
12/49

\right]  , \^a2 =

\left[  72/61
48/61
36/61

\right]  , \^a3 =

\left[  1200/769
900/769
720/769

\right]  .

Level 2:

\alpha 1, \alpha 2 = 27/49, 108/61, \alpha 2, \alpha 3 = 216/305, 1080/769, \alpha 3, \alpha 1 = 1890/769, 27/70

\gamma 12 = 73/2989, \gamma 23 = 253/46909, \gamma 31 = 40/769

\^a1, \^a2 = \^a2, \^a3 = \^a3, \^a1 =\left[    
252
73

 - 198
73

 - 240
73

\right]    ,

\left[    
 - 360
73

408
73

468
73

\right]    ,

\left[    
3528
253

 - 1968
253

 - 3420
253

\right]    ,

\left[    
 - 4560
253

3060
253

5040
253

\right]    ,

\left[    
 - 33
7

36
7

45
7

\right]    ,

\left[    
1251
490

 - 396
245

 - 219
98

\right]    .

Level 3:

\alpha 1, \alpha 3 = \alpha 2, \alpha 1 = \alpha 3, \alpha 2 = 27/28, 378/365
 - 27/146, - 1350/253, 1404/253, 351/1960,

\gamma 13 = 244/18469, \gamma 21 = 769/123970, \gamma 32 = 1/730

\^a1, \^a3 = \^a2, \^a1 = \^a3, \^a2 =\left[  9
 - 36
30

\right]  ,

\left[  30
 - 180
180

\right]  ,

\left[   - 36
192
 - 180

\right]  ,

\left[  9
 - 36
30

\right]  ,

\left[  30
 - 180
180

\right]  ,

\left[   - 36
192
 - 180

\right]  .

Here we end up with two copies of each dual vector, as expected. To form the inverse
matrix, all that remains is to transpose the three dual vectors and stack them as the
rows of a new matrix:

A - 1 =

\left[  \^at1
\^at2
\^at3

\right]  =

\left[  9  - 36 30
 - 36 192  - 180
30  - 180 180

\right]  .

It is pleasant that, after all the fractions, the final results in this example are integers.

3. Axioms for the Dual Transform. To generalize the dual transform to any
list of vectors, we will adopt two linear-space axioms. First we express them (in
Theorem 7) in a matrix-operator form, to show their equivalence with the axioms
of Moore and Penrose for the pseudoinverse A+ of any m \times n matrix A with real
or complex entries, whose columns may be linearly dependent [13], [14], [15], [16].
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1042 L. P. WITHERS, JR.

The dual matrix is the adjoint (conjugate transpose) of the pseudoinverse; that is,
\^A = (A+)\ast .

It is well known that the pseudoinverse solves the linear least squares problem.
Given a vector b of observed data and a matrix A to model the data, this problem is
to find the closest point to b in the subspace A = Im A \subset \BbbC n, the image or range of
A, the span of its columns. The squared distance or error \| b - a\| 2 is minimum at the
point a = A\alpha for \alpha = A+b. At this point a, we also have b - a \bot A [2], [3]. Moreover,
\alpha is the unique solution with minimum 2-norm. In section 4, we solve this problem
in the setting of a linear vector space.

A robust numerical recipe to compute the matrix A+ in floating point arithmetic is
based on the singular value decomposition (SVD) ofA [2], [12]. Numerical experiments
indicate that the recipes in this paper are as accurate as the SVD-based method for
pseudoinverses of random complex matrices and of matrices whose column vectors
are points on an m-dimensional torus (the set of points of the form (ei\theta 1 , . . . , ei\theta m)t,
with \theta 1, . . . , \theta m \in [0, 2\pi )). (For example, the phased response at one time instant of
an array of m isotropic radio antennas to a unit-amplitude plane wave arriving from
a given direction lies on this torus [7].)

Two conditions that characterize A+ in general are A+A = PIm A+ and AA+ =
PIm A. These two Moore conditions are easily seen to be equivalent to the four Penrose
conditions A+AA+ = A+, AA+A = A, (A+A)\ast = A+A, and (AA+)\ast = AA+ [19].

From the Penrose conditions, we also have A+A = PkerA\bot , since A+Ak = 0 when
and only when Ak = AA+Ak = 0; that is, k is in the kernel or nullspace of A, ker
A. Note that for A of full column rank, its kernel is trivial (A only maps 0 to 0), so
we have A+A = I. Thus A+ is a left inverse of A. In terms of the dual matrix, this
becomes \^A\ast A = I, which is the same as biorthogonality (2.1).

To characterize the dual transform in an inner product space, we adopt two
new axioms. We give them in matrix form first, to relate them to the axioms for
the pseudoinverse. A and its dual transform \^A have the same kernels and images,
respectively, mapped to each other in a strongly symmetric way.

Theorem 7. The Moore--Penrose conditions are equivalent to the following two
conditions:

1. A\alpha = 0 if and only if \^A\alpha = 0.
2. A\alpha 1 = b and \^A\alpha 2 = b either both have solutions, given by \alpha 1 = \^A\ast b and

\alpha 2 = A\ast b, or else neither has a solution.
It follows from these conditions that when the solutions in condition 2 exist, they

are the unique solutions orthogonal to ker A. They are related as \alpha 1 = \^A\ast \^A\alpha 2 and
\alpha 2 = A\ast A\alpha 1.

Proof. The Penrose conditions imply conditions 1 and 2. To show condition 1, if
\^A\ast (A\alpha ) = A\ast ( \^A\alpha ) = 0, then A \^A\ast (A\alpha ) = A\alpha = 0 and \^AA\ast ( \^A\alpha ) = \^A\alpha = 0. So either
dependency, A\alpha = 0 or \^A\alpha = 0, implies both.

2. For any solution of one of the equations, there exists a solution of the other:
If A\alpha 1 = b, then A \^A\ast A\alpha 1 = \^A(A\ast A\alpha 1) = b, so \alpha 2 = A\ast A\alpha 1 = A\ast b satisfies \^A\alpha 2 = b.
Similarly, if \^A\alpha 2 = b, then \alpha 1 = \^A\ast \^A\alpha 2 = \^A\ast b satisfies A\alpha 1 = b.

If \alpha 1 = \^A\ast b solves A\alpha 1 = b, then \alpha = \alpha 1 + \alpha 0 is another solution for any \alpha 0 \in 
ker A. But \alpha 1 = \^A\ast b is the unique solution orthogonal to ker A, since, in general,
Im \^A\ast = (ker \^A)\bot [2], [3], and by condition 1, (ker \^A)\bot = (ker A)\bot . To show it is
unique, suppose \alpha is a solution of \^A\alpha = b orthogonal to ker A. Then clearly \alpha  - \alpha 1

is both orthogonal to and in ker A, so \alpha  - \alpha 1 = 0.
Conditions 1 and 2 imply the Moore conditions: For every b \in Im A, condition 2
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A GENERALIZED DUAL TRANSFORM 1043

implies that A \^A\ast b = b = \^AA\ast b. Condition 2 also implies that (Im A)\bot = (Im \^A)\bot .
We also have the fundamental relations of linear algebra, (Im A)\bot = kerA\ast and (Im
\^A)\bot = ker \^A\ast . Thus, for every c \in the orthogonal complement (Im A)\bot , we have
A \^A\ast q = 0 = \^AA\ast q. Therefore A \^A\ast = \^AA\ast = PImA.

Again, condition 1 implies that the kernels of A and \^A are equal, so their orthog-
onal complements are equal. Thus we have Im \^A\ast = (ker \^A)\bot = (kerA)\bot = Im A\ast .
Now we must show that for every vector \alpha \in Im \^A\ast , there is a vector b1 such that
b1 = A\alpha . For some b1, \alpha = \^A\ast b1. We may assume that b1 \in ImA = (ker A\ast )\bot =
(ker \^A\ast )\bot , since any component of b1 \in ker \^A\ast vanishes, leaving \alpha unchanged if we
remove that component. By condition 2, the equation A\alpha 1 = b1 has unique solution
\alpha 1 = \^A\ast b1 for b1 \in Im A. Thus \alpha = \alpha 1 and we have b1 = A\alpha . (To show that b1 is
the unique solution for a given \alpha , suppose b is any solution of \^A\ast b = \alpha orthogonal to
ker A\ast . Then clearly b - b1 is both orthogonal to and in ker A\ast , so b - b1 = 0.) Sim-
ilarly, we can show that, given the same vector \alpha , \alpha = A\ast b2 for the specific solution
b2 = \^A\alpha . It now follows that \^A\ast A\alpha = \alpha = A\ast \^A\alpha . Also, for every \beta \in kerA = ker \^A,
\^A\ast A\beta = 0 = A\ast \^A\beta . Therefore \^A\ast A = A\ast \^A = PIm \^A\ast = PImA+ .

Having related the axioms for the dual transform and the pseudoinverse, we now
promote the dual transform axioms to a linear-space setting. We do so by replacing
the columns of the matrix A by vectors ak in a space V for k = 1, . . . , n, keeping the
components of the solution vectors \alpha as combining coefficients of the vectors in V.

Then the linear map A : \BbbC n \rightarrow V is given by \alpha \mapsto \rightarrow 
\sum 

k \alpha kak. The image Im A
of this map is the span of the vectors, span\{ ak\} nk=1. The adjoint map A\ast : V \rightarrow 
\BbbC n maps b \mapsto \rightarrow \alpha = \{ \langle ak, b\rangle \} nk=1. To check that this is the adjoint, take any \alpha \in 
\BbbC n, b \in V. We have \langle b, A\alpha \rangle = \langle b,

\sum 
k \alpha kak\rangle =

\sum 
k \alpha k\langle b, ak\rangle =

\sum 
k\langle ak, b\rangle \ast \alpha k =

\langle \{ \langle ak, b\rangle \} nk=1, \{ \alpha k\} nk=1\rangle = \langle A\ast b, \alpha \rangle .
The two axioms in Theorem 7 remain as stated, but now for linear maps A, \^A

and their adjoint maps A\ast , \^A\ast , rather than matrices. It will be convenient to restate
the two axioms directly as follows.

Definition 8. Consider a list of vectors a1, a2, . . . , an in a linear space V with
real or complex inner product. Its dual list \^a1, \^a2, . . . , \^an obeys the following two
axioms:

1. Mirrored linear dependencies. For combining coefficients \alpha \circ 
1, . . . , \alpha 

\circ 
n, we have\sum 

k

\alpha \circ 
kak = 0 if and only if

\sum 
k

\alpha \circ 
k\^ak = 0.

2. Mirrored linear span. A vector b \in V is expressible as a linear combination\sum 
k

\v \alpha kak = b if and only if
\sum 
k

\alpha k\^ak = b.

When they exist, the combining coefficients are given by

\v \alpha k = \langle \^ak, b\rangle and \alpha k = \langle ak, b\rangle , k = 1, . . . , n.

From these two linear-space axioms, we will develop the theory and linear-algebraic
algorithms for the dual transform. From now on, when we refer to axiom 1 or 2, we
always mean the respective axiom 1 or 2 of Definition 8.

4. Dual Theory of Projectors and Protractors. The expression given in axiom
2 is the orthogonal projector onto A, the span of a1, . . . , an. By axiom 2, A equals
the span of \^a1, . . . , \^an too.
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1044 L. P. WITHERS, JR.

Theorem 9. The linear operator P\bfA =
\sum 

k\langle \^ak, \cdot \rangle ak is the orthogonal projector
onto A. It is also given by P\bfA =

\sum 
k\langle ak, \cdot \rangle \^ak.

Proof. For any vector b \in A, P\bfA (b) = b by axiom 2 for either form of the
projector. For any vector c \in A\bot , clearly P\bfA (c) = 0.

We can easily demonstrate that P\bfA is self-adjoint. Again, for any vector c \in A\bot ,
P\bfA (c) = 0. So by linearity of P\bfA , it is sufficient to consider any pair of vectors a, b \in A.
We have \langle a, P\bfA (b)\rangle = \langle a,

\sum 
k\langle \^ak, b\rangle ak\rangle =

\sum 
k\langle \^ak, b\rangle \langle a, ak\rangle =

\sum 
k\langle ak, a\rangle \ast \langle \^ak, b\rangle =

\langle 
\sum 

k\langle ak, a\rangle \^ak, b\rangle = \langle P\bfA (a), b\rangle , using the mirrored form of P\bfA given by axiom 2.
By symmetry of the axioms, it is clear that the dual transform is reflexive, that is,

\^\^ak = ak, for k = 1, . . . , n. If ak = 0 for some k, let its coefficient alone be nonzero in
axiom 1. Then we always have \^0 = 0. For simplicity in what follows, unless otherwise
noted, we will assume that the vectors ak \not = 0. For only one nonzero vector, since
\langle \^a, a\rangle = 1, with b = a in axiom 2, it follows that \^a = a/\| a\| 2. If the \{ ak\} nk=1 are an
orthonormal set, then by axiom 2, \^ak = ak.

Given any vector b in a linear space V, what is the closest vector a in the sub-
space A to b? That is, for what a \in A is the squared distance or error \| b  - a\| 2
minimum? This is the linear least squares problem, posed for a linear space. With
the (generalized) dual list, we can immediately solve it for any primal list a1, . . . , an
that spans the subspace A.

Theorem 10. For any b \in V, a set of scalar coefficients \alpha j that combine the
vectors aj with least squared error \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| b - 

n\sum 
j=1

\alpha jaj

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

(4.1)

is given by

\alpha j = \langle \^aj , b\rangle for j = 1, 2, . . . , n.(4.2)

Proof. First, project b orthogonally onto the subspace A; i.e., put a = P\bfA b =\sum 
k\langle \^ak, b\rangle ak, by Theorem 9. This means that b - a \bot A. Consider any other point a\prime 

inA. We can write its distance vector to b as b - a\prime = (b - a)+(a - a\prime ), where a - a\prime \in A
is nonzero. By the Pythagorean theorem, \| b - a\prime \| 2 = \| (b - a)\| 2 + \| (a - a\prime )\| 2. Thus
\| b - a\| 2 is minimum for this a.

Orthogonal projectors can't do everything. In a linearly dependent situation, we
need another kind of linear operator, called a protractor, which rearranges the vectors
inside its own subspace A and ignores anything outside it. In particular, this linear
operator simply maps each primal vector to its dual vector.

Definition 11. Given a list of vectors a1, a2, . . . , an in V and its dual list
\^a1, \^a2, . . . , \^an, the dualizer or protractor is the linear operator Q : V \rightarrow A such
that Qb = 0 for every b \in A\bot and

Qaj = \^aj for every j = 1, . . . , n.

Theorem 12. Q =
\sum 

k\langle \^ak, \cdot \rangle \^ak. Restricted to A, Q+ =
\sum 

k\langle ak, \cdot \rangle ak is the in-
verse operator; moreover, QQ+ = Q+Q = P\bfA .

Proof. For j = 1, . . . , n, we have aj = P\bfA aj =
\sum 

k\langle \^ak, aj\rangle ak. By axiom 1, \^aj =\sum 
k\langle \^ak, aj\rangle \^ak = Qaj . The rest of the proof is easy.
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Theorem 13. Q is self-adjoint. Therefore, we have

\langle \^aj , ak\rangle = \langle \^ak, aj\rangle \ast = \langle aj , \^ak\rangle for j, k = 1, . . . , n.

For j = k, we have \langle \^ak, ak\rangle = \langle \^ak, ak\rangle \ast , so that this is always real valued.

Proof. By Theorem 12, for any vector c \in A\bot , Qc = 0. So by linearity of
Q, it is sufficient to consider any pair of vectors a, b \in A. We have \langle a,Qb\rangle =
\langle a,

\sum 
k\langle \^ak, b\rangle \^ak\rangle =

\sum 
k\langle \^ak, b\rangle \langle a, \^ak\rangle =

\sum 
k\langle \^ak, a\rangle \ast \langle \^ak, b\rangle = \langle 

\sum 
k\langle \^ak, a\rangle \^ak, b\rangle = \langle Qa, b\rangle .

In particular, we can choose a = Qaj = \^aj and b = ak.

Theorem 14 (biorthogonality generalized). The orthogonal projector onto the
adjoint operator's image space A\ast = ImA\ast is given by the matrix P\bfA \ast = [\langle a\ell , \^ak\rangle ]n\ell ,k=1.

Proof. First we must show that for any vector \alpha \in Im A\ast , P\bfA \ast (\alpha ) = \alpha . For some
b \in V, we have \alpha = \{ \alpha k\} nk=1 = \{ \langle ak, b\rangle \} nk=1. Then

P\bfA \ast \alpha = [\langle a\ell , \^aj\rangle ]n\ell ,j=1[\langle aj , b\rangle ]nj=1

=

\left[  \biggl\langle n\sum 
j=1

\langle a\ell , \^aj\rangle \ast aj , b
\biggr\rangle \right]  n

\ell =1

=

\left[  \biggl\langle n\sum 
j=1

\langle \^aj , a\ell \rangle aj , b
\biggr\rangle \right]  n

\ell =1

= [\langle a\ell , b\rangle ]n\ell =1 = \alpha ,

by axiom 2.
Second, note that the matrix P\bfA \ast is conjugate symmetric, since by Theorem 13,

\langle a\ell , \^aj\rangle = \langle aj , \^a\ell \rangle \ast . Consider a complex vector \beta \bot Im A\ast . For any b \in V, this means
that

\sum 
j\langle aj , b\rangle \ast \cdot \beta j = 0. Taking b = \^ak, this is

\sum 
j\langle aj , \^ak\rangle \ast \cdot \beta j =

\sum 
j\langle ak, \^aj\rangle \cdot \beta j = 0.

This last sum expresses the product of the kth row of P\bfA \ast and \beta . Thus, we find that
P\bfA \ast \beta = 0.

We shall need the following observation about the adjoint image space projector
acting on its left.

Lemma 15. The orthogonal projector matrix P\bfA \ast = [\langle a\ell , \^ak\rangle ]n\ell ,k=1 operates to its
left to project a row of vectors in V as follows:

(\^a1, . . . , \^an) = (\^a1, . . . , \^an) \cdot P\bfA \ast ,

(a1, . . . , an) = (a1, . . . , an) \cdot P\bfA \ast .

Proof. By axiom 2, we can write

\^ak =

n\sum 
j=1

\langle aj , \^ak\rangle \^aj , k = 1, . . . , n,

(\^a1, . . . , \^an) = (\^a1, . . . , \^an) \cdot [\langle aj , \^ak\rangle ]nj,k=1 = (\^a1, . . . , \^an) \cdot P\bfA \ast ,

and similarly, now also using \langle \^aj , ak\rangle = \langle aj , \^ak\rangle ,

ak =

n\sum 
j=1

\langle \^aj , ak\rangle aj , k = 1, . . . , n,

(a1, . . . , an) = (a1, . . . , an) \cdot [\langle aj , \^ak\rangle ]nj,k=1 = (a1, . . . , an) \cdot P\bfA \ast .

Now we come to two key identities. They relate the dual transform of a sequence
of n vectors to the dual transforms of subsequences of n - 1 vectors. For cases where
the list has all but one vector, we now need a somewhat flexible notation for the dual
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1046 L. P. WITHERS, JR.

vectors. Let \^anj(k) denote the vector dual to aj in the dual transform of \{ aj\} j=1,...,n,j \not =k.
When there is no ambiguity, we can omit some of the labels. If the order or length n
of the complete list is fixed and an arbitrary vector ak is left out of the list, we can
suppress the label n and simply write \^aj(k). In the case in which k = n and an is

always left off the end of the list, it is sometimes convenient to write \^an - 1
j instead of

\^anj(n). Similarly, when the context is clear, for dual vectors of the complete list, we

write \^aj for \^anj to denote the vector dual to aj in the dual transform of \{ aj\} j=1,...,n.
These two identities are almost equivalent, taken in pairs. We proved the butterfly

identity for a case of independence in Theorem 6.

Theorem 16. For j, k = 1, . . . , n, j \not = k,
1. (Greville identity) \^aj = \^aj(k)  - \alpha \ast 

jk\^ak,
2. (Butterfly identity) \gamma \^aj = \^aj(k)  - \alpha \ast 

jk\^ak(j),
where \alpha jk = \langle \^aj(k), ak\rangle , \alpha kj = \langle \^ak(j), aj\rangle , and \gamma = 1 - \alpha \ast 

jk\alpha 
\ast 
kj.

Proof. 1. We give a vector-space version of Greville's matrix proof [17, equation
(8)]. Without loss of generality, we prove this identity for k = n. Consider the
projection P\bfA n of the vectors \^a1(n), . . . , \^an - 1(n) \in An = Im An = span\{ aj\} nj=1, which
leaves them unchanged. For k = 1, . . . , n - 1,

\^ak(n) =

n\sum 
j=1

\langle aj , \^ak(n)\rangle \^aj =
n - 1\sum 
j=1

\langle aj , \^ak(n)\rangle \^aj + \langle \^ak(n), an\rangle \ast \^an

= (\^a1, . . . , \^an - 1)[\langle aj , \^ak(n)\rangle ]n - 1
j=1 + \langle \^ak(n), an\rangle \ast \^an.

By Theorem 14, the orthogonal projector PIm A\ast 
n - 1

= [\langle aj , \^ak(n)\rangle ]n - 1
j,k=1. Let

\^An
n - 1 map

\{ \alpha k\} n - 1
k=1 \mapsto \rightarrow 

\sum n - 1
k=1 \alpha k\^a

n
k . Then PIm A\ast 

n - 1
= PIm \^An\ast 

n - 1
, because the adjoint spaces Im

A\ast 
n - 1 and Im \^An\ast 

n - 1 are equal. This follows because they are orthogonal complements

of the corresponding kernels ker An - 1 and ker \^An
n - 1, which are equal by axiom 1 with

combining coefficient \alpha \circ 
n = 0. Thus, by Lemma 15, (\^a1, . . . , \^an - 1) [\langle \^aj , ak\rangle ]n - 1

j=1 = \^ak
for k = 1, . . . , n - 1.

2. We may write two cases of the Greville identity as a 2 \times 2 linear system of
vector equations, \biggl( 

\^aj(k)
\^ak(j)

\biggr) 
=

\biggl[ 
1 \alpha \ast 

jk

\alpha \ast 
kj 1

\biggr] \biggl( 
\^aj
\^ak

\biggr) 
.(4.3)

Then, if the determinant \gamma = 1 - \alpha \ast 
jk\alpha 

\ast 
kj is not zero, we have

\gamma 

\biggl( 
\^aj
\^ak

\biggr) 
=

\biggl[ 
1  - \alpha \ast 

jk

 - \alpha \ast 
kj 1

\biggr] \biggl( 
\^aj(k)
\^ak(j)

\biggr) 
.(4.4)

This is identity 2. If \gamma = 0, that is, \alpha \ast 
jk\alpha 

\ast 
kj = 1, then we premultiply both sides of

the upper equation of (4.3) by \alpha \ast 
kj and compare the result with the lower equation,

to find that \^aj(k) = \alpha \ast  - 1
kj \^ak(j). Similarly, \^ak(j) = \alpha \ast  - 1

jk \^aj(k). This verifies that (4.4)
is still true when \gamma = 0. So the pair of Greville identities implies the corresponding
pair of butterfly identities.

Stereographic Projection. We saw in section 2 that orthogonal projection is
used to update the dual transform when we add a new vector that is independent of
the other vectors. (We say that the vector ak \not = 0 is linearly independent of the rest,
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p

y

x

Fig. 3 Stereographic projection in n = 3 dimensions for a sphere of radius 1/2, tangent to the plane
at its south pole (0, 0, 0). Its north pole is p = (0, 0, 1). This projection occurs naturally for
arbitrary n in the course of updating the combining coefficients \{ \alpha jn = \langle \^aj , an\rangle \} nj=1. In this

example, we update y = (\alpha 12, \alpha 22) to x = (\alpha 13, \alpha 23, \alpha 33) when a3 is dependent on a1, a2.
The case of a3 independent of a1, a2 maps y = \infty to the north pole x = p = \{ \delta j3\} 3j=1. The
coefficient vectors x on the sphere represent generalized biorthogonal relations between the
primal and dual vectors.

a1, a2, . . . , ak - 1, ak+1, . . . , an, if any linear combination of all n vectors that equals 0
must have a zero coefficient of ak.) We now come to a surprising fact: stereographic
projection occurs naturally, without human artifice, in the process of updating the
dual when the new vector is dependent on the others.

To make this connection clear, first we recall the definition of this kind of pro-
jection [20], [21]. It maps all but one point of a sphere Sn - 1 in \BbbC n onto the sub-
space (hyperplane) \BbbC n - 1 that it is tangent to. Let the sphere have radius 1/2,
its south pole at the origin, and its north pole at the point p = (0, . . . , 0, 1). Its
center is p/2 = (0, . . . , 0, 1/2). Let x = (x1, . . . , xn) be any point on the sphere
other than p. We project the ray from p through x until it intersects the hyperplane
at point y (see Figure 3). Considering similar right triangles normal to the hyper-
plane, with hypotenuses px and py along the ray, we easily get the continuous map
f : Sn - 1  - p \rightarrow \BbbC n - 1 given by

y = f(x1, . . . , xn) =
1

pn  - xn
(x1, . . . , xn - 1) .(4.5)

(We have fixed the north pole p to be a real vector. For the complex sphere, there is
a degree of freedom in the choice of this pole. If we multiply the points p and x on
the sphere by a phasor ei\theta , \theta \in [0, 2\pi ), the projected point y in the hyperplane stays
the same.) The inverse map g is given by

x = g(y1, . . . , yn - 1) = (ty1, . . . , tyn - 1, 1 - t) ,(4.6)

where t = 1/(1+ | y1| 2+ \cdot \cdot \cdot + | yn - 1| 2), based on the relation pn - xn = 1 - (1 - t) = t.
We can confirm that, for this value of t, x = g(y) is not merely a point on the ray,
but also a point on the sphere, by means of the identity

| y1| 2 + \cdot \cdot \cdot + | yn - 1| 2 +
\bigl( 
| y1| 2 + \cdot \cdot \cdot + | yn - 1| 2  - 1

\bigr) 2
/4 = 1

4 (1 + | y1| 2 + \cdot \cdot \cdot + | yn - 1| 2)2.
(4.7)
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Theorem 17 (forward stereographic projection). If an is independent of the rest,
we have biorthogonal relations

\langle \^ann, ak\rangle = \delta kn, k = 1, . . . , n.(4.8)

If an \not = 0 is dependent on the rest, we have \langle \^ann, an\rangle \in (0, 1) and

\langle \^an - 1
k , an\rangle = \langle \^ank , an\rangle /(1 - \langle \^ann, an\rangle ), k = 1, . . . , n - 1.(4.9)

The relationship (4.9) for the dependent case has the form (4.5) of a forward stereo-
graphic projection taking x = \{ \langle \^ank , an\rangle \} nk=1 to y = \{ \langle \^an - 1

k , an\rangle \} n - 1
k=1 . The biorthogonal

relations (4.8) for the independent case represent the north pole x = p, which maps
to the point at infinity y = \infty .

Proof. Using axiom 2, take the projection of an onto the full span of a1, . . . , an:

an =

n\sum 
k=1

\langle \^ank , an\rangle ak,

(1 - \langle \^ann, an\rangle )an =

n - 1\sum 
k=1

\langle \^ank , an\rangle ak =

n - 1\sum 
k=1

\langle ak, \^ann\rangle ak.(4.10)

Equation (4.10) represents a linear combination equal to 0. If an is independent of
the rest, its coefficient must be 0. Thus \langle \^ann, an\rangle = 1. Then, taking the inner product

of both sides of (4.10) with \^ann, we have 0 =
\sum n - 1

k=1 | \langle ak, \^ann\rangle | 2. Therefore, \^ann \bot ak, for
k = 1, . . . , n - 1.

If an depends on the rest, taking the inner product of both sides of (4.10) with

\^ann, we get (1 - \langle \^ann, an\rangle )\langle \^ann, an\rangle =
\sum n - 1

k=1 | \langle ak, \^ann\rangle | 2 \geq 0. This requires that \langle \^ann, an\rangle \in 
[0, 1]. In fact, \langle \^ann, an\rangle \not = 1, 0. Suppose \langle \^ann, an\rangle = 1. As we saw in the previous
paragraph, this would imply biorthogonal relations \langle \^ann, ak\rangle = \delta kn. But by Theorem 4,
this implies that an is independent of the rest, contradicting our assumption. Next,
suppose \langle \^ann, an\rangle = 0. Then, similarly,

\sum n - 1
k=1 | \langle \^ank , an\rangle | 2 = 0. Thus \langle \^ank , an\rangle = 0 for

k = 1, . . . , n, or an \bot An. But an \in An, by axiom 2. Therefore, an = 0. Thus, in
general, we have the definiteness property that \langle \^ann, an\rangle = 0 if and only if an = 0.

So, when an depends on the rest, we may divide all members of (4.10) by 1  - 
\langle \^ann, an\rangle \not = 0 to obtain

an =

n - 1\sum 
k=1

\langle \^ank , an\rangle ak/(1 - \langle \^ann, an\rangle ).(4.11)

By axiom 2, an also projects onto the rest directly:

an =

n - 1\sum 
k=1

\langle \^an - 1
k , an\rangle ak.(4.12)

Since the combining coefficients for an are unique and orthogonal to the kernel of the
rest, they are equal in both expansion (4.11) and expansion (4.12).

Theorem 18 (Greville's alternative update [17]).
1. If an \not \in span\{ a1, . . . , an - 1\} , then \^ann = pn/\| pn\| 2,

where pn = P\bfA \bot 
n - 1

an = an  - 
\sum n - 1

j=1 \alpha jnaj and \alpha jn = \langle \^an - 1
j , an\rangle .

2. If an \in span\{ a1, . . . , an - 1\} , then \^ann = qn/\beta nn,

where qn = Q\bfA n - 1
an =

\sum n - 1
j=1 \alpha jn\^a

n - 1
j and \beta nn = 1 +

\sum n - 1
j=1 \alpha \ast 

jn\alpha jn.
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The test for independence of an from the rest of the vectors is that \| pn\| 2 > 0.

Proof. 1. By Theorem 17, if an is independent of the rest, we have biorthogonal
relations \langle \^ann, ak\rangle = \delta kn for \^ann. Then Theorem 4 implies that \^ann = pn/\| pn\| 2, where
pn = P\bfA \bot 

n - 1
an. By Theorem 9, pn = an  - 

\sum n - 1
j=1 \alpha jnaj .

2. Since an is in the span of a1, . . . , an - 1, by axiom 2, an =
\sum n - 1

k=1\langle \^a
n - 1
k , an\rangle ak.

By axiom 1, the dual dependency also holds: \^ann =
\sum n - 1

k=1\langle \^a
n - 1
k , an\rangle \^ank . Then, by the

Greville identity, Theorem 16(1),

\^ann =

n - 1\sum 
k=1

\langle \^an - 1
k , an\rangle \^an - 1

k  - 
n - 1\sum 
k=1

| \langle \^an - 1
k , an\rangle | 2\^ann

=

n - 1\sum 
k=1

\langle ak, \beta  - 1
nn qn\rangle \^an - 1

k = \beta  - 1
nn qn,(4.13)

by axiom 2, since qn is in the span of \^an - 1
1 , . . . , \^an - 1

n - 1 by its definition as Q\bfA n - 1
an.

We also used the self-adjoint property of Q\bfA n - 1
.

Lemma 19. For an \not = 0 dependent on the rest, let the positive scalar \beta  - 1 =
1 - \langle \^ann, an\rangle . Then \beta = \beta nn = 1 +

\sum n - 1
k=1 | \langle \^a

n - 1
k , an\rangle | 2 and

\beta 2
n - 1\sum 
k=1

| \langle \^ank , an\rangle | 2 =

n - 1\sum 
k=1

| \langle \^an - 1
k , an\rangle | 2 = \beta  - 1,

0 < \langle \^ann, an\rangle =
n\sum 

k=1

| \langle \^ank , an\rangle | 2 = \beta  - 1
n - 1\sum 
k=1

| \langle \^an - 1
k , an\rangle | 2 \equiv 1 - 1/\beta < 1.

Proof. Taking inner products of both sides of (4.13) with an and substituting the
original coefficients from equations (4.9) in Theorem 17, we find

\langle \^ann, an\rangle = 1 - \beta  - 1 =

n - 1\sum 
k=1

\langle ak, \^ann\rangle \ast \langle \^an - 1
k , an\rangle = \beta 

n - 1\sum 
k=1

\langle \^ank , an\rangle \ast \langle \^ank , an\rangle 

=

n - 1\sum 
k=1

\langle \^ank , an\rangle \ast \langle \^an - 1
k , an\rangle = \beta  - 1

n - 1\sum 
k=1

\langle \^an - 1
k , an\rangle \ast \langle \^an - 1

k , an\rangle .

Then
\sum n - 1

k=1 | \langle \^ank , an\rangle | 2+ | \langle \^ann, an\rangle | 2 = \beta  - 1(1 - \beta  - 1)+(1 - \beta  - 1)2 = 1 - \beta  - 1 = \langle \^ann, an\rangle .
Note that this last identity is also true when an \not = 0 is independent of the rest, because
then it reduces to 12 = 1.

Theorem 20 (reverse stereographic projection). For an dependent on the rest,

\langle \^ank , an\rangle = \langle \^an - 1
k , an\rangle /\beta nn, k = 1, . . . , n - 1,

\langle \^ann, an\rangle = 1 - 1/\beta nn,

where \beta nn = 1 +
\sum n - 1

k=1 | \langle \^a
n - 1
k , an\rangle | 2. These are coordinates of a point on a sphere

Sn - 1 \subset \BbbC n of radius 1/2 and center (0, . . . , 0, 1/2), since

n - 1\sum 
k=1

| \langle \^an - 1
k , an\rangle /\beta nn| 2 + (1/2 - 1/\beta nn)

2
= 1/4.
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Proof. We reverse Theorem 17, now replacing \beta = 1/(1  - \langle \^ann, an\rangle ) with the

formula \beta nn = 1+
\sum n - 1

k=1 | \langle \^a
n - 1
k , an\rangle | 2 by Lemma 19. The equation of the sphere also

follows by Lemma 19, since (1/\beta )(1 - 1/\beta ) = 1/4 - (1/2 - 1/\beta nn)
2
.

Thus a forward update (from n  - 1 to n vectors) of the combining coefficients,
given by the inner products inA\ast = Im A\ast \subset \BbbC n, is a reverse stereographic projection.
In particular, column k and row k of the adjoint-space projector P\bfA \ast , representing
generalized biorthogonality in Theorem 14, are conjugate points on the sphere of
radius 1/2 and center 1

2\{ \delta jk\} 
n
j=1. If ak is independent of the rest, the points are both

at the kth north pole \{ \delta jk\} nj=1.
We can now show an analogue of the Gram--Schmidt identity (Theorem 3) for

protractors instead of orthogonal projectors.

Corollary 21. If aj depends on a1, . . . , aj - 1, aj+1, . . . , an, then

Q\bfA = Q\bfA (j)
 - \langle qj , \cdot \rangle \^aj .

Proof. Since the operators are linear, it is sufficient to verify the identity for each
primal vector ak. Operating with both sides on aj gives

Q\bfA aj = Q\bfA (j)
aj  - \langle qj , aj\rangle \^aj ,

(1 + \langle qj , aj\rangle )\^aj = qj ,

which is true by Theorem 18(2). Operating on ak, k \not = j, we have

Q\bfA ak = Q\bfA (j)
ak  - \langle qj , ak\rangle \^aj ,

\^ak = \^ak(j)  - \langle Q\bfA (j)
aj , ak\rangle \^aj ,

\^ak = \^ak(j)  - \langle aj , \^ak(j)\rangle \^aj ,

by Theorem 18(2) and Theorem 16(1), and by self-adjointness of Q. It is clear
that both sides of the identity are 0 when they operate on any vector orthogonal
to span\{ ak\} nk=1.

5. Processes to Generate the General Dual Transform. Assembling the iden-
tities proved in the previous section, we can now construct three completely general
processes for the dual transform.

Greville Process. Taken together, the recursive identities of Greville from The-
orems 16(1) and 18 comprise a vector version of his method to compute the complete
dual transform of n vectors [17], [18]:

Greville process

\^a11 = a1/| a1| 2
for k = 2, . . . , n

pk = ak  - 
\sum k - 1

j=1 \alpha jkaj , where \alpha jk = \langle \^ak - 1
j , ak\rangle 

if \| pk\| 2 > 0
\^akk = pk/\| pk\| 2

else

\beta kk = 1 +
\sum k - 1

j=1 | \alpha jk| 2

\^akk = qk/\beta kk, where qk =
\sum k - 1

j=1 \alpha jk\^a
k - 1
j

end
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a4

^2
a2

a1
^1

Gram-Schmidt

a3
^3

^4
^4
a1

^3
a2

a2
^2

a1
^1

a3
^3

^4
a4

a1
^2

Greville

^3
a1

^4
a3

^4
a2

Fig. 4 Comparison of update flows: Gram--Schmidt process and Greville process.

for j = 1, . . . , k  - 1

\^akj = \^ak - 1
j  - \alpha \ast 

jk\^a
k
k

end
end

In this process, we try to get \^akk from pk, the projection of ak off of (orthogonal to)
the span of the preceding aj 's given by Theorem 18(1). But if ak is dependent on
some of the preceding aj 's (the projection pk is zero), our alternative is to compute
the protraction qk to get \^akk from Theorem 18(2). Here we can see the stereographic
projection \{ \alpha jk\} k - 1

j=1/\beta kk (without its kth component 1 - 1/\beta kk on the sphere's axis)

of the coefficients \{ \alpha jk\} k - 1
j=1 . Then the remaining dual transform vectors can be filled

in from \^akk, using the Greville identity (Theorem 16(1)).
The update flows in the Gram--Schmidt and Greville processes are compared in

Figure 4. To obtain the next \^akk, the Gram--Schmidt process combines the dual vectors
on the diagonal, while the Greville process combines the original or dual vectors on
the last row (solid arrows). The Greville process then updates the rest of the dual
transform (dashed arrows).

The Gram--Schmidt process is often used to show that the orthogonal basis of a
vector space exists. The vectors that the Greville process constructs can be shown to
fulfil axioms 1 and 2 for the dual vectors. Thus, the dual of any list of vectors always
exists.

Example 1 (continued). We saw earlier that the Gram--Schmidt process generates
the Legendre polynomials from the list of polynomials x0, x1, x2, . . . , xn defined over

the interval [ - 1, 1], using the inner product of the form \langle f, g\rangle =
\int 1

 - 1
f(x)g(x) dx. Let

us apply the Greville process to get the complete set of dual polynomials of this kind:

k \^ak1 \^ak2 \^ak3 \^ak4 \cdot \cdot \cdot 
1 1

2 \cdot [ 1 ]

2 3
2 \cdot 

\bigl[ 
1
3 (1) x ]

3 15
4 \cdot 

\bigl[ 
1
10 (3 - 5x2) 2

5x
1
2 (3x

2  - 1)
\bigr] 

4 35
4 \cdot 

\bigl[ 
3
70 (3 - 5x2)  - 3

14x(7x
2  - 5) 3

14 (3x
2  - 1) 1

2x(5x
2  - 3)

\bigr] 
...

. . .
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-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

9/70 - (3 x
2
)/14

(15 x)/14 - (3 x
3
)/2

(9 x
2
)/14 - 3/14

(5 x
3
)/2 - (3 x)/2

Fig. 5 Graphs of the dual polynomials of 1, x, x2, x3.

The last dual polynomial \^akk in every row list is the Legendre polynomial Pk - 1(x),
apart from the common factor on the left side. (We kept this scale factor aside to
make sure the Legendre polynomial with its usual coefficients can be plainly seen at
the right end of every row.) We can keep going indefinitely, as the dots above signify.
There is an interesting even-odd pattern as we go from one dual row to the next.
When we add an even power of x to the list, an even function over [ - 1, 1], only the
even dual polynomials need to be updated; the odd ones stay the same. Similarly,
when we add an odd power of x to the list, only the odd dual polynomials need to
be updated; the even ones stay the same. The graphs of the dual polynomials in the
fourth row are displayed in Figure 5. They are of degrees 2 and 3.

Example 3. There is a handy formula for the inverse of a 2\times 2 matrix of full rank,
to wit, [ a c

b d ]
 - 1

=
\bigl[ 

d  - c
 - b a

\bigr] 
/(ad  - bc). It is easy to verify. Is there a formula for the

pseudoinverse of any 2\times 2 matrix A of rank 1? We can write it in general as

A =

\biggl[ 
ca da
cb db

\biggr] 
(5.1)

for a or b \not = 0 and c or d \not = 0.
To apply the Greville process, we begin with the columns of A, a1 = c [ ab ] and

a2 = d [ ab ], as our primal list of vectors. (If c = 0, d \not = 0, reverse the roles of
a1, a2.) Then our initial step is \^a11 = [ ab ] /

\bigl( 
c\ast (| a| 2 + | b| 2)

\bigr) 
. One more step (k = 2)

will complete the job:
\alpha 12 =

\bigl( 
d(| a| 2 + | b| 2)

\bigr) 
/
\bigl( 
c(| a| 2 + | b| 2)

\bigr) 
= d/c,

\^p2 = d [ ab ] - (d/c) \cdot c [ ab ] = 0, a dependent case.
So we take the alternative:
\beta 22 = 1 + | \alpha 12| 2 = 1 + | d| 2/| c| 2, and
q2 = \alpha 12\^a

1
1 =

\bigl( 
d/| c| 2

\bigr) 
[ ab ] /

\bigl( 
| a| 2 + | b| 2

\bigr) 
,

\^a22 = q2/\beta 22 = d [ ab ] /
\bigl( \bigl( 
| a| 2 + | b| 2

\bigr) \bigl( 
| c| 2 + | d| 2

\bigr) \bigr) 
.
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Finally, by the Greville identity,

\^a21 = \^a11  - \alpha \ast 
12\^a

2
2

=

\biggl[ 
a
b

\biggr] 
/
\bigl( 
c\ast (| a| 2 + | b| 2)

\bigr) 
\cdot 
\bigl( 
1 - d\ast d/

\bigl( 
| c| 2 + | d| 2

\bigr) \bigr) 
= c

\biggl[ 
a
b

\biggr] 
/
\bigl( \bigl( 
| a| 2 + | b| 2

\bigr) \bigl( 
| c| 2 + | d| 2

\bigr) \bigr) 
.

Now the 2\times 2 pseudoinverse of a rank-1 2\times 2 matrix A is

A+ =
\bigl[ 
\^a21 \^a22

\bigr] \ast 
= A\ast /

\bigl( \bigl( 
| a| 2 + | b| 2

\bigr) \bigl( 
| c| 2 + | d| 2

\bigr) \bigr) 
.(5.2)

For instance, letA = [ 2 6
4 12 ] = [ 1\cdot 2 3\cdot 2

1\cdot 4 3\cdot 4 ] . ThenA+ = At/
\bigl( \bigl( 
| 2| 2 + | 4| 2

\bigr) \bigl( 
| 1| 2 + | 3| 2

\bigr) \bigr) 
=

[ 2 4
6 12 ] /200.

Example 4. The Levinson--Durbin process for linear prediction is a thinly dis-
guised special application of the Greville process. To show this, we first introduce the
linear prediction problem [22], [23], [24].

Suppose you are given a stream of data samples . . . , xn, xn - 1, . . . , x3, x2, x1, num-
bered backwards in time. How would you predict the next sample x0 from a linear
combination of the past n samples? The samples can be, for example, from a 10ms
speech segment inside your cell phone, or sunspot count data with its 11 year cycle.

A good first example of how this works is the case of a pure tone, a sine wave
of radian frequency \omega being sampled at regular time intervals \Delta t. The samples have
the values x2 = sin\omega (k  - 1)\Delta t, x1 = sin\omega k\Delta t, x0 = sin\omega (k + 1)\Delta t. Applying the
addition theorem for sines to sin\omega (k \pm 1)\Delta t and adding the two results, we get

x0 = c1x1 + c2x2

for constant coefficients c1 = 2 cos\omega \Delta t, c2 =  - 1. If we know the frequency \omega , this is
an exact model that always predicts the next sample value of a sine wave from the
preceding two samples.

More generally, we consider the samples to be generated by underlying random
variables . . . , Xn, . . . , X2, X1, X0. They belong to a linear space with an inner product
of any two random variables X and Y given by their correlation,

\langle X,Y \rangle = \sansE (X\ast Y ),

where \sansE (Z) denotes the expected value of a random variable Z. We assume the
random variables are complex valued, as signal data often are. If they are real valued,
just ignore the asterisks for complex conjugates.

We also assume that the data stream is stationary, in the sense that the cor-
relations depend only on how far apart the pair of random variables are spaced in
time. That is, we assume \langle Xi, Xj\rangle = \sansE (X\ast 

i Xj) = ri - j . They stay the same un-
der time translations. We can estimate them from a fair amount of sample data as
rk = 1

M - k

\sum M
m=k

\bigl( 
x\ast 
m - kxm

\bigr) 
for every spacing k = i  - j. When we correlate the

random samples in reverse time order, we must take the complex conjugate of the
correlation; that is, \sansE (X\ast 

jXi) = rj - i = r\ast i - j . For example, r - 3 = r\ast 3 .

The inner product gives us the mean square as the norm squared, \| X\| 2 =
\langle X,X\rangle = \sansE (X\ast X). Now we can ask for the coefficients cj to combine the random
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variables Xj to predict Y = X0 with least squared error

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| Y  - 
n\sum 

j=1

cjXj

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

.(5.3)

From Theorem 10, we know the solution is

cj = \langle \^Xn
j , Y \rangle for j = 1, 2, . . . , n.(5.4)

For any other data window of n consecutive samples Xm+n, Xm+n - 1, . . . , Xm+1 and
Y = Xm, the least squared error (5.3) is the same, because when we expand the
squared norm, each term is of the form c\ast i cjri - j , regardless of the time translation m.
Therefore, the solution (5.4) with least squared error gives us a model of order n for
the entire stationary data stream. This autoregressive model can be used to estimate
its frequency spectrum and for many other signal processing purposes [22], [23].

We still need to use the Greville recipe to get the dual random variables \^Xn
j to

put into our solution (5.4). This will give us the optimum coefficients c1, . . . , cn. We
begin by working out steps k = 1, 2, 3 of the recipe:

Step k = 1:
\^X1
1 = X1/\| X1\| 2 = X1/r0,

c11 = \langle \^X1
1 , Y \rangle = \langle X1, Y \rangle /r0 \equiv \langle X1, X0\rangle /r0 = r1/r0.

Step k = 2:

By symmetry for equal time gaps, for any k, \alpha jk \equiv \langle \^Xk - 1
j , Xk\rangle = \langle X0, \^X

k - 1
k - j \rangle \ast =

\langle \^Xk - 1
k - j , X0\rangle \equiv \langle \^Xk - 1

k - j , Y \rangle . We will use this equality often in these steps. Thus,

p2 = X2  - \langle \^X1
1 , X2\rangle X1 = X2  - \langle \^X1

1 , Y \rangle X1 = X2  - c11X1,

\| p2\| 2 = r0 +
| r1| 2
r0

 - 2 | r1| 2
r0

= r0  - | r1| 2
r0

= r0  - r1c
1
1 \geq 0,

if \| p2\| 2 > 0, c22 = \langle \^X2
2 , Y \rangle = \langle p2, Y \rangle /\| p2\| 2 =

\bigl( 
r2  - r1c

1
1

\bigr) 
/
\bigl( 
r0  - r1c

1
1

\bigr) 
.

Otherwise, \| p2\| 2 = 0 if and only if p2 = 0, by the definiteness property of an
inner product [1]. Thus X2  - c11X1 = 0, a linear-algebraic dependency. This means
that X2 and X1 are perfectly correlated random variables, with squared correlation
coefficient \rho 2 \equiv | \langle X2, X1\rangle | 2/

\bigl( 
\| X1\| 2\| X2\| 2

\bigr) 
= 1 = | r1| 2/r20. This is equivalent to

detR2 = 0 for R2 = [ri - j ]
2
i,j=1 =

\bigl[ 
r0 r\ast 1
r1 r0

\bigr] 
, a Toeplitz matrix. We can work out the

Greville alternative:
\beta 22 = 1 + | \langle \^X1

1 , X2\rangle | 2 = 1 + | \langle \^X1
1 , Y \rangle | 2 = 1 + | c11| 2,

\^X2
2 = q2/\beta 22, where q2 = \langle \^X1

1 , X2\rangle \^X1
1 = \langle \^X1

1 , Y \rangle \^X1
1 = c11

\^X1
1 ,

c22 = \langle \^X2
2 , Y \rangle = \langle q2, Y \rangle /\beta 22 = | c11| 2/

\bigl( 
1 + | c11| 2

\bigr) 
.

Either way, all that remains is to fill out the missing dual element by means of
the Greville identity:

\^X2
1 = \^X1

1  - \langle \^X1
1 , X2\rangle \ast \^X2

2 ,
c21 = \langle \^X2

1 , Y \rangle = \langle \^X1
1 , Y \rangle  - \langle \^X1

1 , X2\rangle \langle \^X2
2 , Y \rangle = \langle \^X1

1 , Y \rangle  - \langle \^X1
1 , Y \rangle \langle \^X2

2 , Y \rangle ,
c21 = c11  - c11c

2
2.
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Step k = 3:

p3 = X3  - \langle \^X2
1 , X3\rangle X1  - \langle \^X2

2 , X3\rangle X2,
p3 = X3  - \langle \^X2

2 , Y \rangle X1  - \langle \^X2
1 , Y \rangle X2 = X3  - c22X1  - c21X2.

Recalling that p3 \bot 
\Bigl( 
\langle \^X2

1 , X3\rangle X1 + \langle \^X2
2 , X3\rangle X2

\Bigr) 
, we have

\| p3\| 2 = \langle X3, p3\rangle = r0  - r2c
2
1  - r1c

2
2.

If \| p3\| 2 > 0,
c33 = \langle \^X3

3 , Y \rangle = \langle p3, Y \rangle /\| p3\| 2 =
\bigl( 
r3  - r2c

2
1  - r1c

2
2

\bigr) 
/
\bigl( 
r0  - r2c

2
1  - r1c

2
2

\bigr) 
.

Otherwise, p3 = 0 = X3  - c22X1  - c21X2.
Then 0 = \langle X3  - c21X2  - c22X1, Xj\rangle , j = 3, 2, 1:
0 = r0  - c21r

\ast 
1  - c22r

\ast 
2 ,

0 = r1  - c21r0  - c22r
\ast 
1 ,

0 = r2  - c21r1  - c22r0.
This is a linear dependency among the columns of the Toeplitz matrix

R3 = [ri - j ]
3
i,j=1 =

\left[  r0 r\ast 1 r\ast 2
r1 r0 r\ast 1
r2 r1 r0

\right]  ,

so that detR3 = 0.
Following the Greville alternative formula,
\beta 33 = 1 + | \langle \^X2

1 , X3\rangle | 2 + | \langle \^X2
2 , X3\rangle | 2 = 1 + | \langle \^X2

1 , Y \rangle | 2 + | \langle \^X2
2 , Y \rangle | 2,

\^X3
3 = q3/\beta 33, where q3 = \langle \^X2

1 , Y \rangle \^X2
1 + \langle \^X2

2 , Y \rangle \^X2
2 = c21

\^X2
1 + c22

\^X2
2 ,

c33 = \langle \^X3
3 , Y \rangle = \langle q3, Y \rangle /\beta 33 =

\bigl( 
| c21| 2 + | c22| 2

\bigr) 
/
\bigl( 
1 + | c21| 2 + | c22| 2

\bigr) 
.

Again we fill in the rest of the dual elements by means of the Greville identity:
\^X3
j = \^X2

j  - \langle \^X2
j , Xj\rangle \ast \^X3

3 , j = 1, 2,

c3j = \langle \^X3
j , Y \rangle = \langle \^X2

j , Y \rangle  - \langle \^X2
j , Xj\rangle \langle \^X3

3 , Y \rangle = \langle \^X2
j , Y \rangle  - \langle \^X2

3 - j , Y \rangle \langle \^X3
3 , Y \rangle ,

c3j = c2j  - c23 - jc
3
3, j = 1, 2.

Our reasoning for Step 3 extends directly to any Step k. This allows us to rewrite
the Greville process to solve for the optimum coefficients of the linear prediction model
(5.3) for a stationary time series of random variables, as follows:

Levinson process (general version)

c11 = r1/r0
for k = 2, . . . , n

\| pk\| 2 = r0  - rk - 1c
k - 1
1  - \cdot \cdot \cdot  - r1c

k - 1
k - 1

if \| pk\| 2 > 0

ckk =
\Bigl( 
rk  - 

\sum k - 1
j=1 rk - jc

k - 1
j

\Bigr) 
/
\Bigl( 
r0  - 

\sum k - 1
j=1 rk - jc

k - 1
j

\Bigr) 
else

ckk =
\bigl( 
| ck - 1

1 | 2 + \cdot \cdot \cdot + | ck - 1
k - 1| 2

\bigr) 
/
\bigl( 
1 + | ck - 1

1 | 2 + \cdot \cdot \cdot + | ck - 1
k - 1| 2

\bigr) 
end
for j = 1, . . . , k  - 1

ckj = ck - 1
j  - ck - 1

k - jc
k
k

end
end
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The Greville process directly yields the complete Levinson process. The alterna-
tive formula for the ``else"" case above patches a hole in the process and appears to be
something new.

Generalized Gram–Schmidt Process. We saw that, at each step, the Gram--
Schmidt process computes the last vector of the dual transform of the current list of
independent vectors. Interpreting it this way, it is natural to ask if it can be extended
to cases with dependent vectors. Here is a complete Gram--Schmidt process.

Gram--Schmidt process (general version)

\^a11 = a1/\| a1\| 2
\beta 11 = 1
for k = 2, . . . , n

pk = ak  - 
\sum k - 1

j=1 \~\alpha jk\| pj\| 2\^ajj , where \~\alpha jk = \langle \^ajj , ak\rangle 

for j = 1, . . . , k

\beta jk = \delta jk  - 
\sum k - 1

i=1 \beta \ast 
ij \~\alpha ik

\beta kj = \beta \ast 
jk

end

if \| pk\| 2 > 0
\^akk = pk/\| pk\| 2

else

\^akk =  - 
\sum k - 1

j=1 \beta jk\^a
j
j/\beta kk

endif
end

This process has its original expression for pk and an alternative for dependent vectors
that is derived in Appendix A. The expression for the projection pk (related to the
dual vector by Theorem 18(1)) follows, as for the original Gram--Schmidt process, by
induction from the Gram--Schmidt identity (Theorem 3): P\bfA \bot 

k - 1
= P\bfA \bot 

k - 2
 - Ppk - 1

.

If pk - 1 = 0, then P\bfA \bot 
k - 1

= P\bfA \bot 
k - 2

, and we can omit the contribution of \^ak - 1
k - 1 to the

projector.
This process is also reversible. We recover the primal vectors by running the

process again on the dual vectors. This general process still produces an orthogonal
basis of a sequence of vectors. The basis vectors are just the dual vectors computed
without the alternative, that is, those whose ``signature"" \| pk\| 2 is positive. Each
alternative dual vector is not orthogonal to the previous basis vectors, but is a linear
combination of them. Counting the basis vectors reveals the dimension of the subspace
they span.

Parallel Butterfly Dual Process. The butterfly dual process at the end of section
2 can be extended to a general version that will handle dependencies among the ak's.
When \gamma = 0, the alternative is a weighted sum of the middle dual vectors in one of
the parent nodes. The alternative vector itself can be updated recursively, without
computing the middle vectors. This is shown in Appendix B. Each processing node
now contains a left and a right alternative vector q, each with a supporting scalar,
as well as the original (primal) and dual vectors on the left and right ends. We keep
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the alternative updated at every node, so that it is ready to use whenever a new
dependency forms. The general butterfly dual process, for any given list of vectors,
now follows:

Butterfly dual process (general version)

for node j = 1, . . . , n ! initialize the first level
\beta \ell = \beta r = 1
q\ell = qr = 0
\^a\ell = \^ar = aj/\| aj\| 2

end
for level k = 2, . . . , n

for node j = 1, . . . , n
\alpha L
\ell = \langle \^aL\ell , ar\rangle 

\alpha R
r = \langle \^aRr , al\rangle 

\eta = \langle qL\ell , ar\rangle = \langle qRr , a\ell \rangle \ast 
\beta \ell = \beta L

\ell + | \alpha R
r | 2\beta R

r  - 2Re
\bigl( 
\alpha R
r \eta 

\bigr) 
\beta r = \beta R

r + | \alpha L
\ell | 2\beta L

\ell  - 2Re
\bigl( 
\alpha L
\ell \eta 

\ast \bigr) 
q\ell = qL\ell  - \alpha R

r q
R
r +

\bigl( 
\alpha R
r \beta 

R
r  - \eta \ast 

\bigr) 
\^aRr

qr = qRr  - \alpha L
\ell q

L
\ell +

\bigl( 
\alpha L
\ell \beta 

L
\ell  - \eta 

\bigr) 
\^aL\ell 

\gamma = 1 - \alpha L\ast 
\ell \alpha R\ast 

r

if \gamma > 0
\^a\ell = \gamma  - 1

\bigl( 
\^aL\ell  - \alpha L\ast 

\ell \^aRr
\bigr) 

! butterfly for left,right dual vectors
\^ar = \gamma  - 1

\bigl( 
\^aRr  - \alpha R\ast 

r \^aL\ell 
\bigr) 

else
\^a\ell = q\ell /\beta \ell ! alternative
\^ar = qr/\beta r

endif
end

end

This process was briefly reported, without supporting theory, in [7]. Since the lines
of communication from parent to child processing nodes remain the same from level
to level, the algebraically exact butterfly dual process can also be implemented recur-
sively using one ring of n parallel processors n times over.

Theorem 22. \gamma lies in the unit interval [0, 1], and \gamma = 0 if and only if a new
dependency occurs when left and right vectors a\ell and ar are both added to the middle
list at a node \{ a\ell +1, . . . , ar - 1\} .

Proof. The butterfly update coefficient in equations (2.16) is \gamma = 1 - \alpha L\ast 
\ell \alpha R\ast 

r for
inner products \alpha L

\ell = \langle \^aL\ell , ar\rangle and \alpha R
r = \langle \^aRr , a\ell \rangle . The parent nodes each contain a

common set of vectors, their middle \{ a\ell +1, . . . , ar - 1\} , and differ only by one outer
vector (the left vector a\ell of the left parent node and the right vector ar of the right
parent node). We will distinguish four cases in terms of dependencies between the
outer vectors and the middle set. Let AM = span\{ a\ell +1, . . . , ar - 1\} .

The first case is when each parent outer vector is independent of the middle:
(a\ell \not \in AM , AM \not \ni ar). Here 0 \leq \gamma \leq 1 or, equivalently, 0 \leq \alpha L

\ell \alpha 
R
r \leq 1. This follows

by the Cauchy--Schwarz inequality, since by Theorem 18(1), the left and right end
dual vectors are \^aL\ell = P\bfA \bot 

M
a\ell /\| P\bfA \bot 

M
a\ell \| 2 and \^aRr = P\bfA \bot 

M
ar/\| P\bfA \bot 

M
ar\| 2. In particular,
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\gamma = 0 if and only if P\bfA \bot 
M
a\ell \propto P\bfA \bot 

M
ar, which is true if and only if (a\ell \not \in AM , AM \not \ni ar,

but span\{ a\ell ,AM\} \ni ar). In other words, \gamma = 0 if and only if a new dependency occurs.
Next consider the case (a\ell \not \in AM , AM \ni ar). Here \^aL\ell \bot \{ aL\ell +1, . . . , a

L
r - 1\} and so

\^aL\ell \bot ar, making \gamma = 1. By symmetry, \gamma = 1 for the case when (a\ell \in AM , AM \not \ni ar),
too.

Last, take the case (a\ell \in AM , AM \ni ar). Because ar depends on the mid-
dle set, the end Greville update for the right parent node (from the middle grand-
parent node, which has just the middle vectors AM ) degenerates to a dependency

ar =
\sum r - 1

j=\ell +1 \alpha 
(M,r)
j aj , with alternative \^aRr = 1

\beta (M,r)

\sum r - 1
j=\ell +1 \alpha 

(M,r)
j \^aMj , with \alpha 

(M,r)
j =

\langle \^aMj , ar\rangle . We also have the similar formulas for the left parent node, also updated

from the middle grandparent node. So \alpha R
r = \langle \^aRr , a\ell \rangle = 1

\beta (M,r)

\sum r - 1
j=\ell +1 \alpha 

(M,r)\ast 
j \alpha 

(\ell ,M)
j ,

and then

\alpha L
\ell \alpha 

R
r =

1

\beta (\ell ,M)

1

\beta (M,r)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
r - 1\sum 

j=\ell +1

\alpha 
(M,r)\ast 
j \alpha 

(\ell ,M)
j

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
2

<
1

\beta (\ell ,M)  - 1

1

\beta (M,r)  - 1

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
r - 1\sum 

j=\ell +1

\alpha 
(M,r)\ast 
j \alpha 

(\ell ,M)
j

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
2

\leq 1,

from the definition of the \beta 's and the Cauchy--Schwarz inequality. Therefore 0 <
\gamma \leq 1. When the left and right outer vectors depend on disjoint subsets of the middle

vectors, then for each j, either \alpha 
(M,r)
j or \alpha 

(\ell ,M)
j is zero (or both are); so in this subcase,

\gamma = 1.

Appendix A. Gram–Schmidt Alternative Updates. This appendix gives an
alternative for the Gram--Schmidt process in the case of dependent vectors. It is
equivalent to the alternative taken in the Greville process, but only uses the end dual
vectors \^akk at each level k of Figure 4. The identities below provide the alternative
updates.

We introduce coefficients

\beta jk =

min (j,k)\sum 
i=1

\alpha \ast 
ij\alpha ik

for all j, k = 1, . . . , n, where \alpha jk = \langle \^ak - 1
j , ak\rangle for j < k, \alpha kk =  - 1, and \alpha jk = 0 for

j > k. Note that from this definition, \beta 11 = 1 and \beta \ast 
jk = \beta kj . (In matrix terms, we

have B = [\beta jk] = U\ast U for the upper triangular matrix U = [\alpha jk].) Then we have
these vector identities.

Lemma 23. For j, k \geq 1,

k\sum 
i=1

\beta ij\^a
i
i =  - 

min(j,k)\sum 
i=1

\alpha ij\^a
k
i .

Proof by induction. The identities for k = 1 are easily checked. Assuming the
identities are true for k  - 1, we show they must be true for k. The left-hand side is\sum k

i=1 \beta ij\^a
i
i =

\sum k - 1
i=1 \beta ij\^a

i
i + \beta kj\^a

k
k =  - 

\sum min(j,k - 1)
i=1 \alpha ij\^a

k - 1
i +

\sum min(j,k)
i=1 \alpha \ast 

ik\alpha ij\^a
k
k

(by the induction hypothesis and the definition of \beta kj) =  - 
\sum min(j,k)

i=1 \alpha ij\^a
k
i (by the

Greville identity). This completes the induction step.
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Taking the inner product of ak with both sides of the identities for k  - 1 in
Lemma 23 immediately yields a scalar identity.

Lemma 24. For j, k \geq 1,

k\sum 
i=1

\beta \ast 
ij \~\alpha ik =  - \alpha \ast 

jk,

where \~\alpha ik = \langle \^aii, ak\rangle for i < k, \~\alpha kk = 1, and \~\alpha ik = 0 for i > k. A fine point to note
here is that \~\alpha kk = 1 is an update coefficient used before we know \^akk. From the two
cases of Theorem 18, we have \langle \^akk, ak\rangle = 1 for the first case, but \langle \^akk, ak\rangle = 1  - 1

\beta kk

for the alternative case.

From their definitions, we have \alpha k - 1,k = \~\alpha k - 1,k for every k \geq 2. The next identity
relates the \alpha 's and \~\alpha 's in general.

Lemma 25. For j, k \geq 1,

 - 
k\sum 

i=j

\alpha ji\~\alpha ik = \delta jk.

Proof by induction. The cases for j \geq k and j = k  - 1 are easy to check by
definition. These include the cases for k = 1, 2. For k = 3, we have \alpha 13 = \langle \^a21, a3\rangle . In
this inner product, substitute for \^a21 with the Greville identity \^a21 = \^a11  - \alpha \ast 

12\^a
2
2. This

gives \alpha 13 = \~\alpha 13  - \alpha 12\~\alpha 23. Similarly, for the j = k  - 2 case, we have in general that
\alpha k - 2,k = \~\alpha k - 2,k  - \alpha k - 2,k - 1\~\alpha k - 1,k.

Next we suppose the lemma is true for k  - 1. Then for the k  - 1 vectors
a1, a2, . . . , ak - 2, ak, we have, for j = 1, . . . , k  - 3,

\langle \^ak - 2
j , ak\rangle = \langle \^ajj , ak\rangle  - 

k - 2\sum 
i=j+1

\langle \^ai - 1
j , ai\rangle \langle \^aii, ak\rangle .

Using the Greville identity, \^ak - 1
j = \^ak - 2

j  - \langle \^ak - 2
j , ak - 1\rangle \ast \^ak - 1

k - 1, in the left-hand inner
product gives

\langle \^ak - 1
j , ak\rangle = \langle \^ajj , ak\rangle  - 

k - 2\sum 
i=j+1

\langle \^ai - 1
j , ai\rangle \langle \^aii, ak\rangle  - \langle \^ak - 2

j , ak - 1\rangle \langle \^ak - 1
k - 1, ak\rangle .

This is the lemma for k and j = 1, . . . , k  - 3. We observed earlier that the cases for
j = k  - 2, k  - 1, and k are true, so the induction step is complete.

Lemma 25 is a biorthogonal relation, and Lemma 24 is a ``half-biorthogonal""
relation, since its right side equals \delta jk for j \leq k. To put these lemmata in matrix

terms, define another upper triangular matrix \~U = [\~\alpha jk]. Then Lemma 25 is U \~U =

 - I. Since B = U\ast U , we confirm Lemma 24 again: B \~U =  - U\ast .

Appendix B. Alternative Butterfly Updates. We saw in Theorem 22 that \gamma = 0
is one of the cases where ar depends linearly on the rest of the vectors, \{ a\ell , . . . , ar - 1\} .
The Greville alternative (Theorem 18(2)) applies to these cases. This alternative

(without its scalar 1/\beta r) is qr =
\sum r - 1

j=\ell \alpha 
L
j \^a

L
j . To avoid computing this growing

sum at junctures when \gamma = 0, as well as to avoid storing and updating the middle
dual vectors, we will now derive a vector butterfly identity to recursively update the
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alternative sums. We will also derive a scalar butterfly identity to update the scalars
\beta r = 1 +

\sum r - 1
j=\ell | \alpha L

j | 2. We will also need updates for the left sum q\ell =
\sum r

j=\ell +1 \alpha 
R
j \^aj

and its scalar \beta \ell .
First, we use the Greville identity to relate the coefficients in these two sums back

to the coefficients from the middle grandparent node (M). For the left parent node

(L), we have \alpha L
j = \langle \^aLj , ar\rangle = \langle aMj  - \alpha 

(\ell ,M)\ast 
j \^aL\ell , ar\rangle , so that for j = (\ell +1), . . . , (r - 1),

\alpha L
j = \alpha 

(M,r)
j  - \alpha 

(\ell ,M)
j \alpha L

\ell .(B.1)

Similarly, for the right node (R) and j = (\ell + 1), . . . , (r  - 1),

\alpha R
j = \alpha 

(\ell ,M)
j  - \alpha 

(M,r)
j \alpha R

r .(B.2)

Using the left coefficient relations (B.1), we find

qr = \alpha L
\ell \^a

L
\ell +

r - 1\sum 
j=\ell +1

\alpha L
j \^aj

=
\sum 

\alpha 
(M,r)
j \^aMj  - \alpha L

\ell 

\sum 
\alpha 
(\ell ,M)
j \^aMj

+
\Bigl( 
\alpha L
\ell 

\Bigl[ 
1 +

\sum 
\alpha 
(\ell ,M)\ast 
j \alpha 

(\ell ,M)
j

\Bigr] 
 - 

\sum 
\alpha 
(\ell ,M)\ast 
j \alpha 

(M,r)
j

\Bigr) 
\^aL\ell ,(B.3)

or

qr = qRr  - \alpha L
\ell q

L
\ell +

\bigl( 
\alpha L
\ell \beta 

L
\ell  - \eta 

\bigr) 
\^aL\ell ,(B.4)

where \eta is the cross-term \eta =
\sum r - 1

j=\ell +1 \alpha 
(\ell ,M)\ast 
j \alpha 

(M,r)
j . Likewise, from (B.2), there is

also a left sum update,

q\ell = qL\ell  - \alpha R
r q

R
r +

\bigl( 
\alpha R
r \beta 

R
r  - \eta \ast 

\bigr) 
\^aRr .(B.5)

To update the scalars \beta \ell and \beta r, first we use (B.1) once more:

\beta r = 1 + | \alpha L
\ell | 2 +

r - 1\sum 
j=\ell +1

| \alpha L
j | 2

= 1 + | \alpha L
\ell | 2 +

\sum 
| \alpha (M,r)

j  - \alpha 
(\ell ,M)
j \alpha L

\ell | 2

=
\Bigl( 
1 +

\sum 
| \alpha (M,r)

j | 2
\Bigr) 
+ | \alpha L

\ell | 2
\Bigl( 
1 +

\sum 
| \alpha (\ell ,M)

j | 2
\Bigr) 
 - 2Re

\Bigl( 
\alpha L\ast 
\ell 

\sum 
\alpha 
(\ell ,M)\ast 
j \alpha 

(M,r)
j

\Bigr) 
= \beta R

r + | \alpha L
\ell | 2\beta L

\ell  - 2Re
\bigl( 
\alpha L\ast 
\ell \eta 

\bigr) 
.

(B.6)

Similarly, there is

\beta \ell = \beta L
\ell + | \alpha R

r | 2\beta R
r  - 2Re

\bigl( 
\alpha R
r \eta 

\bigr) 
.(B.7)

The only thing missing is a way to compute the cross-term \eta :

\eta =

r - 1\sum 
j=\ell +1

\alpha 
(\ell ,M)\ast 
j \alpha 

(M,r)
j =

\sum 
\langle \^aMj , a\ell \rangle \langle \^aMj , ar\rangle 

=
\Bigl( \sum 

\langle \^aMj , a\ell \rangle \^aMj
\Bigr) \ast 

\cdot 
\Bigl( \sum 

\langle \^a(M,r)
j , ar\rangle aj

\Bigr) 
=

\Bigl( \sum 
\langle \^aMj , a\ell \rangle \^aMj

\Bigr) \ast 
\cdot P\bfA M

ar

= \langle qL\ell , ar\rangle ,(B.8)
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where we have applied the fact that P\bfA M
\^aMj = \^aMj . Similarly, \eta \ast = \langle qRr , a\ell \rangle . These

identities ((B.4), (B.5), (B.6), (B.7), (B.8)) provide a complete update for the q's and
\beta 's.
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