CSE 562
Database Systems

Query Processing:
Algebraic Optimization

Some slides are based or modified from originals by
Database Systems: The Complete Book,
Pearson Prentice Hall 2nd Edition
©2008 Garcia-Molina, Ullman, and Widom

cse@buffalo

Outline – Query Optimization

• Overview
• Relational algebra level
 – Algebraic Transformations
• Detailed query plan level
 – Estimate Costs
 – Estimating size of results
 – Estimating # of IOs
 – Generate and compare plans

Relational Algebra Optimization

• Transformation rules
 (preserve equivalence)
• What are good transformations?

Algebraic Rewritings:
Commutative and Associative Laws

• Question 1: Do the above hold for both sets and bags?
• Question 2: Do commutative and associative laws hold
 for arbitrary Theta Joins?
Algebraic Rewritings: Commutative and Associative Laws

Union

- Commutative:
 \[R \cup S \rightarrow S \cup R \]
- Associative:
 \[(R \cup S) \cup T \rightarrow R \cup (S \cup T) \]

Intersection

- Commutative:
 \[R \cap S \rightarrow S \cap R \]
- Associative:
 \[(R \cap S) \cap T \rightarrow R \cap (S \cap T) \]

Question 1: Do the above hold for both sets and bags?

Question 2: Is difference commutative and associative?

Algebraic Rewritings for Selection: Decomposition of Logical Connectives

Question

- \(\sigma_{\text{cond1}} \) AND \(\neg \sigma_{\text{cond2}} \)
- \(\sigma_{\neg \text{cond1}} \)
- \(\sigma_{\text{cond1}} \) OR \(\sigma_{\text{cond2}} \)

Complete

- \(R \)

Does it apply to bags?

Pushing Selection Through Binary Operators: Union and Difference

- **Union**
 \[\sigma_{\text{cond1}} \]
 \[\sigma_{\text{cond2}} \]

- **Difference**
 \[\sigma_{\text{cond1}} \]
 \[\neg \sigma_{\text{cond2}} \]

Exercise: Do the rules for intersection
The right direction requires that \(\text{cond} \) refers to \(S \) attributes only.

The right direction requires that \(\text{cond} \) refers to \(S \) attributes only.

The right direction requires that all the attributes used by \(\text{cond} \) appear in both \(R \) and \(S \).

Pushing Selection Through Cartesian Product and Join

Rules: \(\pi + \sigma \) combined

Let \(X = \) subset of \(R \) attributes
\(Z = \) attributes in predicate \(P \) (subset of \(R \) attributes)

\[
\pi_X[\sigma_P(R)] = \pi_X[\sigma_P(\pi_X(R))]
\]

Pushing Simple Projections Through Binary Operators: Union

- A projection is simple if it only consists of an attribute list

- **Question 1**: Does the above hold for both bags and sets?
- **Question 2**: Can projection be pushed below intersection and difference?
- Answer for both bags and sets

Pushing Simple Projections Through Binary Operators: Join and Product

- **Exercise**: Do the rule for theta join
- **Exercise**: Write the rewriting rule that pushes projection below theta join

- \(B \) is the list of \(R \) attributes that appear in \(A \)
- Similar for \(C \)

- **Question**: What is \(B \) and \(C \)?
Rules: \(\pi + \sigma + \bowtie \) combined

\[
\begin{array}{c}
\pi_{xy} \\
\sigma_{\text{cond}} \\
\bowtie \\
R \\
\downarrow \\
\uparrow \\
S \\
\end{array} \quad \Rightarrow \quad \begin{array}{c}
\pi_{xy} \\
\sigma_{\text{cond}} \\
\bowtie \\
R \\
\downarrow \\
\uparrow \\
S \\
\end{array} \quad \begin{array}{c}
\pi_{xz'} \\
\downarrow \\
R \\
\uparrow \\
S \\
\end{array}
\]

- \(Z' = Z \cup \{ \text{attributes used in cond} \} \)

Projection Decomposition

- Let \(X = \text{set of attributes} \)
- \(Y = \text{set of attributes} \)
- \(XY = X \cup Y \)

Some Rewriting Rules Related to Aggregation: SUM

- \(\sigma_{\text{cond}}[\text{SUM}_{\text{GroupbyList};\text{GroupedAttribute}} \rightarrow \text{ResultAttribute}] (R) \)
- \(\text{SUM}_{\text{GroupbyList};\text{GroupedAttribute}} \rightarrow \text{ResultAttribute} [\sigma_{\text{cond}}(R)] \)
 - if \(\text{cond} \) involves only the \(\text{GroupbyList} \)

- \(\text{SUM}_{\text{GL};\text{GA}} \rightarrow \text{RA} (R \cup S) \)
 - \(\text{PLUS}_{\text{RA1};\text{RA2};\text{RA}}([\text{SUM}_{\text{GL};\text{GA}} \rightarrow \text{RA1}] R \triangleq [\text{SUM}_{\text{GL};\text{GA}} \rightarrow \text{RA2}] S] \)

- \(\text{SUM}_{\text{GL2};\text{RA1} \rightarrow \text{RA2}}[\text{SUM}_{\text{GL1};\text{GA} \rightarrow \text{RA1}} (R)] \)
- \(\text{SUM}_{\text{GL2};\text{GA} \rightarrow \text{RA2}} (R) \)

Question: does the above hold for both bags and sets?
Derived Rules: $\sigma + \bowtie$ combined

More Rules can be Derived:

$\sigma_{p\land q} (R \bowtie S) = [\sigma_p (R)] \bowtie [\sigma_q (S)]$

$\sigma_{p\land q\land m} (R \bowtie S) = \sigma_m [\sigma_p (R) \bowtie \sigma_q (S)]$

$\sigma_{p\lor q} (R \bowtie S) = [\sigma_p (R) \bowtie S] \cup [R \bowtie \sigma_q (S)]$

- p only at R
- q only at S
- m at both R and S

Which are “good” transformations?

- $\sigma_{p_1 \land p_2} (R) \rightarrow \sigma_{p_1} [\sigma_{p_2} (R)]$
- $\sigma_p (R \bowtie S) \rightarrow [\sigma_p (R)] \bowtie S$
- $R \bowtie S \rightarrow S \bowtie R$
- $\pi_x [\sigma_p (R)] \rightarrow \pi_x \{\sigma_p [\pi_x z (R)]\}$

Derivation for first one

$\sigma_{p\land q} (R \bowtie S) =$

$\sigma_{p} [\sigma_{q} (R \bowtie S)] =$

$\sigma_{p} [R \bowtie \sigma_{q} (S)] =$

$[\sigma_p (R)] \bowtie [\sigma_q (S)]$

Conventional Wisdom: Do Projects Early

$\pi_E \rightarrow \pi_A$ AND $B = \text{Late}$

$R(A, B, C, D, E) \rightarrow R$
But...

What if we have A, B indexes?

B = “cat”

A=3

Intersect pointers to get pointers to matching tuples

More Transformations in Textbook

- Eliminate common sub-expressions
- Other operations: duplicate elimination

Bottom line

- No transformation is always good at the logical query plan level
- Usually good:
 - early selections
 - elimination of Cartesian products
 - elimination of redundant sub-expressions
- Many transformations lead to “promising” plans
 - Commuting/rearranging joins
 - In practice too “combinatorially explosive” to be handled as rewriting of logical query plan