
Integrating databases and workflow systems
Srinath Shankar Ameet Kini David J DeWitt Jeffrey Naughton

Department of Computer Sciences
University of Wisconsin

Madison, WI 53706-1685
{srinath,akini,dewitt,naughton}@cs.wisc.edu

Abstract
There has been an information explosion in fields of sci-
ence such as high energy physics, astronomy, environ-
mental sciences and biology. There is a critical need for
automated systems to manage scientific applications and
data. Database technology is well-suited to handle sev-
eral aspects of workflow management. Contemporary
workflow systems are built from multiple, separately de-
veloped components and do not exploit the full power
of DBMSs in handling data of large magnitudes. We
advocate a holistic view of a WFMS that includes not
only workflow modeling but planning, scheduling, data
management and cluster management. Thus, it is worth-
while to explore the ways in which databases can be aug-
mented to manage workflows in addition to data. We
present a language for modeling workflows that is tightly
integrated with SQL. Each scientific program in a work-
flow is associated with anactive tableor view. The def-
inition of data products is in relational format, and in-
vocation of programs and querying is done in SQL. The
tight coupling between workflow management and data-
manipulation is an advantage for data-intensive scientific
programs.

1 Introduction
Cutting edge science has been witness to an information
explosion. In recent years, scientists from fields such as
high energy physics, astronomy, environmental sciences
and biology have been overwhelmed by the task of man-
aging the vast quantities of data generated by their ex-
periments. Some examples are ATLAS [7], SDSS [10],
GEON [5] and BIRN [1]. In addition to the data, scien-
tists also have to deal with a large number of specialized
programs. There is a critical need for automated sys-
tems to manage scientific applications and data. Thus,
the study of scientific workflows has gained importance
in its own right. Several WFMSs (GriPhyn [6], Griddb
[29], Zoo [26], Kepler [12]) have been proposed to pro-
vide functionality such as workflow modeling, execu-
tion, provenance, auditing and visualization. The im-
portance of the Grid and systems like Condor [4] to
workflow management has also been recognized. While
database technology has been utilized to some extent in
each of these systems, none of them really explore the
full power of DBMSs in handling large magnitudes of

data. Furthermore, contemporary WFMSs are built from
multiple components, each of which performs a separate
function. We believe it is a mistake to study the different
aspects of workflow management in isolation. Databases
should play a crucial role in the big picture, and this must
motivate architectural decisions with respect to workflow
modeling, planning, execution and data management.

2 The Grid - An added dimension
Recent research in scientific workflow management has
focused on the Grid. Several definitions of the grid ex-
ist [16]. Theoretically, a computing grid is like a power
grid. Users can ‘plug into’ it and avail themselves of the
vast computing resources available around the world.

The most popular distributed computing system that
approximates this behavior is Condor, which is used to
manage clusters (or pools) of machines. Condor is an ex-
cellent way to harvest the CPU cycles of idle machines.
It provides useful virtualizing services, such as migrat-
ing jobs and transferring the input and output files for a
job to the right machine. Furthermore, it is easy to cus-
tomize on a per-job basis. Users can specify the type of
environments they need to run their jobs, and individual
machines in the pool can implement policies regarding
the kinds of jobs they are willing to run. Thus, it is an in-
valuable tool for scientists with long-running, resource-
intensive jobs.

Condor has established itself as the work-horse of
scientific computing. At last count, (Jul 2005) it was
installed on more than 58000 machines organized across
1500 pools in universities and organizations world-wide.
Condor was developed in the early ‘80s primarily as a
cycle harvesting system. Since then a lot of the assump-
tions that motivated the design of Condor have changed.
In the ‘80s computing resources were scarce and expen-
sive. Now, large clusters of commodity machines have
become affordable for almost everyone. Although the
volumes of data available to and processed by typical
scientific applications has increased, the cost of storage
has also plummeted. In light of the advances in proces-
sor and disk technology over the last decade, we believe
it is worthwhile to re-evaluate some of the design de-
cisions made in the architecture of Condor. As the need
for cycle harvesting on idle desktop machines diminishes
and the need for better cluster management comes to the

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 5



fore, we feel that grid computing systems such as Con-
dor can exploit database technology to provide improved
functionality, scalability and reliability.

3 Related work
A lot of research has already been done in the field of
managingbusiness workflows with databases. Exam-
ples include active databases [31], enhanced datalog [15]
and relational transducers [11]. Oracle 9i introduced job
queues for the periodic execution of administrative and
house-keeping tasks defined in the procedural PL/SQL
language. Oracle 10g offers database views for moni-
toring the status of jobs, programs, program arguments
and schedules. Solutions for business workflows have
mainly concentrated on thecontrol flow between pro-
cesses.

Scientific workflows, on the other hand, pose an en-
tirely new set of challenges. Scientific jobs are usually
long-running and highly resource-intensive. Thus, ef-
ficient data-flow management is essential. In addition,
scientists require sophisticated tools to query and visual-
ize their data products. One of the first systems built to
handle workflows in this domain was Zoo [26], a desk-
top experiment management environment. It used the
object-oriented language Moose to model control flow
between jobs as relationships between entities that rep-
resented jobs, input data and output data. Job invoca-
tion was handled by assigning rules on these relation-
ships. Zoo also provided a variety of workflow auditing
capabilities that allowed users to query the state of the
database using the Fox query language. The Zoo system
was architected with a data-centric view of workflows
and was built on the Horse OODBMS.

The GriPhyn project [6] is a collaborative effort to-
ward a standard solution for handling scientific work-
flows. Its components include Chimera [23], Pegasus
[21] and a Replica Location Service [19]. Chimera al-
lows users to declare programs, their logical data prod-
ucts and the composite workflow graph in a Virtual Data
Language. Given a request for a particular virtual data
product, Chimera analyzes the Virtual Data Catalog and
comes up with an abstract DAG representing the se-
quence of operations that produce that data. Pegasus,
the planner, locates physical file replicas (using RLS)
and uses resource information (from the Globus Mon-
itoring and Discovery Service [25]) to come up with a
concrete plan of execution. The concrete plans produced
by Pegasus are in fact Condor DAGMan [2] submit files.
The DAGMan scheduler in Condor is used to execute
the programs on a Condor pool. Pegasus uses artificial
intelligence techniques to choose amongst multiple pos-
sible physical replicas and minimize resource usage in
its planning algorithms.

The Ptolemy II [9] is based on the concept of actors,

which are independent components that perform tasks
such as data transformations, specific steps in an algo-
rithm or simply opening a browser or a shell program.
Actors have well-defined interfaces called ports and can
be composed into scientific workflows. The idea is to
promote the reuse of entities and thus make scientific
workflows easy to design and more modular. Kepler [12]
provides extensions to Ptolemy such as aWebservice ac-
tor to enable access to remote resources andFileStager,
FileFetcher andGlobusJob actors to enable workflows
to make use of the Grid. It also provides aDirector ac-
tor, similar to Condor’s DAGMan, that can be used to
schedule the execution order of individual actors. The
Kepler system has been used in scientific projects such
as GEON, SEEK and SciDAC/SDM. While Kepler pro-
vides a useful way to model scientific workflows, it does
not address the larger issues of planning workflows or
providing fault-tolerance measures.

In GridDB [29], the inputs and outputs of programs
are modeled as relational tables. It allows users to define
programs and the relationship between their inputs and
ouptuts in a functional data modeling language (FDM).
Insertion of tuples in input tables triggers the execution
of programs in the workflow. Programs are executed by
submitting them to Condor.

Turning to workflow execution substrates, the Con-
dor team at UW-Madison has worked on a number
of projects aimed at increasing the functionality and
efficiency of Condor. These include Stork [28] and
DiskRouter [3] for efficient data placement, Condor-G
(which integrates Condor with the Globus toolkit [25])
and Hawkeye [8] (which lets users monitor their jobs).
These have been integrated with Condor in varying de-
grees.

Perhaps the most relevant work with respect to the
execution of scientific programs was done by Gray et
al. [24]. Using the cluster-finding example from the
Sloan Digital Sky Survey, they demonstrated the benefits
of modern DBMSs, such as using indices, parallelizing
query execution and using efficient join algorithms. The
performance obtained by using a database (Microsoft’s
SQL Server) to store and query astronomical data was or-
ders of magnitude better than previous implementations
of the algorithm. They advocate a tighter integration of
computation and data, i.e. involving the DBMS in the
analysis and computation of scientific applications and
not relegating it to a passive store.

4 Limitations of current workflow systems
Most of the workflow management systems described
above are composed of multiple components that were
developed independently. Thus, inter-component com-
munication is set up along very rigid channels. For ex-
ample, consider the role of planning in a WFMS. In their

6 SIGMOD Record, Vol. 34, No. 3, Sept. 2005



analysis of batch workloads across remote compute clus-
ters, Bent et al. [14] showed that there are qualitative
differences in the types of I/O performed by an individ-
ual job during its lifetime.Batch I/O refers to the input
that is common to all jobs in a batch, whilepipeline I/O
is the data flow that occurs between jobs in a particular
DAG. The authors recognized the importance of exploit-
ing the sharing characteristics of batch input and provid-
ing locality of execution for programs that share pipeline
I/O to minimize network traffic. Current WFMSs are not
closely integrated with the user data, and are thus unable
to do such detailed planning. For example Pegasus, the
planning component of GriPhyN, which uses AI tech-
niques to arrive at globally optimal solutions, doesn’t
have access to detailed job characteristics. GridDB cur-
rently has no way of planning workflows at all, since
it is constrained by the Condor job-submission inter-
face. Incorporating planning into such systems will re-
quire a substantial reworking of their design. While the
approach pursued by Gray et al. seems the most holis-
tic solution, it involves invoking program modules from
within SQL statements (in the form of user-defined func-
tions or stored procedures). Most databases do not di-
rectly execute binaries or interpret arbitrary code. Pro-
grammers who wish to invoke modules as part of SQL
statements have to conform to strict specifications while
writing and compiling them, and are usually constrained
in the languages they can use (C,C++ and Java). Scien-
tists may balk at having to rewrite their applications to
allow them to be run by a database. We feel the con-
tinued usage of legacy applications in languages such
as Fortran, and the importance of file-based (as opposed
to database) I/O in the scientific domain may hinder the
adoption of the technique espoused by Gray et al. Fur-
thermore, rewriting workflows in SQL is not sufficient.
Scientists also want ways to set up and execute work-
flows.

The Zoo system used objects and relationships to
model workflows. Like GridDB, triggers were used to
activate workflows. However, Zoo was designed as a
desktop management system and not for cluster manage-
ment, which is an important component of a WFMS. Zoo
had no mechanisms for gathering workload characteris-
tics, maintaining data replicas across nodes and schedul-
ing data transfers between machines.

5 Why a database is essential
At this juncture, it is important to concretize the notion
of a WFMS. How is it used, and what demands do we
make of it in terms of functionality? From the user’s per-
spective, there are three important aspects to a WFMS.

• The declaration and specification of workflows,
processes and data

• The invocation of scientific workflows

• The ability to monitor workflows.
A WFMS must make it easy for a user to do the
above while successfully abstracting away the following
behind-the-scenes activities:
Workflow Planning – The various processes that com-

prise a workflow and the attendant data transfer
must be planned to maximize system efficiency and
throughput.

Scheduling – It is the responsibility of the WFMS to in-
voke individual programs and schedule data trans-
fers according to a plan.

Data management –A WFMS must keep track of the
data produced by user workflows, manage data
replicas and consistency, provide data recovery in
the face of failure and maintain versions of user pro-
grams and data as a workflow evolves.

Cluster management –A WFMS must monitor the
state of its cluster, including network connectivity
and machine parameters such as disk space and load
averages. It must handle temporary and permanent
machine failure in a transparent manner while dis-
tributing load evenly.

As Sections 3 and 4 show, database technology has been
used only to a limited extent, mostly to store metadata
and task descriptions. For instance, Griphyn’s RLS sim-
ply uses a database to store its replica catalog. GridDB
uses a database to storememo tables, which are corre-
spondences between the inputs and outputs of a program
that has completed, andprocess tables that contain state
information of currently executing programs. In com-
mercial databases, job queues have been used to sched-
ule administrative tasks and for interprocess communi-
cation. We believe database technology has a lot more to
offer the realm of scientific workflow management.

Planning – The research in [14] demonstrates the
need for workflow planning if clusters are to scale to
a large number of machines (about 100,000) executing
huge batch workloads. No satisfying solution currently
exists to this problem, and we believe it is an important
one to solve in the near future. Database technology has
long concerned itself with the issue of optimizing queries
over distributed data sources to minimize CPU time and
network and disk I/O ([22],[30]). Moreover a great deal
of attention has been paid to dynamic query optimiza-
tion [20], which uses feedback from currently executing
queries to make plan adjustments. Thus, databases are
ideally suited to planning data-intensive scientific work-
flows in dynamic environments.

Provenance– A good workflow management sys-
tem should provide administrative assistance in addi-
tion to job scheduling services. The importance of data
provenance has already been recognized in the GriPhyn
and GridDB projects. Data provenance has been stud-
ied from both theoretical [17] and practical perspectives

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 7



by the database community. Data management systems
such as [32] have demonstrated the ability of databases
in providing real provenance services to users.

Concurrency control – As cluster and workload
sizes increase, it becomes necessary to recognize and
prevent interference between simultaneously executing
jobs. Current WFMSs do not address this problem ade-
quately. Databases are good at handling concurrent ac-
cess at various levels of granularity, maintaining replica
consistency for data objects and resolving conflicts. In
addition, databases can provide different degrees of con-
sistency for different transactions.

Recovery– Recognizing and handling multiple fail-
ure modes in a grid computing environment is very im-
portant. For example, a job must not be ‘lost’ or ‘for-
gotten’ when machines involved in its execution crash.
Databases are good at recovering data and system state
in a transparent way while minimizing the impact on cur-
rently executing processes and efficiently balancing load
on the remaining machines.

Transactional semantics and persistence– The no-
tion of a transaction is essential to workflows. The atom-
icity and durability of certain sequences of actions, such
as moving data and jobs from one machine to another,
is important. Condor’s DAGMan is a custom-designed
tool that allows users to specify workflow graphs that
are guaranteed to be executed. Even this popular tool
doesn’t allow users to ‘rollback’ portions of a graph
when their programs fail or abort jobs that were mistak-
enly submitted or violated certain constraints. Transac-
tional semantics would provide greater functionality and
simplify the design of WFMSs.

Querying capabilities–In addition to user data, grid
compute clusters generate large amounts of operational
data on a daily basis. This data includes the status of ma-
chines and jobs in the cluster, user information and file
access information. For example, in Condor, such data is
spread over log files across multiple machines, making it
very hard to administer. In fact, a lot of it is thrown away
due to archaic space management policies. The tasks of
managing a pool of machines, monitoring its health and
diagnosing problems could be simplified and even auto-
mated if its operational data were accessible using SQL
in a uniform, declarative fashion. The support for SQL
provided by a DBMS would also allow users to query the
status of their personal jobs and data without impinging
the privacy of other users.

To summarize, many components required of a sci-
entific WFMS have been a part of DBMS technology
for a long time. A comprehensive system that encom-
passes workflow planning, data and cluster management
must have a database system as its core. In fact, since
databases provide much of the functionality required of
a WFMS, we feel it makes sense to ask – Can we aug-

ment databases to handle workflows in addition to data?
A tightly integrated architecture is needed and the de-
sign of all components of a WFMS must be motivated
by the use of database technology. No aspect of work-
flow management should be viewed in isolation from the
others. For instance, a workflow modeling language that
is similar to SQL could leverage database query opti-
mization techniques for the efficient execution of data-
intensive scientific jobs. In addition, in order to plan and
schedule workflows, query optimizers must have access
to information such as replica locations, machine avail-
ability and load in relational format. This would allow
most WFMS management operations to be performed in
a way analogous to traditional data management opera-
tions.

6 A modeling framework
In this section we present a workflow modeling language
that tightly integrates WFMSs and DBMSs. First, we
identify some of the features a workflow modeling lan-
guage should possess:
Program specification – The language should let users

declare programs and specify an ‘invocation for-
mat’ for the programs. By invocation format we
mean the format in which the program and its pa-
rameters are presented to a cluster for execution.
For example, the invocation format could be a shell
command, or a Condor submit file.

Data specification – Users may wish to explicitly
model the input and output of their programs, and
a modeling language must allow users to assign a
schema to this data.

Data ‘transducers’ – Almost all scientific programs
are written to deal with data in files. Thus, a mod-
eling language must provide for transducers that in-
terpret data resident in flat files and provide a rela-
tional ‘view’ of it.

Specification of control and data flow – Users must
be able to compose their programs and data into a
unified workflow.

Workflow invocation – The modeling language must
allow users to activate workflows in a transparent
and well-defined manner.

To demonstrate our modeling language we use the AT-
LAS high energy physics workflow ([29]). An event gen-
erator program (gen) is used to feed two different simu-
lator (atlsim and atlfast) and their output is compared
(Figure 1).

The modeling language we present is based on the
concept of anactive table. Every program in a workflow
is associated with an active relational table. An active
table has two parts to its schema – one for the input of the
program and one for its output. For example, the event
generatorgen is declared in the following way (keywords
are in uppercase)

8 SIGMOD Record, Vol. 34, No. 3, Sept. 2005



Figure 1: The simplified Atlas Workflow

Example I (GEN):
CREATE ACTIVE TABLE Gen
WITH PROGRAM ’/path/to/gen’
INPUT (pmas INTEGER) INVOCATION (" $pmas")
OUTPUT (eventfile VARCHAR) FORMAT ’genschema.xml’

Programgen takes as input an integerpmas and pro-
duces a file of events (to be used by the simulators).
The INPUT and OUTPUT clauses capture this informa-
tion – pmas contains the integer parameter forgen, and
eventfile contains the name of the file it produces.
The schema of an active table is the concatenation of
its input and output fields. Thus, the tableGen has the
schemaGen(pmas INTEGER,eventfile VARCHAR).
The INVOCATION clause specifies that the program is
invoked by issuing the command ‘gen <pmas>’. The
purpose of theFORMAT clause is explained in the next
example.

Workflows are composed by declaring active views,
which are similar to active tables. Consider the program
atlfast, which takes as input the event file produced by
gen. The declaration ofatlfast is as follows
Example II (ATLFAST):
CREATE ACTIVE VIEW Atlfast
WITH PROGRAM ’/path/to/atlfast’
INPUT (eventfile varchar)
INVOCATION ("-events $eventfile")
AS SELECT Gen.eventfile FROM Gen
OUTPUT (imas integer) FORMAT ’atlschema.xml’

As was the case in the Example I, the rela-
tional view Atlfast is associated with the pro-
gram atlfast. The active view has been defined to
take as input the filenameGen.eventfile, which
is output by the programgen. (It is not required
that the INPUT field in Atlfast also be called
eventfile). The tableAtlfast has the schema
Atlfast(eventfile VARCHAR, imas INTEGER).

Most scientific programs process data in a filesystem.
For instance, the output of theatlfast program is an inte-
ger which it stores in a file. To interpret data in files, the

WFMS needs to know the format in which it is stored,
and what the desired relational format is. TheFORMAT

clause is used to specify an XML file containing this in-
formation.

Workflow automation is accomplished in the follow-
ing way – In examples I and II,Gen is the base table, and
Atlfast is the derived table. The workflow is set up by
populating the base table with input data. Each record
of input corresponds to a separate execution of the work-
flow. A section of the workflow is invoked by issuing a
query on the corresponding derived table. For instance,
Gen could be populated as follows:
INSERT INTO Gen(pmas) VALUES (100)
INSERT INTO Gen(pmas) VALUES (200)
etc.

The gen-atlfast section of the ATLAS workflow can
be explicitly started using the SQL query:
SELECT Atlfast.imas FROM Atlfast

The general idea is that a program is invoked when-
ever a query is issued on theOUTPUT fields of its ac-
tive table (in the above example, the output field is
imas). Thus, gen is invoked for each value ofpmas
(100,200,. . . ), andatlfast is called for each event filegen
produces. If a program fails due to an error or abnormal-
ity, the correspondingOUTPUT field is filled with null
or an appropriate error value. For example, suppose the
programgen with input 200 fails. Then the correspond-
ing Gen.eventfile field is set tonull. The exact in-
put that caused the error can be detected by the simple
query:
SELECT Gen.pmas FROM Gen
WHERE Gen.eventfile IS NULL

To complete the ATLAS example, here is the decla-
ration of theatlsim program. Its input and output are
similar toatlfast
Example III (ATLSIM):
CREATE ACTIVE VIEW Atlsim
WITH PROGRAM ’/path/to/atlsim’
INPUT (eventfile varchar)
INVOCATION ("-events $eventfile")
AS SELECT Gen.eventfile FROM Gen
OUTPUT (imas integer) FORMAT ’atlschema.xml’

The comparison between the output of the two sim-
ulator programs can now be done by means of a SQL
query
Example IV (COMPARE):
SELECT F.imas, S.imas FROM Atlfast F, Atlsim S
WHERE F.eventfile = S.eventfile

Thus, in this workflow modeling language, initial in-
put data and programs are represented as active tables,
and derivative programs and data as active views. For
each program in the workflow, exactly one table/view
has to be defined. Any section of the workflow can be
explicitly invoked by issuing a SQL query on the corre-
sponding views or tables (Such a query is the compari-
son query in Example IV). Workflow automation is sim-
ply an extension of active view maintenance. Since the

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 9



views are generated by the output of possibly long run-
ning programs, it might be best to materialize them in-
stead of regenerating them on each query. This prevents
unnecessary re-execution of programs. Like traditional
materialized views, active views can be updated in two
ways

• When base data changes (that is, input is inserted
into the initial tables in the workflow), successive
stages of the workflow can be invoked – the ‘push’
method

• When a query is issued (explicit invocation) views
can be updated if necessary – the ‘pull’ method.

If the ‘pull’ mechanism is adopted, users might have to
wait long periods of time for the result of a query. We
feel a ‘push’ mechanism would increase the degree of
automation the WFMS provides.

The modeling language presented above is meant for
tight integration with a database. The declaration and
definition of workflows is in relational format, and the
invocation and querying is done in SQL. Thus, as ex-
ample IV shows, data manipulation can be closely in-
tegrated with workflow execution. Moreover, the query
graph that represents the output (in this case, example
IV) is the same as the workflow graph. Coupled with a
knowledge of the data products, this opens the door to
workflow optimization using database techniques. For
instance, the WFMS need not materialize the outputs of
atlfast andatlsim before executing the join – a pipelined
plan can be chosen in which the join is executed ‘on the
fly’, thus improving efficiency. Architectures that simply
layer a modeling framework over an execution substrate
do not lend themselves to such optimizations.

7 An execution framework
We now turn to the execution substrate, with Condor as
the standard. Condor consists of several daemons such
as theschedd to which users present jobs for submission,
thestartd which is responsible for advertising machines
in the pool, and thenegotiator which matches jobs to ma-
chines. The task of managing, debugging and querying
the system is a complex task involving multiple daemon
log files across hundreds of machines in the pool. Re-
cent research at UW-Madison has addressed many of the
problems facing system administrators and users by pro-
viding a powerful window into the system while simulta-
neously laying the foundation for a more comprehensive
DB-managed cluster architecture. The original Condor
daemons on different machines in the pool were modi-
fied to report operational data to a central database. This
data lends itself to diagnostic queries (Which machines
are down and for how long? Why hasn’t a job run?),
as well as user queries (What is the status of my jobs?
How much system run-time have I got?). Additionally,
certain information that was hard to obtain previously is

now easily accessible. For instance, any aggregate query
on the I/O performed by a job would previously involve
scanning multiple log files over all the machines the job
ever executed on – now it’s a simple SQL query.

The instrumentation of the Condor daemons is also
an important first-step toward building a WFMS around
a DBMS – the operational data collected could be used
to compile statistics about jobs (such as run-time, I/O
activity, disk usage), data (such as file usage, size and
sharing characteristics) and machines (load average, job
preference etc). This data would be invaluable in plan-
ning, scheduling and executing scientific workloads. In-
deed, fundamental changes can be made to the Condor
architecture itself. For example, a regular database join
can be adapted to perform the task ofmatchmaking –
pairing jobs and machines based on their requirements.
Initial work in this area has produced encouraging re-
sults [27]. The daemons themselves can be simplified
if the database is used smartly. For example, job sub-
mission can be reduced to inserting a few records in a
‘Jobs’ table in the database. Log files can eventually be
eliminated. This architecture paves the way for a more
active role for the database in tasks such as planning, job
scheduling, data transfer and cluster management.

8 Challenges and conclusion
Several challenges lie in the way of a DB-integrated
workflow management system. Firstly, there is an ob-
vious ‘impedance mismatch’ between the execution en-
vironment offered by a database and that offered by a
traditional OS. Most scientists are used to programs that
handle data in a traditional file system. Storing data in
relations is quite different. Databases usually require a
fixed schema and do not allow arbitrarily complex ob-
jects. While traditional user programs can access files in
any pattern, access to relations is usually done via cur-
sors. A practical approach would involve allowing the
database to execute external user programs and provid-
ing a real-time relational ‘view’ of user data, queryable
via SQL. A preliminary implementation of this function-
ality has been made in the PostgreSQL open source OR-
DBMS. It allows users to specify a schema for data res-
ident in the file system hierarchy and query this data us-
ing SQL. It supports the creation of indices on these rela-
tional views of file data. However, updates to these views
via the database are not allowed. Handling complex data
types that scientists are used to and synchronizing up-
dates between the operating system and the database is
still an open problem. Ideally, the DBMS must allow
the integration of ‘external’ services such as filesystem
access with traditional SQL access. This would make it
possible to rewrite the more data-intensive portions of a
workflow in SQL for better performance.

Becla and Wang [13] present an interesting perspec-

10 SIGMOD Record, Vol. 34, No. 3, Sept. 2005



tive on using database techniques for scientific work-
loads. The authors recognized the importance of concur-
rency control, scalability, durability and administrative
ease in dealing with two terabytes of data produced by
2000 nodes per day in the BaBar high energy physics ex-
periment. An initial OODBMS (Objectivity/DB) based
approach was eventually abandoned in favor of a hybrid
RDBMS/file-based solution. The authors felt that gen-
eral purpose solutions are not applicable in dealing with
systems of this magnitude, and that some customization
is required to tune off-the-shelf data and workflow man-
agement products to handle specific scientific computing
environments.

Scientific workflows have traditionally dealt with
compute-intensive tasks, while most databases are de-
signed to minimize disk I/O. In recent years, research
has been done in the optimization of queries with User-
Defined Functions [18]. Like scientific tasks, UDFs are
usually treated as black-boxes and are often compute-
intensive. However, unlike scientific programs, UDFs
are used in conjunction with SQL queries and run for
seconds instead of hours. Gathering statistics such as
job execution time and data access patterns is essential
to planning scientific computation. It remains to be seen
how such information can be obtained by the database
from the execution of scientific programs. Perhaps some
combination of user-provided hints and historical infor-
mation will be necessary.

In conclusion, though the area of scientific data man-
agement is still young, we feel that any direction it takes
will certainly incorporate database technology in a cru-
cial way. Research in the field must reflect this. Since
the contributions database research can make to the sci-
entific realm are quite clear, it is hoped that exploring the
relation between the two will open up new and exciting
avenues of research for the database community.

References
[1] Biomedical informatics research network.

http://www.nbirn.net.
[2] Condor dagman. http://www.cs.wisc.edu/condor/dagman/.
[3] Condor diskrouter. http://www.cs.wisc.edu/condor/diskrouter/.
[4] Condor high throughput computing.

http://www.cs.wisc.edu/condor.
[5] Cyberstructure for the geosciences.

http://www.geongrid.org.
[6] Grid physics network. http://www.griphyn.org.
[7] Grid physics network in atlas.

http://www.usatlas.bnl.gov/computing/grid/griphyn/.
[8] Hawkeye. http://www.cs.wisc.edu/condor/hawkeye/.
[9] Ptolemy ii: Heterogenous modeling and design.

http://ptolemy.eecs.berkeley.edu/ptolemyII/.
[10] Sloan digital sky survey. http://www.sdss.org.
[11] S. Abiteboul, V. Vianu, et al. Relational transducers for

electronic commerce. InPODS, pages 179–187, 1998.
[12] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludäscher,

and S. Mock. Kepler: An extensible system for design
and execution of scientific workflows. InSSDBM, pages
423–424, 2004.

[13] J. Becla and D. L. Wang. Lessons learned from managing
a petabyte. InCIDR, pages 70–83, 2005.

[14] J. Bent, D. Thain, A. C. Arpaci-Dusseau, R. H. Arpaci-
Dusseau, and M. Livny. Explicit control in the batch-
aware distributed file system. InNSDI, pages 365–378,
2004.

[15] A. J. Bonner. Workflow, transactions, and datalog. In
Proceedings of the Eighteenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems,
1999, pages 294–305. ACM Press, 1999.

[16] M. Bote-Lorenzo and E. Dimitriadis, Y.and Gomez-
Sanchez. Grid characteristics and uses: a grid definition.
In Proceedings of the First European Across Grids Con-
ference, pages 291–298, February 2003.

[17] P. Buneman, S. Khanna, and W. C. Tan. Why and where:
A characterization of data provenance. InICDT, pages
316–330, 2001.

[18] S. Chaudhuri and K. Shim. Optimization of queries with
user-defined predicates.ACM Trans. Database Syst.,
24(2):177–228, 1999.

[19] A. L. Chervenak et al. Giggle: a framework for construct-
ing scalable replica location services. InSC, pages 1–17,
2002.

[20] R. L. Cole and G. Graefe. Optimization of dynamic query
evaluation plans. InSIGMOD Conference, pages 150–
160, 1994.

[21] E. Deelman, J. Blythe, et al. Pegasus: Mapping scien-
tific workflows onto the grid. InEuropean Across Grids
Conference, pages 11–20, 2004.

[22] D. J. DeWitt and other. The gamma database machine
project. IEEE Trans. Knowl. Data Eng., 2(1):44–62,
1990.

[23] I. T. Foster, J.-S. Vöckler, M. Wilde, and Y. Zhao.
Chimera: Avirtual data system for representing, query-
ing, and automating data derivation. InSSDBM, pages
37–46, 2002.

[24] J. Gray et al. When database systems meet the grid. In
CIDR, pages 154–161, 2005.

[25] K. He, S. Dong, L. Zhang, and B. Song. Building grid
monitoring system based on globus toolkit: Architecture
and implementation. InCIS, pages 353–358, 2004.

[26] Y. E. Ioannidis, M. Livny, A. Ailamaki, A. Narayanan,
and A. Therber. Zoo: A desktop experiment management
environment. InSIGMOD Conference, pages 580–583,
1997.

[27] A. Kini, S. Shankar, D. DeWitt, and J. Naughton. Match-
making in database systems, submitted for publication.
Submitted for publication.

[28] T. Kosar and M. Livny. Stork: Making data placement a
first class citizen in the grid. InICDCS, pages 342–349,
2004.

[29] D. T. Liu and M. J. Franklin. The design of griddb:
A data-centric overlay for the scientific grid. InVLDB,
pages 600–611, 2004.

[30] G. M. Lohman, C. Mohan, et al. Query processing in R*.
In Query Processing in Database Systems, pages 31–47.
1985.

[31] N. W. Paton and O. Dı́az. Active database systems.ACM
Comput. Surv., 31(1):63–103, 1999.

[32] J. Widom. Trio: A system for integrated management
of data, accuracy, and lineage. InCIDR, pages 262–276,
2005.

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 11




