Exporting and Interactively Querying Web Service-Accessed Sources: The CLIDE System

Michalis Petropoulos

Database Seminar, February 2010

Large-Scale Data Integration Systems

What queries can the mediator answer for me? CLIDE

Running Example

Parameterized Views

Conjunctive Queries CQ
 + Equality & Comparison Conditions
 + Parameters
Running Example

Integrated Schema

- Integrated schema puts together the Dell and Cisco schemas

Attribute Associations
- (Computers.cid, NetCards.cid)
- (NetCards.rate, Routers.rate)
- (NetCards.standard, Routers.standard)

Sophisticated Mediators Make Feasible Queries Hard to Predict

Feasible Queries FQ
- Equivalent CQ query rewritings using the views
- Might involve more than one views
- Order might matter

Query: Feasible
Get all {Wireless Routers}, together with their NetCards and their compatible 'Wireless' Routers

The CLIDE Solution

- A query formulation interface, which interactively guides the developer toward feasible queries by employing a coloring scheme
QBE-Like Interfaces

Microsoft SQL-Server

CLIDE Interface

• Table, selection, projection and join actions
• Feasibility Flag
• Color-based suggestions

Example Interaction

Snapshot 1

Yellow ➔ required action
- All feasible queries require this action

White ➔ optional action
- Feasible queries can be formulated w/ or w/o these actions

Snapshot 2

Blue ➔ required choice of action
- At least one feasible query cannot be formulated unless this action is performed

ComByCpu ('P4')
cid
cpu
ram
price

A123
P4
512
400

B123
P4
1024
550

C

ram
price
512
400
1024
550
Example Interaction

Join Lines:
- Only yellow and blue are displayed
- Must appear in Attribute Associations

Example Interaction

- \(\Rightarrow \) any other constant
- \(\textbf{Red} \) prohibited action
 - Does not appear in any feasible query
 - Lead to "Dead End" state

Example Interaction

Demo
CLIDE Properties

- **Completeness of Suggestions**
 - Every feasible query can be formulated by performing yellow and blue actions at every step

- **Summarization of Suggestions**
 - At every step, only a minimal number of actions is suggested, i.e., the ones that are needed to preserve completeness

- **Rapid Convergence By Following Suggestions**
 - The shortest sequence of actions from a query to any feasible query consists of suggested actions

Interaction Graph

- Nodes are queries: One for each $q \in \text{CQ}$
- Edges are actions: Table, selection, projection and join actions
- Green nodes are feasible queries
- Infinitely big structure
 - All CQ queries
 - All possible combinations of actions formulating them

Interaction Graph: Colorable Actions

- Colorable actions α_c label outgoing edges of the current node

Interaction Graph: Colors

- **Yellow action α**
 - Every path from current node n to a feasible node contains α

- **Blue action α**
 - At least one feasible query cannot be formulated unless this action is performed (summarization)

- **Red action α**
 - No path to a feasible node contains α
CLIDE Architecture

- Back-End invoked every time the user performs an action
 - i.e., the user arrives at a new node in the interactions graph

Closest Feasible Queries Algorithm

- Color Algorithm
- Parameters Algorithm
- Closest Feasible Queries Algorithm
 - Aliases Collapse Rule
 - Maximally-Contained Rewriter

Maximally Contained Queries FQ_{MC}

- Assuming fixed SELECT clause (projection list)
- Covered extensively in literature
 - MiniCon, Bucket, InverseRules Algorithms
- FQ_{MC} is finite

Closest Feasible Queries FQ_C Algorithm

- Compute maximally contained queries FQ_{MC}
- **Theorem:** All FQ_C queries are reachable via a path of length $p \leq p_L$
 - The radius p_L is the longest path to a maximally contained query
Closest Feasible Queries FQ_C Algorithm

Challenge: Find the Closest Feasible Queries

- **Theorem:** All queries in FQ_{MC} are in FQ_C.
- But not all queries in FQ_C are in FQ_{MC}.

Solution: Collapse Aliases

- Collapse Aliases to compute $FQ_C \setminus FQ_{MC}$.
- Check satisfiability.

Color Algorithm

Yellow and Blue
- An action α is colored based on which closest feasible queries it appear in.
 - Yellow, if α appears in all queries in FQ_C.
 - Blue, if α appears in at least one (but not all) query in FQ_C.

White and Red
- Attach Maximum Projection Lists to Closest Feasible Queries
 - Projections that can be added to a feasible query, without compromising feasibility.
- Projection α is white if in the maximum projection list.
- Color selections based on projections.

CLIDE Implementation & Optimizations

- Views expansion introduce redundancy.
 - Affects CLIDE's rapid convergence and summarization.
- Efficient containment test crucial to redundancy removal.
CLIDE Performance

Chains of Stars – No Parameters

- **Queries**
 - A-span = 7
 - B-span = 3
 - Selections = 4, 6, 8, 10

- **Schema**

- **Views**

Chains of Stars – With Parameters

- **Queries**
 - A-span = 7
 - B-span = 3
 - Selections = 4, 6, 8, 10

- **Schema**

- **Views**

Chains of Stars – No Parameters

Chains of Stars – With Parameters
CLIDE Summary

First interactive query formulation interface based on source and mediator capabilities

Applicability
• Service-Oriented Architectures
• Privacy-Preserving Services

Contributions
• Interaction Guarantees: Rapid Convergence, Completeness, Summarization of Suggestions
• Interaction Graph
• Back-End Algorithms
 - Closest Feasible Queries, Colors, Parameters
• Modular, Customizable Architecture

http://www.clide.info