
BioNav: Effective Navigation on Query Results of 

Biomedical Databases 
Abhijith Kashyap

*1
, Vagelis Hristidis

#
, Michalis Petropoulos

*2
, Sotiria Tavoulari

+
 

*
Department of Computer Science and Engineering, SUNY at Buffalo 

201 Bell Hall, Buffalo, NY 14260-2000, USA 
1
rk39@cse.buffalo.edu 

2
mpetropo@cse.buffalo.edu 

#
School of Computing and Information Sciences, Florida International University 

11200 S.W. 8th Street, Miami, FL 33199, USA 

vagelis@cis.fiu.edu 

+
Department of Pharmacology, Yale University 

333 Cedar Street, New Haven, CT 06520-8066, USA 

sotiria.tavoulari@yale.edu 

 
Abstract— Search queries on biomedical databases like PubMed 

often return a large number of results, only a small subset of 

which is relevant to the user. Ranking and categorization, which 

can also be combined, have been proposed to alleviate this 

information overload problem. Results categorization for 

biomedical databases is the focus of this work. A natural way to 

organize biomedical citations is according to their MeSH 

annotations, a comprehensive concept hierarchy used by 

PubMed. 

In this paper, we present the BioNav system, a novel search 

interface that enables the user to navigate large number of query 

results by organizing them using the MeSH concept hierarchy. 

First, the query results are organized into a navigation tree. 

Previous works expand the hierarchy in a predefined static 

manner. In contrast, BioNav uses an intuitive navigation cost 

model to decide what concepts to display at each step. Another 

difference from previous works is that the hierarchy is not 

strictly displayed level-by-level. 

I. INTRODUCTION 

The last decade has been marked by unprecedented growth 

in both the production of biomedical data and the amount of 

published literature discussing it. The MEDLINE database, on 

which the PubMed search engine operates, contains over 18 

million citations, and the database is currently growing at the 

rate of 500,000 new citations each year [7]. Biologists, 

chemists, medical and health scientists are used to searching 

their domain literature – such as PubMed – using a keyword 

search interface. Currently, in an exploratory scenario where 

the user tries to find citations relevant to her line of research 

and hence not known a priori, she submits an initially broad 

keyword-based query that typically returns a large number of 

results. Subsequently, the user iteratively refines the query, if 

she has an idea of how to, by adding more keywords, and re-

submits it, until a relatively small number of results are 

returned. This refinement process is problematic because after 

a number of iterations the user is not aware if she has over-

specified the query, in which case relevant citations might be 

excluded from the final query result. 

As an example, a query on PubMed for “cancer” returns 

more than 2 million citations. Even a more specific query for 

“prothymosin”, a nucleoprotein gaining attention for its 

putative role in cancer development, returns 313 citations. The 

size of the query result makes it difficult for the user to find 

the citations that she is most interested in, and a large amount 

of effort is expended searching for these results. Many 

solutions have been proposed to address this problem – 

commonly referred to as information-overload [1]-[3], [5]. 

These approaches can be broadly classified into two 

categories; ranking and categorization, which can also be 

combined. 

The primary focus of BioNav is on categorization 

techniques, which are ideal given the rich concept hierarchies 

(e.g., MeSH[6]) available for biomedical data. We augment 

our categorization techniques with simple ranking techniques. 

BioNav organizes the query results into a dynamic hierarchy, 

the navigation tree. Each concept (node) of the hierarchy has 

a descriptive label. The user then navigates this tree structure, 

in a top-down fashion, exploring the concepts of interest while 

ignoring the rest. 

An intuitive way to categorize the results of a query on 

PubMed is using the MeSH static concept hierarchy [6]. Each 

citation in MEDLINE is associated with several MeSH 

concepts in two ways: (i) by being explicitly annotated with 

them, and (ii) by mentioning those in their text. Since these 

associations are provided by PubMed, a relatively 

straightforward interface to navigate the query result would 

first attach the citations to the corresponding MeSH concept 

nodes and then let the user navigate the navigation tree. Fig. 1 

displays a snapshot of such an interface where shown next to 

each node label is the count of distinct citations in the subtree 

rooted at that node. A typical navigation starts by revealing 

the children of the root ranked by their citation count, and is 

continued by the user expanding on or more of them, 

revealing their ranked children and so on, until she clicks on a 

concept and inspects the citations attached to it. A similar 

interface and navigation method is used by GoPubMed [9] 



and e-commerce sites, like Amazon and eBay. For this 

example, we assume that the user will navigate to the three 

indicated concepts corresponding to three independent lines of 

research related to prothymosin. 

MESH (313)

Amino Acids, Peptides, and Proteins (310)

Proteins (307)

Nucleoproteins (40)

Biological Phenomena, Cell Phenomena, and Immunity (217)

Cell Physiology (161)

Cell Growth Processes (99)

Genetic Processes (193)

Gene Expression (92)

Transcription, Genetic (25)

95 more nodes

2 more nodes

45 more nodes

4 more nodes

3 more nodes

15 more nodes

10 more nodes

1 more node

Histones (15)

 
Fig. 1 Static Navigation on the MeSH Concept Hierarchy 

The above static −same for every query result− navigation 

method is problematic when the MeSH hierarchy is used for 

categorization for the following reasons: 

• The massive size of the MeSH hierarchy (over 48,000 

concept nodes) makes it challenging for the users to 

effectively navigate to the desired concepts and browse 

the associated records. Even if we remove from the 

MeSH concept nodes with no citations attached to them, 

the 313 distinct query results for “prothymosin” are 

attached to 3,940 nodes, which is the actual size of the 

navigation tree in Fig. 1.  

• A substantial number of duplicate citations are introduced 

in the navigation tree of Fig. 1, since each one of the 313 

distinct citations is associated with several concepts.  

BioNav introduces a dynamic navigation method that 

depends on the particular query result at hand and is 

demonstrated in Fig. 2. The query results are attached to the 

corresponding MeSH concept nodes as in Fig. 1, but then the 

navigation proceeds differently. The key action on the 

interface is the expansion of a node that selectively reveals a 

ranked list of descendent (not necessarily children) concepts, 

instead of simply showing all its children. 

Fig. 2a, for example, shows the initial expansion of the root 

node where only 8 (highlighted) descendants are revealed 

compared to 98 children shown in Fig. 1. The concepts are 

ranked by their relevance to the user query and the number of 

them revealed depends on the characteristics of the query 

results.  Next, assuming the user is interested in the “Amino 

Acids...” node and judging that the 310 attached citations is 

still a big number, she expands it by clicking on the ”>>>” 

hyperlink next to it in Fig. 2b. The user inspects the 6 

concepts revealed and decides that she is not interested in any 

of them. Hence, she expands the “Amino Acids...” node one 

more time in Fig. 2c, revealing 4 additional concepts. Note 

that “Nucleoproteins” is an example of a descendant node 

being revealed, since its parent node “Proteins” is not revealed 

in Fig. 2c. In Fig. 2d, the user expands the “Nucleoproteins” 

node and reveals “Histones”, one of the three key concepts for 

the query. To reach “Histones” using the BioNav navigation 

method, only 23 concepts are revealed, after 4 node 

expansions, compared to 152 concepts, also after 4 expansions, 

with the static navigation method of Fig. 1. 

(a)

(b)

(c)

(d)  
Fig. 2 BioNav Dynamic Navigation 

For each expansion, the displayed descendent concepts are 

chosen in a way that the expected navigation cost is 

minimized, based on an intuitive navigation cost model we 

present in Section III. For example, the reason that “Proteins” 

is not displayed in Fig. 2 is that it is too general given the 

query results and the original distribution of citations in the 

PubMed database and hence displaying it would lead to an 

increase in the (expected) user navigation cost. 

In addition to the static hierarchy navigation works 

mentioned above, there are works (e.g., the Clusty search 



engine [8], or [2], [3]) on dynamic categorization of query 

results, which create unsupervised query-dependent results 

clusters. BioNav is distinct since it offers dynamic navigation 

on a predefined hierarchy, as is the MeSH concept hierarchy. 

Another difference is that BioNav uses a navigation cost 

model to minimize the navigation cost. 

II. FRAMEWORK AND BIONAV OVERVIEW 

The MeSH concept hierarchy is the starting point of the 

framework and is defined as follows. 

Definition 1 (Concept Hierarchy): A Concept Hierarchy 

���, �, �� is a labeled tree consisting of a set �  of concept 

nodes, a set � of edges and is rooted at node �. Each node 
� 	 � has a label 
 and a unique identifier id. � 

According to the semantics of the MeSH concept hierarchy 

[13], the label of a child concept node is more specific than 

the one of its parent. This also holds for most concept 

hierarchies. 

Once the user issues a keyword query, PubMed−BioNav 

uses the Entrez Programming Utilities (eUtils) [4]−returns a 

list of citations, each associated with several MeSH concepts. 

BioNav constructs an Initial Navigation Tree by attaching to 

each concept node of the MeSH concept hierarchy a list of its 

associated citations. Formally, an Initial Navigation Tree 

����� , �� , �� is a concept hierarchy, where every node (concept) 
� 	 ��  is additionally labelled with a results (citations) list 


���. 
In a given initial navigation tree, several concept nodes 

might have an empty results list. Since MeSH is a rather large 

concept hierarchy, BioNav reduces the size of the initial 

navigation tree by removing the nodes with empty results lists, 

while preserving the ancestor/descendant relationships. 

Formally, the resulting structure is defined as follows. 

Definition 2 (Navigation Tree): A Navigation Tree 

���, �, �� is the maximum embedding of an initial navigation 

tree ����� , �� , �� such that no node � 	 �  is labeled with an 

empty results list 
��� , excluding the root (in order to 
maintain the tree structure and avoid the creation of a forest).� 

In principal, an embedding ���, �, �� of a tree ����� , �� , �� 
is an injection from �  to ��  such that every edge in � 
corresponds to a path (disjoint from all other such paths) in �� . 

An embedding � of a tree �� , where both trees are rooted at 

node � , is maximum if no other node �  with a nonempty 

results list 
��� can be added to � and � still be an embedding. 

The maximum embedding of the initial navigation tree is 

recursively computed in a single depth-first left-to-right 

traversal. If a node �  has an empty results list 
��� , then 
replace � with its children. If � is a leaf, then simply remove it. 

Fig. 3 shows part of the navigation tree for the “prothymosin” 

query, where the results lists are omitted for clarity. 

The above procedure reduces the size of the initial 

navigation tree, but the structure is still too big (3,940 nodes 

for query “prothymosin”) to simply display it to the user or let 

her navigate it, especially if her query is of exploratory nature. 

BioNav minimizes the user’s effort to reach the desired 

citations in the navigation tree by expanding in a way that 

minimizes the expected overall user navigation cost. 

Moreover, BioNav avoids information clutter by hiding 

unimportant concept nodes leading to interesting ones. This is 

achieved through a series of expand actions that reveal only a 

few descendants (not necessarily children) of the user selected 

node for further navigation. 

We model a node expansion at a given navigation step as 

an EdgeCut in the navigation tree. In graph theory, an 

EdgeCut in a graph ���, �� is a set of edges �� � � such that 
the graph ����, �\��� has more components than �. For trees, 

any subset of the edges constitutes an EdgeCut, since the 

removal of any single edge creates a new component. 

MESH

…

Amino Acids…

Transcription Factors Nucleoproteins

Proteins

Histones

…

…

……

 
Fig. 3 Navigation Tree, EdgeCut and Component Subtrees 

In Fig. 3, the dashed line illustrates the EdgeCut 

corresponding to the expansion of the node “Amino Acids…”. 

This expansion reveals the highlighted concepts of Fig. 3, 

which include a subset of the highlighted concepts in Fig. 2c. 

The EdgeCut consists of the edges (“Proteins”, “Transcription 

Factors”) and (“Proteins”, “Nucleoproteins”). Intuitively, an 

EdgeCut allows us to “skip” child nodes (“Proteins”) and 

navigate directly to descendent nodes located deeper in the 

tree and show them as children of the node being expanded. 

Moreover, an EdgeCut can selectively reveal only a subset of 

a potentially large set of descendent nodes, as is the case in 

Fig. 2b where only 6 out of the 52 descendents of “Amino 

Acids...” are revealed. 

Definition 3 (Valid EdgeCut): A valid EdgeCut of a tree 

���, �, �� is an EdgeCut � � � such that no two edges in � 
appear in a path from the root to a leaf node. � 

We only consider valid EdgeCuts in the rest of the paper, 

because invalid EdgeCuts lead to unintuitive navigations. 

Component Subtrees An EdgeCut causes the creation of 

two types of component subtrees, upper and lower. Given an 

EdgeCut �  of a tree ���, �, ��, a lower component subtree 

����� rooted at ��  is created by each node �� 	 � , such that 

��, ��� 	 � for some node �. In Fig. 2c, at the expansion of 
node “Amino Acids...”, four lower component subtrees are 

created, two of which are shown in Fig. 3, rooted at 

“Transcription Factors” and “Nucleoproteins”. Moreover, for 

a given EdgeCut � , a single upper component subtree is 

created and comprises of the nodes not in any lower 

component subtree, and is always rooted at the root of the tree 

being expanded. In Fig. 3, the upper component subtree 

comprises of the nodes “Amino Acids...” (root) and “Proteins”. 

III. NAVIGATION COST MODEL 

The navigation cost model of BioNav is formally defined in 

this section. After the user issues a keyword query, BioNav 



initiates navigation by constructing the initial results tree and 

displaying its root to the user. Subsequently, the user 

navigates the tree by performing one of the following actions 

on a given component subtree ���� rooted at concept node �: 
1. EXPAND ����: The user clicks on the ”>>>” hyperlink 

next to node � and causes an EdgeCut(����) operation to 
be performed on it, thus revealing a new set of concept 

nodes from the set ����. 
2. SHOWRESULTS ����: By performing this action, the 

user sees the results list 
������ of citations attached to 
the component subtree ����. 

3. IGNORE ����: The user examines the label of concept 

node �, ignores it as unimportant and moves on to the 

next revealed concept. 

This navigation process continues until the user finds all the 

citations she is interested in. The cost of a navigation is 

computed similarly to [2] as follows: We assign (i) cost of 1 to 

each newly revealed concept node that the user examines after 

an EXPAND action, (ii) a cost of B (to be determined 

empirically) to each EXPAND action the user executes, and 

(iii) cost of 1 to each citation displayed after a 

SHOWRESULTS action. An open issue is the estimation of 

the EXPLORE and SHOWRESULTS probabilities. The 

EXPLORE probability could be proportional to the number of 

unique results in the corresponding component subtree, 

whereas normalized entropy of the component subtree [3] can 

be used as the SHOWRESULTS probability. 

IV. ALGORITHMS FOR BEST EDGECUT 

Given the cost equation described in Section III and [2], we 

can compute the optimal cost by recursively enumerating all 

possible sequences of valid EdgeCuts, starting from the root 

and reaching every concept in the navigation tree, computing 

the cost for each step and taking the minimum. However, this 

algorithm is prohibitively expensive. Instead we propose an 

alternative algorithm Opt-EdgeCut that makes use of the 

dynamic programming technique to reduce the computation 

cost. Opt-EdgeCut is still exponential. 

The Opt-EdgeCut algorithm to compute the minimum 

expected navigation cost (and the EdgeCut that achieves it) 

traverses the navigation tree in post-order and computes the 

navigation cost bottom-up starting from the leaves. For each 

node �, the algorithm enumerates and stores the list ���� of 
all possible EdgeCuts for the subtree rooted at �, and the list 
����  of all possible ����  sets that node �  can be annotated 
with. The algorithm then computes the minimum cost for each 

subtree in ���� given the EdgeCuts in ���� and the already 
computed minimum costs for the descendants of �. 

V. EXPERIMENTAL EVALUATION 

We present some preliminary experimental results 

comparing the navigation cost of Opt-EdgeCut to that of the 

Static navigation approach, where all children of the expanded 

node are displayed at each step. We used a small result tree of 

~20 nodes, given the high execution cost of Opt-EdgeCut. 

Heuristic algorithms to approximate Opt-EdgeCut will be 

developed in our future work. Fig. 4 shows that our approach 

leads to much smaller navigation costs compared to the Static 

approach, for 10 queries selected by expert users in the 

biomedical domain.  The average improvement is 36% even 

for the small sample trees used in the experiments. 

 

Fig. 4 Navigation Cost of BioNav vs. Static Navigation 

VI. CONCLUSIONS AND FUTURE WORK 

Information overload is a major problem when searching 

biomedical databases like PubMed, where typically a large 

number of citations are returned, of which only a small subset 

is relevant to the user. In this paper, we presented the BioNav 

system to address this problem. Our solution is to organize the 

query results according to their associations to concepts of the 

MeSH concept hierarchy, and provide a dynamic navigation 

method that minimizes the information overload observed by 

the user. In the future, we will develop heuristic algorithms to 

improve the response time for expand operations in BioNav 

and work with domain experts to refine the navigation cost 

model. 

VII. ACKNOWLEDGMENTS 

Vagelis Hristidis was partially supported by NSF grants 

IIS-0811922 and IIS-0534530. 

REFERENCES 

[1] S. Agrawal, S. Chaudhuri, G. Das and A. Gionis: Automated Ranking 
of Database Query Results. In Proceedings of First Biennial 

Conference on Innovative Data Systems Research (CIDR), 2003. 

[2] K. Chakrabarti, S. Chaudhuri and S.W. Hwang: Automatic 
Categorization of Query Results. SIGMOD Conference 2004: 755-766 

[3] Z. Chen and T. Li: Addressing Diverse User Preferences in SQL-

Query-Result Navigation. SIGMOD Conference 2007: 641-652 
[4] (2008) Entrez Programming Utilities. [Online]. Available:  

http://www.ncbi.nlm.nih.gov/entrez/query/static/eutils_help.html 

[5] V. Hristidis and Y. Papakonstantinou: DISCOVER: Keyword Search in 
Relational Databases. In Proc. of VLDB Conference, 2002 

[6] Medical Subject Headings (MeSH®).  http://www.nlm.nih.gov/mesh/ 

[7] J.A. Mitchell, A.R. Aronson and J.G. Mork: Gene Indexing: 
Characterization and Analysis of NLM’s GeneRIFs. In Proceedings of 

the AMIA Symposium, 8th–12th November, Washington, DC, pp. 

460–464 
[8] (2008) Vivísimo, Inc. – Clusty. http://clusty.com/ 

[9]      (2008) Transinsight GmbH – GoPubMed. http://www.gopubmed.org 

0

2

4

6

8

10

12

14

16

18

20

Overall Navigation Cost
(# of Concepts Revealed + # of EXPAND Actions)

Static BioNav


