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Abstract 
Schema matching identifies elements of two 
given schemas that correspond to each other. 
Although there are many algorithms for schema 
matching, little has been written about building a 
system that can be used in practice. We describe 
our initial experience building such a system, a 
customizable schema matcher called Protoplasm. 

1 Schema Matching 
Most systems-integration work requires creating 
mappings between models, such as database schemas, 
message formats, interface definitions, and user-interface 
forms. As a design activity, schema mapping is similar to 
database design in that it requires digging deeply into the 
semantics of schemas. This is usually quite time 
consuming, not only in level-of-effort but also in elapsed-
time, because the process of teasing out semantics is slow. 
It can benefit from the development of improved tools, 
but it is unlikely such tools will provide a silver bullet that 
automates all of the work. For example, it is hard to 
imagine how the best tool could eliminate the need for a 
designer to read documentation, ask developers and end-
users how they use the data, or review test runs to check 
for unexpected results. In a sense, the problem is AI-com-
plete, that is, as hard as reproducing human intelligence. 

The best commercially-available model mapping tools 
we know of are basically graphical programming tools. 
That is, they allow one to specify a schema mapping as a 
directed graph where nodes are simple data transforma-
tions and edges are data flows. Such tools help specify: a 
mapping between two messages, a data warehouse 
loading script, or a database query. While such graphical 
programming is an improvement over typing code, no 
database design intelligence is being offered. Despite the 
limited expectations expressed in the previous paragraph, 
we should certainly be able to offer some intelligence ⎯ 
automated help, in addition to attractive graphics. 

There are two steps to automating the creation of 
mappings between schemas: schema matching and query 
discovery. Schema matching identifies elements that 
correspond to each other, but does not explain how they 
correspond. For example, it might say that FirstName and 

LastName in one schema are related to Name in the other, 
but not say that concatenating the former yields the latter. 
Query discovery picks up where schema matching leaves 
off. Given the correspondences, it obtains queries to trans-
late instances of the source schema into instances of the 
target, e.g., using query analysis and data mining [5]. 

This paper focuses on schema matching. There are 
many algorithms to solve it [8]. They exploit name 
similarity, thesauri, schema structure, instances, value 
distribution of instances, past mappings, constraints, 
cluster analysis of a schema corpus, and similarity to 
standard schemas. All of these algorithms have merit. So 
what we need is a toolset that incorporates them in an 
integrated package. This is the subject of this paper. 

The published work on schema matching is mostly 
about algorithms, not systems. This algorithm work is 
helpful, offering new ways to produce mappings that pre-
vious algorithms were unable to find. However, all of the 
published algorithms are fragile: they often need manual 
tuning, such as setting thresholds, providing a thesaurus, 
or being trained on examples; even after tuning, it is easy 
to find schemas that the algorithms do not map correctly; 
and many of them do not scale to large schemas.  

COMA is the first work to address engineering issues 
of a schema matching system [1]. Its architecture offers 
multiple schema-level matchers and a fixed process to 
combine their results. Matchers exploit linguistic, data-
type, and structural information, plus previous matches, to 
produce similarity matrices forming a cube. The cube is 
aggregated to a matrix. Then particular similarity values 
are selected as good match candidates, which are com-
bined to a single value. This process is executed for whole 
schemas or for two schema elements, and is repeated after 
the user provides feedback. Experimentation showed that 
finding good combinations of matchers depends on char-
acteristics of the schemas being matched, demonstrating 
that customizability of the combination process is crucial.  

Inspired by COMA’s approach, we felt it was impor-
tant to push further toward building an industrial-strength 
schema matcher, one that avoids fragility problems, is 
customizable for use in practical applications, and extends 
the range of matching solutions being offered.  

We believe fragility is inherent in the problem. To 
mitigate it, we need a system that can exploit the best 
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algorithms and is customizable by a human designer. De-
signers use all of the techniques found in specific schema 
matching algorithms: name similarity, thesauri, common 
schema structure, overlapping instances, common value 
distribution, re-use of past mappings, constraints, similar-
ity to standard schemas, and common-sense reasoning. A 
system should use all of these techniques too.  

Customizability is needed for several reasons. First, a 
user can improve a schema matching tool by selecting 
particular techniques and combining them in a way that 
works best for the types of schemas being matched.  For 
example, if a version ID is prepended to element names in 
evolving schemas, then a user may want to delete the ID 
before applying any matcher. The degree of such custom-
izability depends on the user’s sophistication. An end-user 
who is matching two schemas wants a limited range of 
options to choose from. By contrast, a sophisticated user, 
such as an application vendor, wants to customize the tool 
to work well when matching its schemas to those of other 
parties. A second reason for customizability is to control 
an algorithm’s scalability, e.g., by trading off response-
time for the quality of the result. A third reason is extensi-
bility, meaning that new techniques can be easily added to 
the tool. This helps sophisticated users, and researchers 
who want to experiment with new or modified algorithms. 

We therefore embarked on a project to build such a 
customizable schema matcher, one that could be used in 
commercial settings. This paper describes our early 
experience in developing this tool, called Protoplasm (a 
PROTOtype PLAtform for Schema Matching). In 
addition to arguing for the importance of research on 
industrial-strength schema matching, we offer two main 
contributions: (i) a new architecture for schema matching, 
which includes two new internal schema representations, 
interfaces for operators that comprise a matching algor-
ithm, and a flexible approach to combining operators; and 
(ii) experience in tuning the prototype for scalability and 
using its customization features to add another algorithm. 
These are covered in Sections 2 and 3 respectively. We 
close in Section 4 with a discussion of future work. 

2 Architecture 
Figure 1 presents the three-layer architecture of Proto-
plasm. The bottom layer consists of two supporting struc-
tures. The Schema Matching Model Graph (SMM Graph) 
is the internal representation of input schemas: a rooted 
node- and edge-labeled directed graph. The Similarity 
Matrix holds correspondences between two SMM graphs. 
The middle layer defines a set of Operator Interfaces that 
declare the inputs and outputs of generic schema-match-
ing tasks such as import, transformation and export of 
schemas, creation and manipulation of similarity matrices, 
and match. Protoplasm offers implementations of these 
interfaces. Custom ones are easy to plug in, which is one 
dimension of the extensibility of the platform. The other 
dimension is the Strategy Scripts in the top layer, which 

implement match algorithms consisting of interconnected 
operators. Each script combines a set of operator 
implementations by passing SMM graphs and similarity 
matrices from one to another. Ideally, strategies would be 
designed using a Graphical Interface that generates the 
strategy script from its graphical representation. 
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Figure 1 Protoplasm Architecture 

The Strategy Execution Engine takes as input a 
strategy script, the Protoplasm-provided and custom 
operator implementations, and SMM graphs and similar-
ity matrices. During the execution, the engine accesses 
schema repositories and other auxiliary information, e.g., 
a thesaurus or glossary, used by implementations of 
operators in the strategy script. The execution of the script 
results in a similarity matrix exported in a format 
compatible with an external Consuming Application. 
2.1 Representing Models 

The input schemas can be in any meta-model, e.g., 
SQL DDL, ODMG or XML Schema Definition (XSD) 
Language. Since no existing meta-model is expressive 
enough to subsume all others, Protoplasm defines SMM 
Graphs as a meta-model-independent representation. An 
SMM graph is a rooted, node- and edge-labeled directed 
graph, where each node and edge has a unique identifier. 
Figure 2 shows an example SMM Graph describing the 
SQL DDL in the shaded box that defines a relational 
table. The root (i.e., id=1) is indicated by a thick circle. 
The graph identifier (i.e., id=0) and label are in boldface 
above the root. The database, table and column names are 
denoted by white circles, typing information by light gray 
circles, and constraints (e.g., primary key) by dark gray 
circles. SMM is a variation of the Object Exchange Model 
(OEM) [7], a data model defined for semistructured data, 
thus inheriting its simplicity and self-describing nature.  

Protoplasm builds on widely-used XML technologies 
to implement SMM graphs. An XML syntax is defined to 
describe and store SMM graphs in secondary memory 
(e.g. disk), an extended XML parser is employed to load 
them into main memory, a variation of DOM is used to 
enable programmatic navigation and editing, and an 
XPath engine is modified to execute simple queries 
against SMM graphs. The XML syntax describing SMM 
graphs uses the node ids to establish the edges between 
them and is validated using an XML schema that makes 
use of the key and keyref definition elements. We used 
.NET tools for the XPath engine, XSD validator, etc. 
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Figure 2 Example SMM Graph 

DOM is not used “as-is” for navigation since it does 
not provide a way to navigate gracefully across keys and 
keyrefs. We resolve this issue by deriving from DOM 
an object model for SMM, called Graph Document Object 
Model (GDOM), which specializes DOM as follows: (i) 
GDOM graph, nodes and edges are DOM elements with 
label and id properties only; (ii) nodes have a list of 
outgoing edges as children; (iii) edges have their start 
node as parent and their end node as their only child. 

The GDOM main memory representation of SMM 
graphs is constructed directly during parsing. A DOM 
parser was extended to construct GDOM elements and 
establish their connections based on the node ids. 

GDOM also inherits the editing capabilities of DOM. 
But in the case of SMM graphs, DOM editing capabilities 
are more powerful than needed and allow the construction 
of invalid SMM graphs. For this reason, Protoplasm 
provides a GDOM wrapper interface that exports only the 
editing methods that result in valid SMM graphs. 

GDOM documents cannot be queried conveniently by 
XPath expressions, since XPath does not provide a way to 
navigate across keys and keyrefs. Instead, GDOM 
documents are queried by XGPath, a variant of XPath that 
we implemented to overcome this limitation. XGPath 
defines two macros, node() and edge(), to recognize 
nodes and edges when computing a transitive closure, and 
allows only child and descendant axes. For example, 
query Q1 below finds all nodes in the graph. Q2 finds all 
nodes having at least one outgoing edge. 
(Q1) /descendant::*[g:node()] 
(Q2) /descendant::*[g:node()][*[g:edge()]] 
2.2 Similarity Matrix 
A Similarity Matrix holds the degree of similarity 
between items (nodes and/or edges) of two SMM graphs. 
As in COMA, it is the main integration point for combin-
ing results from different match algorithms. The rows and 
columns of a similarity matrix represent lists of items 
from the source and target graphs, respectively. The lists 
can be constructed by running an XGPath query over the 
graphs. Each cell of the matrix holds the ids of the target 
and source items and the similarity value between them. 

2.3 Operators 
Protoplasm declares a set of operator interfaces to carry 
out individual schema matching tasks. SMM graphs, 
similarity matrices and cells are the possible input and 
output types. These operators are organized in the 
following three groups according to their functionality: 

Import, Transform and Export. These handle the 
starting and ending stages of a match algorithm. One 
Import operator interface takes as input a schema express-
ed in some meta-model and outputs a corresponding 
SMM graph. Another import interface is declared to load 
an existing SMM graph or similarity matrix. Implementa-
tions of the import interface are meta-model-specific. 

A Transform operator interface applies a transforma-
tion to an input SMM graph, returning a transformed one. 
For example, an imported SMM graph might need to be 
transformed to encode schema constraints differently for a 
particular match algorithm. Implementations of the trans-
form interface are specific to the match algorithm used. 

An Export operator interface translates a similarity 
matrix into a format suitable for the consuming applica-
tion, e.g., BizTalk Mapper [4]. Since each application has 
its own format for representing mappings, each imple-
mentation of the export interface is application-specific. 

Matrix Creation and Manipulation. This group 
consists of seven operator interfaces manipulating 
matrices holding match results. 
1. The CreateSM operator interface creates a new 

similarity matrix given two input SMM graphs. 
2. The CellToSM operator interface takes as input a cell 

of a similarity matrix and generates a nested similarity 
matrix based on some analysis. For example, when 
applied on a cell holding two node labels, CellToSM 
can generate a nested similarity matrix by 
decomposing the cell’s labels. Rows and columns of 
the nested matrix are the components of the node 
labels, which can now be matched individually. 

3. The inverse operator interface is AggSMToCell. Given 
a cell  c that was used to generate a similarity matrix 
sm using CellToSM, it aggregates the similarity values 
of sm and assigns the aggregation to c. 

4. The MergeSMs operator interface merges a set of 
input heterogeneous similarity matrices into a single 
output one by aggregating similarity values across 
matrices. For example, multiple matching techniques 
are applied to generate different similarity matrices, 
which are then merged into a single matrix.  

5. Analogously, the MergeCells operator interface 
merges the similarities of a set of input cells into a 
single one.  

6. The TraverseSM operator interface creates a cursor 
that iterates over the cells of a similarity matrix. The 
traversal order can be matrix-specific, e.g., rows-first, 
or graph-specific, e.g., bottom-up.  

7. The FilterSM operator interface takes as input a simi-
larity matrix whose values are in the range [0,1] and 
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outputs a similarity matrix whose values are 0 or 1. 
Deleting cells whose values are below a threshold is 
an example of a filter implementation. 
Match. The Match operator interface takes as input a 

cell with or without a given similarity value and calculates 
a new one based on the cell’s items. 
2.4 Scripts 

For customizability, implementations of operator 
interfaces can be combined in many different ways to 
execute a match algorithm. A given combination, called a 
strategy, consists of operators and a control flow that tells 
how the output of operators is passed as the input to other 
operators. In the current implementation, strategies are 
coded using the procedural language C# and are compiled 
and executed by the execution engine. An example 
strategy is shown in Figure 3 as it would be displayed by 
a graphical interface. Operator interfaces are indicated by 
icons labeled by the name of the implementation. Lines 
connecting icons pass SMM graphs, similarity matrices, 
or cells from one operator to another. The “Level” labels 
indicate if the operators execute against whole similarity 
matrices or individual cells. 

The strategy starts by executing two Import operators 
that result in two SMM graphs representing two XML 
schemas. Then two CreateSM operators create a similarity 
matrix M1 consisting of all nodes of the two SMM graphs, 
and an M2 consisting of only the internal ones. M1 will be 
used to hold the linguistic similarity of all nodes, while 
M2 will hold the structural similarity of all internal ones. 

First, a TraverseSM operator iterates over the cells of 
M1 rows-first. Then a CellToSM operator generates a 
similarity matrix M3 for the currently traversed cell of M1 
by tokenizing the labels of its items based on the camel 
case naming convention. Another TraverseSM operator 
then iterates over the cells of M3 and applies a Match 
operator based on stems. Subsequently, an AggSMToCell 
operator takes the average of the similarity values in M3 
and places it in the currently traversed cell of M1. 

Another TraverseSM operator iterates over M2 
bottom-up and applies to each cell a Match operator that 
calculates the structural similarity of two internal nodes 
based on the linguistic similarity their leaves. The two 
resulting matrices M1 and M2 are then passed to a 
MergeSMs operator that merges them into one. The 
similarity values of common cells are merged based on a 
weighted formula. A FilterSM operator filters out poor 
similarity values below a threshold. Finally, an Export op-
erator transforms the resulting matrix into a BizTalk Map.  

Many published algorithms use similarity matrices in 
a way similar to Protoplasm [1,2,3,7]. However, except 
for COMA, none are designed as an open integration 
platform in which new algorithms and heuristics can be 
easily incorporated. COMA too is limited in that it 
combines the result of match algorithms by taking a linear 
combination of the similarity matrices they produce. 
Protoplasm offers more flexible combinations. For exam-

ple, the strategy in Figure 3 pipelines matchers; the lin-
guistic matcher passes its output to the structural matcher. 
Furthermore, Protoplasm is designed for customizability 
and adaptability: data structures and operators can be 
easily extended with customized implementations. 

Matrix Level

Cell Level

TraverseSM
RowsFirst

Match
Stem

Export
BizTalk

Import XSD

Import XSD

TraverseSM
BottomUp

Match
Leaves

CreateSM
AllInternalNodes

CreateSM
AllNodes

MergeSMs
Weighted

FilterSM
Threshold

Nested Cell Level

CellToSM
CamelTokens

AggSMToCell
Average

TraverseSM
RowsFirst

Nested Matrix Level

 
Figure 3 Example Strategy 

3 Experience 
3.1 Scalability 
The first prototype of Protoplasm was applied to a real-
world problem to match two versions of an EDI schema, 
expressed in XML Schema. The old version contained 
340 schema elements (element types and attributes) and 
the new version contained 500. As a version number was 
encoded into the element names, a direct name match was 
not possible, even for elements that did not change. 

We used a simplified version of the Cupid algorithm 
[2] to match the schemas, which resembles the strategy in 
Figure 3. As this was the first real-world test of the proto-
type, we were not surprised to find scalability problems: it 
required a few hundred MB of main memory and took 
over an hour to construct the first linguistic similarity 
matrix (and several more matrices were needed for type, 
structural and combined similarities).  

Our profiling showed that the first step of the 
algorithm, which transforms the schema graph into a tree, 
multiplied the number of elements by a factor of 6. 
Hence, each matrix had 2K×3K elements; at 20 bytes/cell, 
that is 120 MB/matrix. Many match algorithms require 
the schema representation to be a tree. So Protoplasm 
provides an operator to transform a graph into a tree by 
duplicating nodes that have multiple incoming edges. In 
the example problem, only one node had more than two 
incoming edges. But the operator is applied recursively to 
all nodes, resulting in a much bigger graph than expected. 
We optimized the graph-to-tree operator so that it exploits 
semantic information. For example, it removes certain 
edges that do not provide useful information for schema 
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matching to avoid duplicating nodes. In the example, 
every element type t had an incoming edge from the root, 
meaning that t is a component of the schema. These edges 
could be removed if t was referenced by another type. 
Using this optimization, the schema tree for this example 
has about the same number of nodes as the graph. 

Our initial linguistic matcher compared each element 
of schema 1 with each element of schema 2, an O(n2) 
algorithm. After seeing the scalability implication, we re- 
implemented it using a strategy similar to hash join: the 
names (or tokens or ngrams) of schema 1 are inserted into 
a hash table. Then, for each element of schema 2 we look 
up the matching elements of schema 1 in the hash table. 
This reduces the complexity to O(n) and the time to 
compute a linguistic matrix with 100x1000 cells from 75 
to 3 seconds.  

Another optimization strategy is to cache intermediate 
results, e.g., when retrieving the leaves under a schema 
element. This requires more main memory, but reduces 
the execution time by a factor of 2 or 3. Using all of the 
above techniques, we reduced the execution time for this 
example from several hours to less than a minute.  

Scalability issues are also discussed in [6]. However, 
this match algorithm was tuned for a particular, much 
larger matching problem and was implemented in SQL. 
3.2 Revised Object Model 
In our experiments we encountered several issues with 
our data model and query language. The representation of 
the schema graph in GDOM enabled the reuse of existing 
XML technologies that developers are familiar with but 
also had significant main memory overhead. Furthermore, 
profiling showed that much time was spent in evaluating 
XGPath expressions, especially in the structural matching 
phase, where we frequently navigate between internal 
nodes to their leaf nodes. 

We concluded that a more flexible and efficient object 
model should be offered that enables the usage of index 
structures for navigation and simplifies the integration 
with existing object models. The revised object model that 
we developed provides a lightweight representation of the 
graph using delegate functions, a feature of the .NET 
framework that is similar to function pointers in C/C++. 
Existing object models, such as XML Schema Object 
Model (SOM) in .NET, are wrapped by implementing 
delegate functions that enable navigational access to the 
underlying object graph. We migrated Protoplasm to the 
new lightweight object model. GDOM (and the 
navigation via XGPath expressions) is now the default 
graph implementation when no native object model is 
available. GDOM’s graph navigation primitives (e.g., 
retrieving the “name”-edge for a given node), which were 
originally implemented using XGPath expressions, can be 
overridden by optimized delegate functions. Graph access 
performance was thereby improved by a factor of 2 to 3. 

A major advantage of the revised object model is that 
the existing code base can be reused by wrapping native 

object models. The delegate functions can make graph 
navigation very efficient by utilizing index structures or 
access methods of the native object model. 
3.3 Extensibility 
As mentioned in Section2.4, Protoplasm can be extended 
by adding schema matching scripts or customized data 
structures and operators. To validate the extensibility of 
Protoplasm, we implemented another schema matching 
strategy, Similarity Flooding (SF) [3]. We chose this algo-
rithm because it is significantly different from the ones we 
designed for: it is based on a different data structure (the 
propagation graph) and uses a fixpoint computation. 

By reusing the Protoplasm infrastructure, we were 
able to implement this algorithm in two days. We reused 
data structures for similarity matrices and schema graphs, 
operators to import and transform schemas, and a match 
operator to compute the initial similarity values. But we 
needed to implement a new data structure for the propaga-
tion graph, which was the most time-consuming part. The 
amount of code and total time to design and implement 
the algorithm were reduced by about half, compared to 
implementing it from scratch. Given our previous 
experience with memory and performance problems, we 
chose a very compact representation for the propagation 
graph. The propagation values are stored in an array. A 
special indexing technique provides direct access to the 
corresponding schema elements and cells in the similarity 
matrix, so navigation between the propagation graph and 
the similarity matrix can be done in constant time. This 
data structure also saves about 60% of main memory, 
compared to a standard implementation of the graph. 

We ran several experiments using this implementation 
of SF. As shown in [3], we verified that SF is strong in 
detecting similar structures. For example, schemas that 
had identical structure but different element names 
(because of different languages) were matched exactly. 
However, this feature of SF causes problems if a schema 
is self-similar, i.e., a complex structure repeats within the 
schema (e.g., address). In this case, SF matches each copy 
of the repeating structure of one schema to all copies in 
the other. It may be possible to address this limitation by 
developing a matching strategy that filters an ambiguous 
match result by running SF on each individual schema to 
identify self-similar structures  
3.4 Lessons Learned 
One important lesson is that performance is an issue, even 
though we are “just” handling metadata. The real-world 
example in Section 3.1 is still relatively small; schemas 
with several thousands elements are common in e-
business applications. Since schema matching is a semi-
automatic task, efficient implementations are required to 
support interactive user feedback. 

Customizability and flexibility proved to be important. 
Schema matching problems differ along various 
dimensions, such as naming conventions, modeling styles 
(expressing the same thing in different ways), degrees of 
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similarity between schemas, and user requirements. Thus, 
a single solution is unlikely to perform equally well across 
all matching problems. Therefore, easy customization and 
adaptation of a basic strategy is necessary. 

The graphical design of strategy scripts (see Figure 3) 
might still be too complex for an administrator or 
database designer lacking a deep understanding of schema 
matching issues. Higher-level operators are required that 
work on complete graphs (as opposed to individual nodes) 
and provide functions to match schema elements by their 
names, types, or structure. These operators can be used as 
the basic building blocks of a schema matching strategy. 

The need for higher-level operators coincides with our 
experience in optimizing the operators. Efficient imple-
mentation of the operators is only possible if they are exe-
cuted at the graph level. A simple iteration over all cells 
of a similarity matrix (as in Figure 3) is always O(n2).  

4 Future Work 
Since schema matching algorithms are inherently fragile, 
a customizable schema matcher needs to include multiple 
easily-customizable scripts. One challenge is to define a 
few such scripts that cover the space of useful matchers 
and offer a small set of simple customization choices. 

An important capability of a schema matcher is reuse 
of previously-developed mappings. Often, a reusable 
mapping is between sub-schemas of the schema matcher’s 
inputs. The combinatorics of finding reusable mappings 
and applying them to a given mapping problem can be 
daunting. There has been some work on reuse but much 
more is needed [1]. 

A customizable schema matcher could become a large, 
complex system. In addition to the current features of 
Protoplasm, it could include the following subsystems: 
• Natural language processing (NLP) – glossaries and 

schema documentation are analyzed to produce 
thesauri that the schema matcher uses to identify 
synonyms and homonyms. NLP is also useful to 
determine the similarity of short phrases that describe 
elements of the two schemas. 

• Machine learning – a machine learner is used to 
capture and reuse validated correspondences. 

• Data mining – algorithms for comparing the values or 
distributions of instances of different elements to 
decide if they are similar. 

• Semantic analysis of mappings – since schemas are 
complex semantic structures, inferencing over them 
may help identify redundant or inconsistent matches.  

• Constraint solver – given similarity scores between 
pairs of schema elements, a best mapping is picked 
that satisfies given mapping constraints (e.g., each 
target element can connect to at most one source 
element). 

Moreover, there is a need for a clever and flexible user 
interface (UI) to display match results. Users and tool 
designers tell us that the problem of UI clutter in schema 

matching tools is at least as important as the tool’s lack of 
intelligence. When matching two large schemas, it is hard 
to find your way around, remember where you have been, 
explore several alternative matches concurrently, and 
leave a trail of annotations that captures what you learned. 

One challenge in using the above technologies is cop-
ing with the fixed interfaces of large existing subsystems 
that implement them. For example, some NLP systems 
can produce a semantic network for individual sentences, 
but leave it to the caller to transform the network into a 
thesaurus. Machine-generated and hand-crafted thesauri 
often lack similarity scores, which are needed by most 
match algorithms. Some learning algorithms capture past 
matches in an executable learning network, not as a data 
structure that can be combined with the output of other 
algorithms. Most matching algorithms are batch-oriented, 
matching a schema at a time, whereas some tools need an 
incremental matcher that the user can steer, using each 
match decision to influence the choice of later ones. 

Another challenge is coping with the large size of the 
components to be integrated, such as NLP, machine learn-
ing, and constraint solving systems. Most were designed 
for stand-alone use. Integrating them into one platform 
will undoubtedly generate software engineering problems. 

Given the size and complexity of such a system, it is 
unlikely that a company can afford to build more than one 
of them. Thus, it must be reusable in many kinds of tools, 
across many different data models and natural languages. 
One goal of building such a system is to learn the right 
requirements by reusing it in all of these contexts. 
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