M essage Passing | nference with Chemical Reaction
Networks

Nils Napp Ryan Prescott Adams
Wyss Institute for Biologically Inspired Engineering School of Engineering and Applied Sciences
Harvard University Harvard University
Cambridge, MA 02138 Cambridge, MA 02138
nnapp@wss. harvar d. edu rpa@eas. harvard. edu
Abstract

Recent work on molecular programming has explored new piissis for com-
putational abstractions with biomolecules, includingdoggates, neural networks,
and linear systems. In the future such abstractions migitilemanoscale devices
that can sense and control the world at a molecular scalé.adus macroscale
robotics, it is critical that such devices can learn aboeirtenvironment and rea-
son under uncertainty. At this small scale, systems aredjlgimodeled as chem-
ical reaction networks. In this work, we develop a procedlatcan take arbitrary
probabilistic graphical models, represented as factqlgg@ver discrete random
variables, and compile them into chemical reaction netatrlt implement infer-
ence. In particular, we show that marginalization baseduom-product message
passing can be implemented in terms of reactions betweenicakspecies whose
concentrations represent probabilities. We show algealtgithat the steady state
concentration of these species correspond to the margstabdtions of the ran-
dom variables in the graph and validate the results in sitiog. As with stan-
dard sum-product inference, this procedure yields exacitefor tree-structured
graphs, and approximate solutions for loopy graphs.

1 Introduction

Recent advances in hanoscale devices and biomoleculfiesymhave opened up new and exciting
possibilities for constructing microscopic systems ttaat sense and autonomously manipulate the
world. Necessary to such advances is the development of wiatiqgnal mechanisms and associated
abstractions for algorithmic control of these nanorob®isrk on molecular programming has ex-
plored the power of chemical computation [3, 6, 11] and tteslihin vitro biomolecular implemen-
tations of various such abstractions, including logic g§1€], artificial neural networks [9, 10, 14],
tiled self-assembly models [12, 15], and linear functiond aystems [4, 13, 20]. Similarlyn
vivo gene regulatory networks can be designed that when transtbinto cells implement devices
such as oscillators [8], intracellularly coupled oscilat [7], or distributed algorithms like pattern
formation [1]. Many critical information processing tastan be framed in terms of probabilistic
inference, in which noisy or incomplete information is atedated to produce statistical estimates
of hidden structure. In fact, we believe that this particatamputational abstraction is ideally suited
to the noisy and often poorly characterized microscopiddvdn this work, we develop a chemical
reaction network for performing inference in probabitgiraphical models. We show that message
passing schemes, such as belief propagation, map rejasivalghtforwardly onto sets of chemical
reactions, which can be thought of as the “assembly langud®th in vitro andin vivo compu-
tation at the molecular scale. The long-term possibiliiEsuch technology are myriad: adaptive
tissue-sensitive drug deliveiiy situ chemical sensing, and identification of disease states.



Abstract Problem & Algorithm ~ Low-Level "Assembly” Language Physical |
Implementation

(1—=1) "7 o(1—1)
S; —S, 7 e

28EAARTEST
(1—=1) "r o(1—1) e
T

P(lal)T Jrs(lﬂl) P(2H2)T J'S(zez) w-;(ll 1 LTI
(3—2) (1—3) Y34 (3—2) (1—3) =
p1—3) p(2—3) SD + P] . Sl + Pl TGCARATGCT
31 ——— s —(x s 4 o DD g | paos K—_'
1 3} 2 ‘
— =
sB—=1) s(3—2) . 1ocarAt@e?

@ (b) (©)

Figure 1. Inference at different levels of abstraction. Kagtor graph over two random variables.
Inference can be performed efficiently by passing messadgsvh as gray arrows) between ver-
tices, see Section 2. (b) Message passing implemented atea level of abstraction. Chemical
species represent the different components of messagersecthe chemical reaction networks
constructed in Section 3 perform the same computation asutmeproduct message passing algo-
rithm. (c) Schematic representation of DNA strand displaeet. A given reaction network can be
implemented in different physical systems, e.g. DNA strdisgplacement cascades [5, 17].

At the small scales of interest systems are typically matiagedeterministic chemical reaction net-
works or their stochastic counterparts that explicitly ridtlictuations and noise. However, chem-
ical reactions are not only models, but can be thought of esiigations or abstract computational
frameworks themselves. For example, arbitrary reactitwaoris can be simulated by DNA strand
displacement systems [5, 17], where some strands corrd$pdime chemical species in the specify-
ing reaction network. Reactions rates in these systemse&mied over many orders of magnitude
by adjusting the toehold length of displacement steps, ajtddrder reactions can be approximated
by introducing auxiliary species. We take advantage of &listraction by "compiling” the sum-
product algorithm for discrete variable factor graphs iatochemical reaction network, where the
concentrations of some species represent conditional @mdinal distributions of variables in the
graph. In some ways, this representation is very naturailewitormalization is a constant concern
in digital systems, our chemical design conserves spedthinveome subsets and thus implicitly
and continuously normalizes its estimates. The computéioomplete when the reaction network
reaches equilibrium. Variables in the graph can be contiticupon by adjusting the reaction rates
corresponding to unary potentials in the graph.

Section 2 provides a brief review of factor graphs and the-pumduct algorithm. Section 3 in-

troduces notation and concepts for chemical reaction mésv@ection 4 shows how inference on
factor graphs can be compiled into reaction networks, arfskeiction 5, we show several example
networks and compare the results of molecular simulatiossandard digital inference procedures.

To aid parsing the potentially tangled notation resultiragrf mixing probabilistic inference tools
with chemical reaction models, this paper follows theseeg@imotational guidelines: capital letters
denote constants, such as set sizes, and other quantitidsas tuples and message types; lower
case letters denote parameters, such as reaction ratesdaceki bold face letters denote vectors
and subscripts elements of that vector; scripted uppesrtethdicate sets; random variables are
always denoted by or their vector version; and species names have a sandesutif

2 Graphical Models and Probabilistic Inference

Graphical models are popular tools for reasoning about ¢ioatpd probability distributions. In
most types of graphical models, vertices represent randoiahles and edges reflect dependence
structure. Here, we focus on tifi@ctor graph formalism, in which there are two types of vertices
that have a bipartite structure: variable nodes (typicéithwn as circles), which represent random
variables, and factor nodes (typically drawn as squareb)¢chwrepresent potentials (also called
compatibility functions) coupling the random variableactor graphs, encode the factorization of a
probability distribution and therefore its conditionatlependence structure. Other graphical mod-
els, such as bayesian networks, can be converted to faeiphgyrand thus factor graph algorithms
are directly applicable to other types of graphical modsds, [2, Ch. 8].



LetG be a factor graph ove¥ random variablex,, }_, wherex,, takes one of<,, discrete values.
The globalNV-dimensional random variabletakes on values in the (potentially huge) product space
K = ngl{l, ... K,}. The other nodes off are called factors and every edgeGhconnects
exactly one factor node and one variable node. In genéreén haveJ factors{v; (x’)}7_, where

we usex’ to indicate the subset of random variables that are neightifofactory, i.e. {x, | n €
ne(j)}. Eachx’ takes on values in the (potentially much smaller) spai¢e= [ ], cng ) {1, - Kn},

and eachy; is a non-negative scalar function & . Together the structure ¢f and the particular
factorsy; define a joint distribution o

J
Pr(x) = Pr(xq,Xg, -+ ,Xn) = % T4, 1)
j=1

whereZ is the appropriate normalizing constant. Figure 1a showspls factor graph with two
variable nodes and three factors. It implies that the thet jdistributionx; andxs has the form

Pr(x1,%2) = 211(x1)a(x2)3(x1, X2).

The sum-product algorithm (belief propagation) is an dyitgarogramming technique for perform-
ing marginalization in a factor graph. That is, it compuuems of the form

n = Z Z H"/’J X7 (2)
x\xp, J=1
For tree-structured factor graphs, the sum-product alyarefficiently recovers the exact marginals.
For more general graphs the sum-product algorithm oftenarges to useful approximations, in
which case it is calletbopy belief propagation.

The sum-product algorithm proceeds by passing “messadmsf ¢he graph edges. There are two
kinds of messages messages from a factor node to a variatideamal messages from a variable
node to a factor node. In order to make clear what quantitiesepresented by chemical species
concentrations in Section 4, we use somewhat unconvehtiotation. Thekth entry of thesum

message from factor nodeto variable node: is denotecS,(f_’”) and the entirek,,-dimensional
vector is denoted bg(i ™). Thekth entry of theproduct message from variabieto factor nodej

is denoted b;P,(g"_)j) and the entird(;-dimensional vector is denotd(" 7). Figure 1a shows a
simple factor graph with message names and their direcsioown as gray arrows. Sum messages
from j are computed as the weighted sum of product messages ovdortiank? of ;

sy = ij o =w) I P (3)
n’ene(j)\n "

where néj)\n refers to the variable node neighborsjoéxceptn andk? = k to the set of all
ks € K’ where the entry in the dimension afis fixed tok. Product messages are computed by
taking the component-wise product of incoming sum messages

J Eﬂe(n)\7
Up to normalization, the marginals can be computed from tbdyct of incoming sum messages
_ S(J—%”) 5
IT sy (5)
jene(n)

The sum-product algorithm corresponds to fixed-point ftens that are minimizing the Bethe free
energy. This observation leads to both partial-updatdaomed variants of sum-product, as well

as asynchronous versions [18, Ch.6][19]. The validity ofngad asynchronous sum-product is
what enables us to frame the computation as a chemical seantitwork. The continuous ODE
description of species concentrations that representagessan be thought of as an infinitesimally
small version of damped asynchronous update rules.

3 Chemical Reaction Networks

The following model describes how a setf chemical species Z = {Zy,Z,,--- ,Z),} interact
and their concentrations evolve over time. Eagdttion has the general form



2y +1rolo+ -+ 1yl p1Z1 +p2lo+ -+ Pyl (6)

In this generic representation most of the coefficieptss N andp,,, € N are typically zero (where
N indicates non-negative integers). The species on the #ft mon-zero coefficients are called
reactants and are consumed during the reaction. The species on thewitthnon-zero entries
are calledproducts and are produced during the reaction. Species that patécip a reaction,
i.e.,r, > 0, butwhere no net consumption or production occursrj.e= p,,, are calleccatalysts.
They change the dynamics of a particular reaction withoirtdehanged themselves.

A reaction network over a given set of species consists of a set @f reactions
R ={R1,Rs,---,Rg}, where each reaction is a triple of reaction parameters (6),

Rq = (rqa’iqqu)' (7)

For example, in a reactioR, € R where specieZ; andZ; form a new chemical speci& at a
rate ofr,, the reactant vectar? is zero everywhere except#t = r? = 1. The associated product
vectorp? is zero everywhere except pf = 1. In the reaction notation where non-participating
species are dropped reactiffy is can be compactly written as

Z1+2Z3 Z,. (8)

3.1 MassAction Kinetics

The concentration of each chemical spedgsis denoted byZ,,]. A reaction network describes
the evolution of species concentrations as a set of coujpledinear differential equations. For each
species concentratidd,, | the rate of change is given loyass action kinetics,

M

dZn] & ¥, 0d _ pa
% = qzzlﬂq H [Zm’] m/(pfn _rm)' (9)

m’=1

Based on the fact that reactant coefficients appear as p,d\hnrer:sumznj\f:1 ry, is called theorder
of a reaction. For example, if the only reaction in a netwoekethe second order reaction (8), the
concentration dynamics ¢Z, | would be
d[Z,]
dt

= —rq[Z1][Z3]. (10)

Similar to [4] we design reaction networks where #ggilibrium concentration of some species
corresponds to the results we are interested in computihg.r&action networks in the following
section conserve mass and do not require flux in or out of thiesy, and therefore the solutions are
guaranteed to be bounded. While we cannot rule out osoifiatin general, the message passing
methods these reactions are simulating correspond to agyeménimization problem. As such, we
suspect that the particular reaction networks presentedah@ays converge to their equilibrium.

4 Representing Graphical Modelswith Reaction Networks

In the following compilation procedure, each message andjimal probability is represented by
a set of distinct chemical species. We design networks tages them to interact in such a way
that, at steady state, the concentration of some speciessmy the marginal distributions of the
variable nodes in a factor graph. When information arrivessietwork equilibrates to the new,
correct, value. Since messages in the sum-product inferalgorithm are computed from other
messages, the reaction networks that implement sendingpiges describe how species from one
message catalyze the species of another message.

Beliefs and messages are represented as concentratiolnsroical species: each component of a

sum messagésg_m), has an associated chemical speﬂézs_m); each component of a product

messageP,(C”_)j), has an associated chemical speﬂé”s_’j); and each component of a marginal

probability distribution,Pr(z,, = k), has an associated chemical speéids In addition, each
message and marginal probability distribution has a chalrsfeecies with a zero subscript that rep-
resents unassigned probability mass. Together, the sqtenfes associated with a messages or



marginal probability are called laelief species, and the reaction networks presented in the subse-
guent sections are designed to conserve species — and Imgiext¢éheir concentrations — with each
such set. For example, the concentration of belief sp&ies: {P}} ", of Pr(x,) have a constant

sum,ZkK:"O[PZ] , determined by the initial concentrations. These set&bsfiecies are a chemi-
cal representation of the left hand sides of Equations 3+ riext few sections present reaction
networks whose dynamics implement their right hand sides.

4.1 Bedlief Recycling Reactions

Each set of belief species has an associated set of reatttatrecycle assigned probabilities to the
unassigned species. By continuously and dynamicallyaeating probability mass, the resulting
reaction network can adapt to changing potential functigns.e. new information.

For example, the factor graph shown in Figure 1a has 8 disgi@is of belief species — 2 representing
marginal probabilities of;; and x5, and 6 (ignoring messages to leaf factor nodes) repregentin
messages. The associate recycling reactions are

F,]1€ % P(IJ S1(61—>1) % S(()1—>1) S§€3—>1) N S(3—>1) P21—>3) P81—>3)
Pi AN Pg S](g2—>2) N S(()2—>2) Sé3—>2) N S(3—>2) P(2—>3) P(2—>3)
(11)

By choosing a smaller rate. less of the probability mass will be unassigned at steadg,sta.
guantities will be closer to normalized, however the speedtach the reaction network reaches
steady state decreases, see Section 5.

4.2 Sum Messages

In the reactions that implement messages from factor talkrnodes, message species of incoming
messages catalyze the assignment of message speciesitigkongutgoing messages. The entries

in factor tables determine the associated rate constahtskthh message component from a factor

nodey); to the variable node,, is implemented by a reactions of the form

'GZ’J( =k )

n €ne(a)\n n €ne(a)\n

where thenth component ok’ is clamped tdk, k/, = k. Using the law of mass action, the kinetics
for each sum message species are given by

d[S(ﬁ") i =18 (n' =) (j—>m)
Zzp] (x) = K) 1] [P ] — k(ST (13)
n’ene(j)\n
At steady state the concentrationS;(f RAT given by
Ry n n j
s SE = 2wt =) TTPg ) (1)
[ ] 1k n’ene(j)\n "

where aII[S(J_’")] species concentrations have the same faelgé% Their relative concentra-

tions are exactly the message according to the to Equat)oA$3eT decreases the concentration of
unassigned probability mass decreases and the concentnatimalized by the constant sum of alll
the related belief species can be interpreted as a protyabitir example, the four factor-to-variable
messages in Figure 1(a) can be implemented with the foligweactions

S(()1—>1) ¥1(k) S1(61—>1) S(3—>1)+P(2—>3) s (kK S(3—>1)+P(2—>3) )
88242) ¥2(k) S](fez) 8(3%2)+P(1ﬂ3) ¥s(k'.k) S(3ﬂ2)+P(1%3).



P11 ¥1(2) P ¥i(2) Pa(l)  P2(2) Ps(1)  ¥3(2)  ¥3(3) Yr(1)  Pr(2)
1 0.1 0.1 1 1 0.1 2 1 1 1 1
| %a(, 1) s, 2) | ¥s5(,1)  ¥s(,2)  9s5(,3) | ¥e(,1)  vs(:,2)
Pa(l,-) 1 0.1 ¥s(1,-) 01 2 01 e (1, ) 0.1 0.1
$a(2,-) 01 3 ¥5(2, ) ‘ 3 01 1 e (2, ) ‘ 1 0.1
(©)

Figure 2: Examples of non-trivial factor graphs. (a) Fouialale factor graph with binary factors.
The factor leafs can be used to specify information aboutricpdar variable. (b) Example of a
small three variable cyclic graph. (c) Factors for (a) usesiulation experiments in Section. 5.1.

4.3 Product Messages

Reaction networks that implement variable to factor nodsgages have a similar, but slightly
simpler, structure. Again, each components species of #&sage is catalyzed by all incoming
messages species but only of the same component speciastd benstant for all product message
reactions is the sameyoq resulting in reactions of the following form

Pl 4 Z S;j'—m) pred plnd) 4 Z Sgcj'—m)' (16)
j’ene(n)\j j’ene(n)\j
The dynamics of the message component species is given by
dPY ) o) gU' ) p(n—J) 17
e = oG T ST - P (17)
J’ene(n)\j
At steady state the concentrationR%(f_)j) is given by
Ry n—j) j —n
W[Pi ] = H [s¢ 7). (18)
KprodPg ] j'ene(n)\j
Since all component species of product messages have thre raaitiplier #[P,(JHJ')],

Hprod[P(nﬂj)]
the steady state species concentrations compute the toressage according to Equation 4. For
example, the two different sets of variable to factor messaig Figure 1a are
Kprod Kprod
Pél—>3) + S,(Cl_)l) p P]((;l_)3) + Sg_ﬂ) P(()2—>3) + SECQ—>2) P! P5€2—>3) + SECQ—Q). (19)
Similarly, the reactions to compute the marginal probtibgiofx; andx, in Figure 1a are

Pé + S§€3—>1) + S§€1—>1) prod Pglg i SI(€3_>1) + SI(Cl—>l)
Kprod
P(QJ + S](€3ﬂ2) + 81(62%2) P Pi + S](€3a2) + S](QQ%Q).

The two rate constantg,og ands,. can be adjusted to tradeoff speed vs. accuracy, see Section 5

(20)

Together, reactions for recycling probability mass, impdating sum-product messages, and imple-
menting product messages define a reaction network whodéegm computes the messages and
marginal probabilities via the sum-product algorithm. Aslgability mass is continuously recycled,
messages computed on partial information will readjustsettle to the correct value. There is a
clear dependence of messages. Sum messages from leaf modesdepend on any other mes-
sages. Once they are computed, i.e. the reactions havéeatgtl, the message species continue to
catalyze the next set of messages until they have reachdlticerrect value, etc.

6



0.01

PI’ Xl PI’ X2 PI’ X3) PF(X4)

k=01 kK,

exact|] 0.692] 0.308] | 0.598] 0.402] | 0.392[ 0.526] 0.083| | 0.664] 0.336]
slow 0690 0.306 0583 0.393| | 0.394| 0.520| 0.083| | 0.665| 0.333
fast| | 0.661| 0.294| | 0.449| 0.302| | 0.379| 0.508| 0.080| | 0.646| 0.326

Figure 3: Inference results for factor graph in Figure 2@jlored boxes show the trajectories of
a belief species set in a simulated reaction network. Thelsiton time (3000sec) is along the
ax—dimension. Half way though the simulation the factor dteattox; changes from; to ¢/}, and
the exact marginal distribution for each period is shown back-white dashed line. The white area
at the top indicates unassigned probability mass. Thess ghow the clear tradeoff between speed
(higher value ofk,.) and accuracy (less unassigned probability mass). The exaterical answers
at 3000 sec are given in the table.

5 Simulation Experiments

This section presents simulation results of factor graphshave been compiled into reaction net-
works via the procedure in Section 4. All simulations werdgrened using the SimBiology Toolbox
in Matlab with the “sundials” solver. The conserved concatitns for all sets of belief species were
set to 1, so plots of concentrations can be directly intéggras probabilities. Figure 2 shows two
graphical models for which we present detailed simulata&sults in the next two sections.

5.1 Tree-Structured Factor Graphs

To demonstrate the functionality and features of the caattipih procedure described in Section 4,
we compiled the 4 variable factor graph shown in Figure 2aameaction network. When , x5, x3

andx4 have discrete statds; = Ko = K4 = 2 andK3 = 3, the resulting network has 64 chemical
species and 105 reactions. The largest reaction ishobrder to compute the marginal distribution
of xo. We instantiated the factors as shown in Figure 2c and lizi¢id all message and marginal
species to be uniform. To show that the network continuopsljorms inference and can adapt
to new information, we changed the factor to ¢} half way through the simulation. In terms of
information, the new factor implies th&(x; = 2) is suddenly more likely. In terms of reactions

the change means thSéHl) is now more likely to turn intcSéHl). In a biological reaction
network, such a change could be induced by up-regulatingctivating a catalyst due to a new
chemical signal. This new information changes the profgtdistribution of all variables in the

graph and the network equilibrates to these new values,igae=R3.

The only two free parameters atgoq ands,.. Since onlyk,. has an direct effect on all sets of belief

species, we fixedpog = 50 and varieds,.. Small values ok, results in better approximation as less
of the probability mass in each belief species set is in assigaed state. However, small values of
k. slow the dynamics of the network. Larger valuespfesult in faster dynamics, but more of the
probability mass remains unassigned, top white area irr&iguwe should note, that at equilibrium,

the relative assignments of probabilities are still carreee Equation 14 and Equation 18.

The compilation procedure also works for factor graphs Veiter factors. When replacing the two
of the binary factors)s andis in Figure 2a with a new tertiary factqr, that is connected t®;,x,
andx, the compiled reaction network has 58 species and 115 reactithe largest reaction is of
order 4. Larger factors can reduce the number of species #iece are fewer edges and associated
messages to represent, however, the domain ¥Zesf the individual factors grows exponentially
and in the number of neighbors and thus require more reactioimplement.

7



(@) (b)

Figure 4: (a) The belief oPr(x; = 1) as function of iteration in loopy belief propagation. All
messages are updated simultaneously at every time stegr. 180 iterations the oscillations abate
and the belief converges to the correct estimate indicagdidbdashed line. (b) Trajectory 84,
species concentrations. The simulation time is 3000 sed¢handifferent colors indicate the belief
of about either of the two states. The dotted line indicdtessixact marginal distribution &f; .

5.2 Loopy Belief Propagation

These networks can also be used on factor graphs that aneast Figure 2b shows a cyclic graph
which we compiled to reactions and simulated. Wik&n= 2 for all variables the resulting reaction
network has 54 species and 84 reactions. We chose factestttat anti-correlate neighbors and
leaf factors that prefer the same state.

Figure 4 shows the results of performing both loopy beli@fgaigation and simulation results for
the compiled reaction network. Both exhibit decaying datidns, but settle to the correct marginal
distribution. Since the reaction network is essentiallgff@ening damped loopy belief propagation
with an infinitesimal time step, the reaction network impéertation should always converge.

6 Conclusion

We present a compilation procedure for taking arbitrarydagraphs over discrete random vari-
ables and construct a reaction network that performs themaahuct message passing algorithm
for computing marginal distributions.

These reaction networks exploit the fact that the messagetste of the sum-product algorithm
maps neatly onto the model of mass action kinetics. By coatitm, conserved sets of belief species
in the network perform implicit and continuous normalipatiof all messages and marginal distri-
butions. The correct behavior of the network implementatielies on higher order reactions to
implement multiplicative operations. However, physigdligh order reaction are exceedingly un-
likely to proceed in a single step. While we can simulate aalitlate our implementation with
respect to the mass action model, a physical implementatibnequire an additional translation
step, e.g. along the lines of [17] with intermediate specfdsnary reactions.

One aspect that this paper did not address, but we believepisrtant, is how parameter uncer-
tainty and noise affect the reaction network implementetiof inference algorithms. Ideally, they
would be robust to parameter uncertainty and random fluotstTo address the former one could
directly compute the parameter sensitivity in this deteistic model. To address the latter, we
plan to look at other semantic interpretations of chemieattion networks, such as the linear noise
approximation or the stochastic chemical kinetics model.

In addition to further analyzing this particular algorithme would like to implement others, e.g.
max-product, parameter learning, and dynamic state estimas reaction networks. We believe
that statistical inference provides the right tools foktamy noise and uncertainty at a microscopic
level, and that reaction networks are the right languagsgecifying systems at that scale.

Acknowledgements

We are grateful to Wyss Institute for Biologically InspirBdgineering at Harvard, especially Prof.
Radhika Nagpal, for supporting this research. We would dksoto thank our colleagues and
reviewers for their helpful feedback.



References

(1]
(2]
(3]

(4]

(5]

(6]

(7]
(8]
(9]
[10]

[11]
[12]

[13]
[14]
[15]
[16]
[17]
[18]

[19]

[20]

Subhayu Basu, Yoram Gerchman, Cynthia H. Collins, Feartd. Arnold, and Ron Weiss. A synthetic
multicellular system for programmed pattern formatidlature, 434:1130-1134, 2005.

Christopher M. BishopPattern Recognition and Machine Learning. Information Science and Statistics.
Springer, 2006.

Luca Cardelli and Gianluigi Zavattaro. On the compuwas! power of biochemistry. In Katsuhisa Hori-
moto, Georg Regensburger, Markus Rosenkranz, and Hirasthia, editorsilgebraic Biology, volume
5147 ofLecture Notes in Computer Science, pages 65—80. Springer Berlin Heidelberg, 2008.

Ho-Lin Chen, David Doty, and David Soloveichik. Detemistic function computation with chemical
reaction networks. In Darko Stefanovic and Andrew Turbktfieditors,DNA Computing and Molec-
ular Programming, volume 7433 ofLecture Notes in Computer Science, pages 25-42. Springer Berlin
Heidelberg, 2012.

Yuan-Jyue Chen, Neil Dalchau, Niranjan Srinivas, Andihillips, Luca Cardelli, David Soloveichik,
and Georg Seelig. Programmable chemical controllers meata DNA. Nature Nanotechnology,
8(10):755-762, October 2013.

Matthew Cook, David Soloveichik, Erik Winfree, and Jshaa Bruck. Programmability of chemical
reaction networks. IAlgorithmic Bioprocesses, Natural Computing Series, pages 543-584. Springer
Berlin Heidelberg, 2009.

Tal Danino, Octavio Mondragon-Palomino, Lev Tsimriramd Jeff Hasty. A synchronized quorum of
genetic clocksNature, 463:326—330, 2010.

Michael B. Elowitz and Stanislas Leibler. A syntheticcdkatory network of transcriptional regulators.
Nature, 403:335-338, 2000.

A Hjelmfelt, E D Weinberger, and J Ross. Chemical implematgion of neural networks and Turing
machines Proceedings of the National Academy of Sciences, 88(24):10983-10987, 1991.

Erik Winfree Jongmin Kim, John J. Hopfield. Neural netw@omputation by in vitro transcriptional
circuits. InAdvancesin Neural Information Processing Systems 17 (NIPS2004). MIT Press, 2004.

Marcelo O. Magnasco. Chemical kinetics is Turing uréea. Phys. Rev. Lett., 78:1190-1193, Feb 1997.

Chengde Mao, Thomas H. LaBean, John H. Reif, and NadfiaBeeman. Logical computation using
algorithmic self-assembly of DNA triple-crossover molkssu Nature, 407:493-496, 2000.

K. Oishi and E. Klavins. Biomolecular implementatiofh lmear 1/O systems.Systems Biology, |ET,
5(4):252-260, 2011.

Lulu Qian, Erik Winfree, and Jehoshua Bruck. Neurawwk computation with DNA strand displace-
ment cascadedNature, 475:368—-372, 2011.

Paul W. K Rothemund, Nick Papadakis, and Erik Winfreggokithmic self-assembly of DNA Sierpinski
triangles.PLoS Biol, 2(12):e424, 12 2004.

Georg Seelig, David Soloveichik, David Yu Zhang, andB#infree. Enzyme-free nucleic acid logic
circuits. Science, 314(5805):1585-1588, 2006.

David Soloveichik, Georg Seelig, and Erik Winfree. DA a universal substrate for chemical kinetics.
Proceedings of the National Academy of Sciences, 107(12):5393-5398, 2010.

Benjamin Vigoda. Analog Logic: Continuous-Time Analog Circuits for Satistical Sgnal Processing.
PhD thesis, Massachusetts Institute of Technology, 2003.

Jonathan S. Yedidia, W.T. Freeman, and Y. Weiss. Coasirg free-energy approximations and gen-
eralized belief propagation algorithmgnformation Theory, |EEE Transactions on, 51(7):2282-2312,
2005.

David Yu Zhang and Georg Seelig. DNA-based fixed gain lgieps and linear classifier circuits. In
Yasubumi Sakakibara and Yongli Mi, edito®NA Computing and Molecular Programming, volume
6518 ofLecture Notes in Computer Science, pages 176—186. Springer Berlin Heidelberg, 2011.



