Selected Research Projects in Networking

Chunming Qiao
Lab for Advanced Network Design, Evaluation and Research (LANDER)
University at Buffalo (SUNY)
Sponsored in part by: National Science Foundation, Alcatel Research, Nokia Research, Nortel Networks, Telcordia, and ITRI
Overview of Research Areas

• Network Survivability
• Wireless Systems
• Internet (TCP/IP)
• Optical Networks
Survivability: Path Protection

- each connection uses an active (or primary) path (AP) and a (disjoint) backup path (BP).
- allocates \(w \) units of bandwidth on AP & BP.
- protects against any single link (or node) failure (except for the src or dest node).
Shared Path Protection: Principle

- If and only if two APs are disjoint, their BPs can share backup bandwidth (BBW) on a common link L (i.e., total BBW on $L = \max\{w_1, w_2\}$ instead of $w_1 + w_2$).
Problem Statement

- Given: a network and dynamic (i.e., *online*) requests for establishment of connections
- Find: a disjoint AP and BP pair for each new request
- Optimization Objective: minimize the total bandwidth consumption (on the AP and BP)
- Constraint: cannot re-arrange existing connections
Challenges

- Using the APF heuristic (find a shortest AP first, and then a shortest (disjoint) BP) only achieves sub-optimal results.
- So does using a shortest pair of (disjoint) paths (which can be found using a polynomial-time algorithm) due to potential bandwidth sharing among BPs.
- Jointly optimize an AP/BP pair is in fact NP-hard.
- Using Integer Liner Programming (ILP) is notoriously time consuming (even with branch and bound techniques).
- ILP only minimizes the additional total bandwidth consumption by a new request, but *not the overall* bandwidth consumption by *all the connections*.
Our Solution: APF-based heuristic with Potential Backup Bandwidth

- Similar to the APF heuristic (polynomial time)
- *But*, in selecting the AP first, each candidate link e will be assigned a cost $w + \beta_e(w)$ where $\beta_e(w)$ is
 - the *potential (yet-to-be-incurred) backup bandwidth*
 - proportional to w and the total bandwidth already allocated on link e to existing APs
 - obtained through rigorous statistical analysis of experimental data

- Runs *faster* than the ILP based approach and yields *a lower overall bandwidth consumption too!*
Other/Ongoing Research

- Trap Avoidance for APF based heuristics
 - May not be able to find a disjoint BP for the given AP even though a disjoint AP/BP pair does exist
- PROMISE: Protection with Multi-SEgments
 - is more bandwidth efficient and recovers from a failure faster than shared path protection
- Protect Against Dual and Multiple Failures
 - dealing with shared risk link groups (SRLGs)
 - recovery policies (which BP to use to recover the first/second failure) and their effects
Heterogeneous Wireless Technology

Overlay and Integration of:

- Sensors: ultra wideband / pulse radios
- Personal Area Networks (PAN): Bluetooth, IR…
- Wireless LAN: 802.11 (Ad hoc or Infrastructure)
- Cellular systems (3G and beyond): W-CDMA …
- Satellite communications: GPS, GEOS and LEOs
- Broadband Wireless: free-space lasers for first/last mile applications
Existing Cellular Systems

- wide coverage and good scalability
- low data rate and limited capacity (or congestion) due to interference
 - each cell has a subset of channels to facilitate their reuse in cells far away, but can’t access available channels in nearby cells.
Ad hoc Networking

- No base station or access point (infrastructure-less)
- Easy to deploy and high data rate (Mbps and above)
- Limited coverage and scalability
Example: Integrated Cellular and Ad-hoc Relaying (iCAR)

- ARS: Ad hoc Relaying Stations
- MH: Mobile Host (e.g., cell phone)
- Each ARS and MH has two interfaces (cellular and relay)
- **Primary Relaying** for blocked new or hand-off calls in a congested cell (at right) to a non-congested cell (at left)
Secondary Relaying

• primary relaying fails:
 – X not covered by ARS
 – Reachable cell (e.g., C) is congested too

• **Secondary Relaying:** free the channel of an active MH Y by relaying its call to a neighboring cell A
Cascaded Relaying

- MH Z releases its channel to MH Y, which in turns release its channel to MH X:
Main Results

• Theorems: iCAR does more than load-balancing
 – call blocking is minimized when the traffic load is balanced among all n cells in a conventional cellular system
 – the blocking probability in an ideal iCAR is even lower
• Formula to determine the maximal number of ARS’s needed for full or just edge (boundary) coverage
• Develop strategies to place a limited # of ARS’s
• Obtain the call blocking probability through analysis and simulation
Simulation and Analysis Results

![Graph showing call blocking rate in cell A (%) versus traffic intensity in cell A with different relay configurations.]
Other/Ongoing Research

• Use cellular systems to help Ad hoc networks
 – wide coverage, centralized/global knowledge and authentication/signaling capability

• Integrating other technologies such as broadband wireless, sensors, Bluetooth, 802.11 etc

• Energy efficient routing

• TCP/IP over wireless medium

• Wireless security and survivability
Summary: Opportunities and Challenges

- Research on Optical Networks, Wireless Networks and Internet (including TCP/IP/G-MPLS)
- Network Architecture and Protocol Design
 - scheduling, routing, medium access control, signaling
 - Algorithm, Graph, Information & Communications Theories
- Performance Evaluation
 - Simulation (programming yourself or using existing packages)
 - Analysis: probability /stochastic process (e.g., Markov Chain)
 - Integer Linear Programming formulation (for optimization)
- Graduated 8 PhDs and dozens of MS students (employed by universities and major networking companies)
 - many of them have published papers (journals/conferences) and several have filed patent applications.
- Currently about 10 Ph.D students in LANDER – open to a few good PhD students