Labeled Optical Burst Switching and IP/WDM Integration

Chunming Qiao
OVERVIEW

– Introduction to IP/WDM
– Optical Switching Paradigms
 Circuit or Packet Switching?
– Optical Burst Switching (OBS)
Just In Case ...

- IP: Internet Protocol
 - not *Intellectual Property*
- ATM: Asynchronous Transfer Mode
 - not *Automatic Teller Machine*
- SONET: Synchronous Optical NETwork
 - not as in *son et (lumiere)*
- WDM: Wavelength Division Multiplexing
 - or *Wha’Daya Mean?*
Network Architectures

- today: IP over (ATM/SONET) over WDM
- trend: Integrated IP/WDM (with optical switching)
- goal: ubiquitous, scalable and future-proof
IP / ATM / SONET / WDM
SONET/SDH

• standard for TDM transmissions over fibers
 – basic rate of OC-3 (155 Mbps) based on 64 kbps PCM channels (primarily voice traffic)
 – expensive electronic Add-Drop Muxers (ADM) @ OC-192 (or 10 Gbps) and above
 – many functions *not* necessary/meaningful for data traffic (e.g., bidirectional/symmetric links)
 – use predominantly rings: not BW efficient, but quick protection/restoration (<= 50 ms)
Internet Protocol (IP)

• main functions
 – break data (email, file) into (IP) packets
 – add network (IP) addresses to each packet
 – figure out the (current) topology and maintains a routing table at each router
 – find a match for the destination address of a packet, and forward it to the next hop
 • a link to a popular server site may be congested
Asynchronous Transfer Mode

- break data (e.g., an IP packet) into smaller ATM cells, each having $48+5 = 53$ bytes
- a route from point A to point B needs be pre-established before sending cells.
- support Quality-of-Service (QoS), e.g., bounded delay, jitter and cell loss rate
- basic rate: between 155 and 622 Mbps
 - just start to talk 10 Gbps (too late?)
Data Traffic Growth

• double every 4 (up to 12) months or so, and will increase by 1,000 times in 5 years
 – at least 10 x increase in users, and uses per user
 – at least 100 x increase in BW per use:
 • current web pages contain 10 KB each
 • MP3 & MPEG files are 5 & 40 MB each, resp.

• beat Moore’s Law (growth rate in electronic processing power)
 – electronic processing, switching, and transmission cannot and will not keep up
 – need WDM transmissions and switching
Wavelength Division Multiplex

- up to 50 THz (or about 50 Tbps) per fiber (low loss range is now 1335nm to 1625nm)
- mature WDM components
 - mux/demux, amplifier (EDFA), transceiver (fixed-tuned), add-drop mux, static λ-router,
- still developing
 - tunable transceiver, all-optical λ-conversion and cross-connect/switches, Raman amplifiers
WDM Pt-2-Pt Transmission

MUX

fiber

EDFA

DMUX

\(\lambda_1\)

\(\lambda_2\)

\(\ldots\)

\(\lambda_n\)
Advance in WDM Networking

- Transmission (long haul)
 - 80 λs (1530nm to 1565nm) now, and additional 80 λs (1570nm to 1610nm) soon
 - OC-48 (2.5 Gbps) per λ (separated by 0.4 nm) and OC-192 (separated by 0.8 nm)
 - 40 Gbps per λ also coming (>1 Tbps per fiber)

- Cross-connecting and Switching
 - Up to 1000 x 1000 optical cross-connects (MEMS)
 - 64 x 64 packet-switches (switching time < 1 ns)
ATM and SONET: Legacy

- interest in ATM diminished
 - a high cell tax, and segmentation/re-assembly and signaling overhead
 - failed to reach desktops (& take over the world)
 - on-going effort in providing QoS by IP (e.g., IPv6 & Multi-protocol Label Switching or MPLS)

- SONET/SDH more expensive than WDM
 - & IP & WDM can jointly provide satisfactory protection/restoration (< 99.999% reliability?)
Datagram (IP) or VC (ATM)

- *datagram*-based packet switching
 - next-hop determined for each packet based on *destination* address and *(current)* routing table
 - IP finds a longest sub-string match (a complex op)
- *virtual circuit* (VC)-based packet-switching
 - determines the path (VC) to take before-hand
 - entry at each node: [VCI-*in*, next-hop, VCI-*out*]
 - assigns packets a VCI (e.g., Rt. 66)
Benefit of VC (as in ATM)

- faster and more efficient forwarding
 - an exact match is quicker to find than a longest sub-string match
- facilitates traffic engineering
 - paths can be explicitly specified for achieving e.g., network-wide load-balance
 - packets with the same destination address (but different VCI’s) can now be treated differently
IP-over-ATM

- IP routers interconnected via ATM switches
- breaks each packet into cells for switching
- a flow: consecutive packets with the same source/destination (domain/host/TCP conn.)
- Multi-protocol over ATM (MPOA)
 - ATM-specific signaling to establish an ATM VC between source/destination IP routers
 - segmentation and re-assembly overhead
IP-centric Control

- **Tag Switching** (centralized, control-driven)
 - the network sets up end-to-end VC’s
 - each packet carries a tag (e.g., VCI)

- **IP Switching** (distributed, data-driven)
 - first few packets are routed at every IP router
 - up to a threshold value to filter out short “flows”
 - following packets bypass intermediate routers via a VC (established in a hop-by-hop fashion).
MPLS (Overview)

- A control plane integrating network-layer (routing) and data-link layer (switching)
 - packet-switched networks with VC’s
- LSP: label switched path (VC’s)
 - identified with a sequence of labels (tag/VCI)
 - set up between label switched routers (LSRs)
- Each packet is augmented with a shim containing a label, and switched over a LSP
IP over WDM Architectures

- IP routers interconnected with WDM links
 - with or without built-in WDM transceivers
- An optical cloud (core) accessed by IP routers at the edge
 - pros: provide fat and easy-to-provision pipes
 - either transparent (i.e., OOO) or opaque (i.e., O-E-O) cross-connects (circuit-switches)
 - proprietary control and non-IP based routing
Optical/Photonic (OOO) Switching

• Pros:
 – can handle a huge amount of *through*-traffic
 – synergetic to optical transmission (no O/E/O)
 – transparency (bit-rate, format, protocol)

• caveats
 – optical 3R/performance monitoring are hard
 – more mature/reliable opaque (OEO) switches
 – SONET or GbE like framing still useful
Emerging Integrated IP/WDM

- IP and MPLS on top of every optical circuit or packet switch:
 - IP-based addressing/routing (electronics), but data is optically switched (circuit or packet)
 - MPLS-based provisioning, traffic engineering and protection/restoration
 - Internetworking of optical WDM subnets
 - with interior and exterior (border) gateway routing
Why IP over WDM

- IP: the unifying/convergence network layer
- IP traffic is (& will remain) *predominant*
 - annual % increase in voice traffic is in the teens
- IP/WDM the choice if start from scratch
 - ATM/SONET were primarily for voice traffic
 - should optimize for pre-dominant IP traffic
- IP routers’ port speed reaches OC-48
 - no need for multiplexing by ATM/SONET
Why IP/WDM (continued)

- IP is resilient (albeit rerouting may be slow)
- a WDM layer (with optical switches)
 - provides fast restoration (not just WDM links for transmission only)
- Why Integrated IP/WDM
 - no need to re-invent routing and signaling protocols for the WDM layers and corresponding interfaces
 - facilitates traffic engineering and inter-operability
MPLS-variants: $MP\lambda S$ and LOBS

- optical core: circuit- or packet-switched?
- circuit-switched WDM layer
 - OXC’s (e.g., wavelength routers) can be controlled by $MPLambda S$ (or $MP\lambda S$)
- packet-switched or burst-switched (a burst = several packets) WDM layer
 - optical switches controlled by *Labeled Optical Burst Switching* (LOBS) or other MPLS variants.
Labeled Optical Burst Switching

• similar to MPLS
 (e.g., different LOBS
 paths can share
 the same \(\lambda \))

• control packets
 carry labels as well
 as other burst info

• unique LOBS issues:
 assembly (offset time),
 contention resolution,
 light-spitting (for WDM
 mcast), \(\lambda \) conversion...
Observation

• IP over WDM has evolved:
 – from WDM links, to WDM clouds (with static virtual topology and then dynamic λ services),
 – and now integrated IP/WDM with MPλS

• to be truly ubiquitous, scalable and future-proof, a WDM optical core should also be
 – capable of OOO packet/burst-switching, and basic QoS support (e.g., with LOBS control)
Optical Switching Techniques

historically, circuit-switching is for voice and packet-switching is for data
Optical Core: Circuit or Packet?

- five src/dest pairs
 - circuit-switching (wavelength routing)
 - 3 λs if without λ–conversion
 - only 2 λs otherwise
 - if data is sporadic
 - packet-switching
 - only 1 λ needed with statistical muxing
 λ conversion helps too
Impacts on Components

(a) Cross-Connect (1000 by 1000, ms switching time)

(b) Packet-Switch (64x64, with ns switching time)
Packet Core: A Historical View (hints from electronic networks)

- optical access/metro networks (LAN/MAN)
 - optical buses, passive star couplers (Ethernet)
 - SONET/WDM rings (token rings)
 - switched networks? (Gigabit Ethernet)

- optical core (WAN)
 - λ-routed virtual topology (circuits/leased lines)
 - dynamic λ provisioning (circuits on-demand)
 - optical burst (packet/flow) switching (IP)
Packet Core: Technology Drivers

- explosive traffic growth
- bursty traffic pattern
- to increase bandwidth efficiency
- to make the core more flexible
- to simplify network control & management by making the core more intelligent
Circuit Switching

- long circuit set-up (a 2-way process with Req and Ack): \(RTT = \text{tens of } ms \)
- pros: good for smooth traffic and QoS guarantee due to fixed BW reservation;
- cons: BW inefficient for bursty (data) traffic
 - either wasted BW during off/low-traffic periods
 - or too much overhead (e.g., delay) due to frequent set-up/release (for every burst)
Wavelength Routing

- setting up a lightpath (or \(\lambda \) path) is like setting up a circuit (same pros and cons)
- \(\lambda \)-path specific pros and cons:
 - very coarse granularity (OC-48 and above)
 - limited # of wavelengths (thus # of lightpaths)
 - no aggregation (merge of \(\lambda \)s) inside the core
 - traffic grooming at edge can be complex/inflexible
 - mature OXC technology (\(msec \) switching time)
Self-Similar (or Bursty) Traffic

- Left:
 - *Poisson* traffic (voice)
 - smooth at large time scales and mux degrees

- Right:
 - data (IP) traffic
 - bursty at all time scales and large mux degrees
 - circuit-switching not efficient (*max >> avg*)
To Be or Not to Be BW Efficient?
(don’t we have enough BW to throw at problems?)

• users’ point of view:
 – with more available BW, new BW intensive (or hungry) applications will be introduced
 • high BW is an addictive drug, can’t have too much!

• carriers’ and venders’ point of view:
 – expenditure rate higher than revenue growth
 – longer term, equipment investment cannot keep up with the traffic explosion
 – need BW-efficient solutions to be competitive
Packet (Cell) Switching

• A packet contains a header (e.g., addresses) and the payload (variable or fixed length)
 – can be sent without circuit set-up delay
 – statistic sharing of link BW among packets with different source/destination

• store-and-forward at each node
 – buffers a packet, processes its header, and sends it to the next hop
Optical Packet Switching: Holy Grail

- No.1 problem: lack of optical buffer (RAM)
- fiber delay lines (FDLs) are bulky and provide only limited & deterministic delays
 - store-n-forward (with feed-back FDLs) leads to fixed packet length and synchronous switching
- tight coupling of header and payload
 - requires stringent synchronization, and fast processing and switching (ns or less)
Optical Burst Switching (OBS)

- a burst has a long, variable length payload
 - low amortized overhead, no fragmentation
- a control packet is sent out-of-band (λ_{control})
 - reserves BW (λ_{data}) and configures switches
- a burst is sent after an offset time $T > 0$ (loose coupling), but $T << RTT$ (1-way process)
 - uses asynchronous, cut-through switching (no delay via FDLs needed)
Packet (a) vs. Burst (b) Switching
Optical Packet or Burst Switching?

- OBS = optical packet switching with:
 - variable-length, super (or multiple) packets
 - asynchronous switching with switch *cut-through* (i.e., no store-and-forward)
 - a packet is switched before its last bit arrives
 - out-of-band control using e.g., dedicated λs or sub-carrier multiplexing (SCM)
 - electronically processed or optically processed (with limited capability and difficult implementation)
OBS Protocols

• based on Reserve-Fixed-Duration (RFD)
 – $T \geq \Sigma$ (processing delay of the control packet)
 • eliminate the need for FDLs at intermediate nodes
 – same end-to-end latency as in packet-switching
 • bursts delayed (electronically) at sources only
 • use 100% of FDL capacity for contention resolution
 – auto BW release after a fixed duration (= burst length) specified by the control packet (YQ97)
Just-Enough-Time (JET)

- combined use of offset time and delayed reservation (DR) to facilitate intelligent allocation of BW (and FDLs if any)
TAG-based Burst Switching

- BW reserved from the time control packet is processed, and released with: (Turner’97)
 - an explicit *release* packet (problematic if lost)
 - or frequent *refresh* with time-out (overhead)

- **T = 0** (or negligible)
 - without *DR*, using \(T > 0 \) wastes BW
 - FDLs per node \(\geq \) max \{proc. + switch time\}
Burst Switching Variations

- based on Tell-And-Go (TAG)
 - BW reserved from the time control packet is processed, and released with: (Turner97)
 - either an explicit release packet (problematic if lost)
 - or frequent refresh packets with time-out (overhead)

- based on In-Band-Terminator (IBT)
 - BW released when an IBT (e.g., a period of silence in voice communications) is detected
 - optical implementation is difficult
More on Offset Time

- TAG and IBT: $T = 0$ (or negligible)
 - without DR, using $T > 0$ wastes BW
 - FDLs per node \geq max. (proc. + switch) time
- JET buffers bursts for $T > \Sigma$ (Δ: proc. delay)
 - a plenty of electronic buffer at source
 - no mandatory FDLs to delay payload
 - can also take advantage of FDLs (buffer)
 - 100% used for (burst) contention resolution
Tolerate Switching Delay

- control packet can leave right after $\delta = \Delta - s$
 - where s is the switch setting time
FDLs for Contention Resolution

- shared (a) or dedicated (b) structure with max delay time = B
OBS Nodes with FDL
BW and FDL Allocation

- intelligent BW scheduling (known durations)
- no wasted FDL capacity (known blocking time)
 - max. delay time $0 < d_{\text{max}} \leq B$
Performance Evaluation

- metrics: link utilization vs. latency
- a 16-node mesh network (with OC-192 links)
- ave. burst length \((L)\): \(0.1\) msec \((1\) Mbits\)
- relative FDL capacity \(b = B/L\) is 0 or 1
- also found performance improvement of JET over other protocols scale with
 - # of \(\lambda\)s \((k)\) & relative processing speed \(c = \Delta/L\)
BW Utilization vs Latency

- JET as good as NoDR with FDLs
- JET with FDLs 50% better NoDR with FDLs.
Why OBS? A Comparison

<table>
<thead>
<tr>
<th>Optical switching paradigms</th>
<th>Bandwidth Utilization</th>
<th>Latency (setup)</th>
<th>Optical Buffer</th>
<th>Proc./Sync. Overhead (per unit data)</th>
<th>Adaptivity (traffic & fault)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit</td>
<td>Low</td>
<td>High</td>
<td>Not required</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Packet/Cell</td>
<td>High</td>
<td>Low</td>
<td>Required</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>OBS</td>
<td>High</td>
<td>Low</td>
<td>Not required</td>
<td>Low</td>
<td>High</td>
</tr>
</tbody>
</table>

OBS combines the best of coarse-grained circuit-switching with fine-grained packet-switching
Switching Paradigms (Summary)

<table>
<thead>
<tr>
<th>Circuit-Switching</th>
<th>Burst-Switching</th>
<th>Packet-Switching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength-routing</td>
<td>Optical burst switching</td>
<td>Optical packet switching</td>
</tr>
</tbody>
</table>

- fast circuit-switching
- TAG
- IBT
- RFD
- message switching
- datagram
- MPLS
- VC-based

<table>
<thead>
<tr>
<th>two-way reservation</th>
<th>one-way reservation</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch cut-through</td>
<td>store-and-forward</td>
</tr>
<tr>
<td>variable-length</td>
<td>fixed-length</td>
</tr>
<tr>
<td>out-of-band control</td>
<td>in-band control</td>
</tr>
<tr>
<td>large granularity</td>
<td>medium granularity</td>
</tr>
<tr>
<td></td>
<td>small granularity</td>
</tr>
</tbody>
</table>
Support QoS Using OBS
QoS schemes

- current IP: single class, best-effort service
 - *Apps*, users and ISPs need *differentiated service*
- existing schemes (e.g., WFQ) require buffer
 - so to have different queues and, service a higher priority queue more frequently
 - not suitable for WDM networks
 - no optical RAM available (FDLs not applicable)
 - using electronic buffers means E/O/E conversions
Why QoS at WDM layer?

- a WDM layer supporting basic QoS will
 - support legacy/new protocols incapable of QoS and thus making the network truly ubiquitous
 - facilitate/complement future QoS-enhanced IP
 - handle mission-critical traffic at the WDM layer for signaling, and restoration
Prioritized OBS Protocol

- extend \textit{JET} (which has a base \(t > 0 \)) by using an \textit{extra} offset time \(T \) to isolate classes
- example:
 - two classes (class 1 has priority over class 0)
 - class 1 assigned an \textit{extra} \(T \), but not class 0
Prioritized OBS (continued)

- no buffer (not even FDLs) needed, suitable for all-optical WDM networks
- can take advantage of FDLs to improve QoS performance (e.g., a higher isolation degree)
- the extra T does introduces additional latency
 - but, only insignificantly (e.g., \leq a few ms)
Why *Extra Offset Time* \Rightarrow *Priority*?

- assumptions:
 - a link having one available λ and no FDLs
 - two classes (class 1 has priority over class 0)
 - lost class 0 (best-effort class) bursts retransmitted
 - class 1 (critical) bursts need low blocking prob.
 - class 1 assigned an *extra* T, but not class 0
 - the difference in their base t’s is *negligible*
Class Isolation: Example

\[t_a^1 \quad t_a^0 (= t_s^0) \quad t_s^1 \quad t_s^1 + l_1 \]

- a class 0 burst won’t block a class 1 burst
 - class 1 control packet arrives first (a)
 - class 0 control packet arrives first (b)
- extra \(T \) = right to reserve BW in advance
(Extra) Offset Time Required

- extra T assigned to class 1: \(t_1 \)
- class 0 burst length: \(l_0 \)
 - expected ave: 10 Mbits or 1 ms @ OC-192
- completely isolated classes if \(t_1 \geq \text{max.}\{l_0\} \)
- let \(p = \text{prob}\ \{l_0 \leq t_1\} \), that is, \(p\% \) of class 0 bursts are no longer than \(t_1 \)
 - partially isolated (with a degree of \(p \))
 - e.g., 95% isolation when \(t_1 = 3 \) times of ave\(\{l_0\}\)
When Number of Classes \((n) > 2\)

- \(L_i\): class \(i\)’s mean burst length
- \(t_{i,i-1}\): difference in \(T\) between classes \(i\) & \(i-1\)
- \(R_{i,i-1}\): (adjacent) class isolation degree
 - \(\text{prob. \{class } i \text{ will not be blocked by class } i-1\}\)
- \(R_{i,i-1}\) = PDF\{class \(i-1\) bursts shorter than \(t_{i,i-1}\}\)
 - with exponential distribution

\[
PDF = 1 - e^{-u_{i-1} t_{i,i-1}}, \quad u_{i-1} = 1 / L_{i-1}
\]
Isolation Degree Achieved

<table>
<thead>
<tr>
<th>offset time difference</th>
<th>$0.4 \ L_{i-1}$</th>
<th>L_{i-1}</th>
<th>$3 \ L_{i-1}$</th>
<th>$5 \ L_{i-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolation degree</td>
<td>0.3296</td>
<td>0.6321</td>
<td>0.9502</td>
<td>0.9932</td>
</tr>
</tbody>
</table>

- more isolated from lower priority classes
 - class i is isolated from class $i - 1$ with $R_{i,i-1}$
 - class i is isolated from class $i - 2$ with $R_{i,i-2} > R_{i,i-1}$ (since $t_{i,i-2} = t_i - t_{i-2} > t_{i,i-1} = t_i - t_{i-1}$)
 - similarly, class i is isolated from all lower classes with at least $R_{i,i-1}$
Analysis of Blocking Probability

- single node with $k \lambda$'s and λ–conversions
- the classless OBS (for comparison)
 - blocking probability: $B(k, \rho)$ using Erlang's loss formula ($M/M/k/k$) (bufferless)
- the prioritized OBS
 - $B(k, \rho) = \text{ave. blocking probability over all classes (the conservation law)}$
 - assume complete (100%) class isolation
Analysis (II)

- block prob. of class $n - 1$ (highest priority)
 - $pb_{n-1} = B(k, \rho_{n-1})$ because of its complete isolation from all lower priority classes
- blocking prob. of bursts in classes j to $n - 1$:
 - calculated as one super class isolated from all lower classes: $PB_{n-1,j} = B(k, \rho_{n-1,j})$
 - where the combined load is $\rho_{n-1,j} = \sum_{i=j}^{n-1} \rho_i$
Analysis (III)

• blocking prob. of bursts in classes j to $n - 1$
 – when calculated as a weighted sum:

$$PB_{n-1, j} = \sum_{i=j}^{n-1} c_i \times Pb_i \quad where \quad c_i = \rho_i / \rho$$ (2)

• given blocking prob of classes $j+1$ to $n - 1$

$$pb_{j} = (B(k, \rho_{n-1, j}) - \sum_{i=j+1}^{n-1} c_i \times pb_i) / c_j$$
 – e.g., blocking prob. of class $n - 1$

$$pb_{n-2} = (B(k, \rho_{n-1,n-2}) - c_{n-1} \times pb_{n-1}) / c_{n-2}$$
Loss Probability vs. Load

- by default: \(n = 4, k = 8, L_i = L \), and \(t_{i,i-1} = 3L \)

Class Isolation

Average (Conversation Law)
Differentiated Burst Service

- same average over all classes (conservation law)
- FDLs (if any) improve performance of all classes
- class isolation increases with # of λs, classes and FDLs (if any)
- bounded E2E delay of high priority class

Loss Prob vs. Load
(four classes, 8 λs)
Scalability

Loss prob vs. k

Loss prob vs. n
Some Practical Considerations

Loss prob. saturation when offset time difference = 3L

Loss prob under self-similar traffic
Application to FDLs

- to isolate two classes for FDL reservation
 - extra offset time to class 1 > \(\max\{ l_0 \} \)
- for \(\lambda \) reservation: \(\text{extra } t > B + \max\{ l_0 \} \)
 - class 0 may be delayed for up to \(B \) units
- isolation degree differs for a given \(t \)

<table>
<thead>
<tr>
<th>FDL (buffer)</th>
<th>0.4 (L_0)</th>
<th>(L_0)</th>
<th>3 (L_0)</th>
<th>5 (L_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
<td>0.4 (L_0 + B)</td>
<td>(L_0 + B)</td>
<td>3 (L_0 + B)</td>
<td>5 (L_0 + B)</td>
</tr>
<tr>
<td>Isolation degree (R)</td>
<td>0.3296</td>
<td>0.6321</td>
<td>0.9502</td>
<td>0.9932</td>
</tr>
</tbody>
</table>
FDLs vs Queue

- FDLs only store bursts with blocking time $< B$
- a queue can store any burst indefinitely
- queueing analysis (M/M/k/D) generally yields a lower bound on the loss probability
 - except when number of FDLs and B are large
Effect of Max Delay Time

Loss Prob.

Queueing Delay

![Graphs showing the effect of maximum delay time on loss probability and queuing delay for different classes. Each graph has multiple curves representing different classes.]
Other Topics in OBS (I)

- burst assembly
 - based on fixed time, min. length, or burst detection heuristics

- offset time value
 - priority vs additional pre-transmission delay

- burst route determination
 - shortest (in hop count) or least loaded
 - alternate routes & adaptive routing
Other Topics in OBS (II)

- WDM multicasting
 - constrained multicast routing (e.g., multicast forests to get around mcast-incapable switches)
 - IP/WDM multicast interworking
- contention resolution & fault recovery
 - drop, re-transmission (WDM layer), buffering (via FDLs), deflection (in both space and wavelength), or pre-emption
End of Part I