
CSE 451, Fall 1999

The Strategies So Far, version II (more to come!)

Notes:

1. Numbering corresponds to my lectures of 11 and 16 November.

2. Strategies are listed in “quasi-logical” order.

4: Determine precondition Q and postcondition R (if not already known)

4.1: Use initial and final values of variables to help determine pre- and postconditions.

1: Look at the goal (i.e., the postcondition) of the program.

2: Refine the postcondition until it’s usable; e.g., replace high-level concepts with their
definitions.

3: Suppose we know a precondition Q for an IF.
Then: to develop a guarded command for IF, do:

repeat:
(a) find a command Si such that Si

�
R � , at least sometimes

3.1: choose an Si that: (i) is suggested by R (cf. strategy 1)
and (ii) is simple

5: Look at the precondition for clues to find a command Si such that Si
�
R � .

5.1: If precondition is part of postcondition, use skip.

(b) find a Boolean guard Bi such that Bi � wp � Si � R � (then use: Bi � Si)

3.2: compute wp � Si � R � and try Bi � wp � Si � R �
6: By Thm 10.5, each guard Bi must satisfy Q � Bi � wp � Si � R �	 if Q and wp � Si � R � are known, can determine Bi as whatever must be

conjoined to Q to imply wp � Si � R �

or

(a 
 ) suppose you have guards B1 �������
� Bi � 1;
find Bi such that Q � � B1 � ����� � Bi �

(b 
 ) find Si such that Q � Bi � wp � Si � R �
until Q � � B1 � ����� � Bn � (recall Thm 10.5!)

7: All other things being equal, make the guards of an IF as strong as possible
(so that errors will cause the program to abort, rather than work in a GIGO manner).

1



To develop a DO-program, given:

� precondition Q,

� invariant P,

� bound function t,

� and postcondition R:

8. Find an initialization that makes P true before the loop.

9.1 Find a guard B such that P ��� B � R;

9.2 develop body S that (a) decrements t
while (b) preserving P

10. All other things being equal, make the guards of a DO-loop as weak as possible
(so that errors will cause ∞ loops rather than going undetected).

2


