LOGIC:
A COMPUTER APPROACH

Morton L. Schagrin

State University of New York
at Fredonia

William J. Rapaport

State University of New York
at Buffalo

Randall R. Dipert

State University of New York
at Fredonia

McGraw-Hill Book Company

New York St Louis San Francisco Auckland
Bogotd Hamburg Johannesburg London Madrid
Mexico Montreal New Delhi Panama Paris
Séao Paulo Singapore Sydney Tokyo Toronto

—_— R,

© g5

‘ CHAPTER 11

SENTENTIAL LOGIC: ‘
A Method for
Producing Proofs

We now take up the second of our two
questions from Chapter 10: how to construct a proof of
a valid argument given the premises and the conclu-
sion. We could give an algorithm for constructing a proof,
in the logic of sentences, for any premises and any
conclusion validly following from them. But the resulting
algorithm would be either very long or “unnatural” (in
failing to follow the “natural” inferential rules we gave
in Chapters 8 and 9). Consequently, we shall not aim
in this chapter to give the full algorithm for constructing
a derivation. We shall instead content ourselves with
describing a method for constructing a proof that will
work most of the time. That is, in some cases, some
creative intervention by a human user might be re-
quired. We shall call this method PROOF-GIVER.

223

CHAPTER 11

General Strategies for Constructing Proofs
|

The task we face in constructing a derivation of a conclusion from given premises seems,
at first, like nothing we have ever done before. Consequently, the beginner might feel
somewhat lost when it comes to constructing a proof. But, in fact, the construction of a
proof in logic is a great deal like problems we regularly solve without much difficulty.
The construction of a proof also resembles tasks for which computers (and hence
algorithms) are regularly employed.

Analogous Problems

One task analogous to constructing proofs is the problem of finding our way through a
maze.

Exit

l |

{3
I__

Entrance
Figure 11-1 A maze.

We all quickly recognize what the goal is: to find a path through the maze, beginning at
the entrance and coming out at the exit, without crossing a line (a “wall”). Finding our
way through a maze might not seem at first much like constructing a proof. But the two
problems have some interesting similarities. In a maze, we are always told where to
begin (at the “entrance”). In constructing a proof in logic, we are also told where to begin:
with our premises. The premises are our “entrance” to a logic puzzle. In a maze, we
are also told where we are supposed to end up (at the “exit”). In constructing a proof in
logic, our goal also lies clearly before us: the conclusion, which we must somehow reach.

In finding our way through a maze, certain methods of proceeding are allowed, and
others are forbidden to us. We may turn left or right or go straight ahead, but we are
not allowed to “jump over” or “go through” a wall. In a proof in logic, there are certain
maneuvers that are allowed: these are the rules of our natural deduction system: &ELIM,
—INTRO, and so on. But certain maneuvers are denied to us: we are not allowed to
infer any old sentence we would like.

As it will turn out, the strategies we use in finding a way through a maze and in
constructing a proof are quite similar. In finding our way through a maze on paper, we

L

225

——— ., ————————
PRODUCING PROOFS

might visually start at the entrance and see where we can go from there. Or we might
glance ahead to our goal, the exit, and see how we might get there. That is, we might
glance ahead to see what routes /ead to the exit. In constructing a proof in logic, there
are also two basic strategies. We might look at the premises and see what follows from
them by the rules that are permitted to us. Or we might look ahead and see how the
conclusion might come about through using the known rules.

Another analogous task is a more practical problem that a computer—in the hands
of an able travel agent—is frequently used to solve. Suppose that you must fly from
Chicago to New Orleans but that, unfortunately, there are no direct flights at the time,
you want to make your trip. Suppose that the relevant flights have the following pattern:

Montréal

Boston
Rochester
Detroit
Toledo
CHICAGO
Pittsburgh
Indianapolis
Washington, D.C.
Lexington
‘
Nashville
Memphis
Atlanta
Birmingham)
N
Jacksonville

NEW ORLEANS
Figure 11-2 Flights with connections to Chicago and New Orleans.

226

—— ., ————
CHAPTER 1

Just as with the maze and with constructing a proof in logic, there are “dead ends” that
will not lead to our destination, and there are sometimes several ways to reach our
destination—some that are shorter and some that are longer. The strategies we might
use to solve this flight problem are like the strategies we might use to find our way
through a maze. For example, we might use a finger to trace a path beginning with
Chicago, or we might use a finger to trace a path backward from New Orleans. We
might even combine the two strategies to see where they meet.

The flight problem has some features that make it more like a logic problem than
the maze. In order to fly from Chicago to New Orleans, we might first have to fly to other
cities—Atlanta, for example. In the jargon of a travel agent, these are our “connections.”
We might even have to go considerably out of our way to get to New Orleans: we might
have to fly to Seattle, for example, if there are no direct flights to New Orleans.

In constructing a proof in logic, there might also be no “direct flights.” We might first
have to make “trips” to intermediate “destinations.” A “direct flight” in the proof of an
argument would be one in which the conclusion follows from the premises through the
application of only one rule. For example, the argument

(A—B)
A
. B

has a proof that corresponds to a direct flight:

1. (A—>B) PREMISE
2. A :PREMISE
3.8 —ELIM,1,2

In a proof, however, we do not often have the luxury of a “direct flight”; we must make
“connections” by deducing intermediate sentences that eventually allow us to reach our
destination: the conclusion.

Forward-Looking and Backward-Looking Strategies

The strategy used in constructing a proof will be so remarkably similar to the strategies
we would ordinarily use 1o solve the maze and the flight problems that it bears repeating.

We can begin with our starting point and work forward, or we can glance ahead to
our destination and work backward.

In constructing a proof, these two methods would correspond, respectively, to

1. Considering the premises and wondering what follows from them by our rules.
2. Considering the conclusion and wondering how it could arise by our rules.

Y4
—— N,
PRODUCING PROOFS

For several reasons, method 2—Ilooking ahead to the destination (our conclusion) and
working backward—will turn out to be especially fruitful in logic.

There is one big difference between the logical problem of constructing a proof and
the maze and flight problems. This difference will make approaching the construction of
a proof with a strategy all the more important. The difference is that the ways we get
from our point of departure to our destination in the maze and flight problems are few
in number. In the maze problem, we move in any direction we wish, so long as we don’t
cross a line; in the flight problem, we move along connecting lines. But in the logical
problem of “departing from” the premises and “arriving at” the conclusion, there are at
any point many different rules we could use. Still worse, there are in the construction of
a proof many more “intermediate destinations” than in the case of the flight from Chicago
to New Orleans. There are in fact an infinite number (so we could not even chart the
options, as we did in the Chicago—New Orleans case). And most of these intermediate
destinations are blind alleys: they do not get us any closer to our destination—the
conclusion. We must then plan our proof very carefully. And to plan our proof, we must
have a method for creating the plan—a plan for making plans, if you wish. This method
for creating plans for a proof is the purpose of PROOF-GIVER.

Consider the following argument:

A
(A—(B-C)
. (B—C)

The argument is valid. But how do we produce a proof? We first begin by examining
the premises, the conclusion, and their connection. We see that the conclusion is a
conditional, ‘(B — C)'. Furthermore, we should observe that this very same conditional
is part of one of the premises: (A — (B — C)), the second premise. Refiecting briefly on
this premise and its main connective, —, we see that if we could somehow eliminate
this connective (and the antecedent ‘A’) from the premise, we wouid be left with the
desired result: (B — C). But, of course, to eliminate —, we just apply the —ELIM rule.
To apply it, we need the antecedent ‘A’, which, conveniently, is the first premise.
The proof resulting from these observations is:

1. A :PREMISE
2. (A—>(B—0Q) :PREMISE
3. B—~C) —ELIM,2,1

This proof resulted from our observation that the desired conclusion is a subformula of

one of the premises. We then reasoned how this subformula could be derived by itself

on a line. Obtaining a subformula by itself will typically involve the use of an ELIM rule.
But consider the following argument:

B
s (A—>C)—>B)

228

R, ———————————
CHAPTER 11

Here, the conclusion is not a subformula of a premise. The lengthy conclusion is not
embedded anywhere in the simple premise. What information do we have to go on in
determining our strategy for the proof? Even though we cannot see the relationship of
the conclusion to the premises (as we did in the previous example), we can examine
the structure of the conclusion itself. It is, again, a conditional. How could a condi-
tional arise in a proof? It might well come from an application of —=INTRO. (In fact, it is
difficult in this example to see how a conditional could be arrived at other than through
— INTRO.)

_ So we might guess that one step in the proof uses —INTRO. But what previous
lines could produce ‘((A — C) — B)’ by —INTRO? The answer is this. If ‘(A — C)’ were
an ASSUMPTION and ‘B’ were a later line in the same subproof, then ‘((A— C) — BY
could be inferred by —INTRO. A good guess, then, is that the proof proceeds as follows:

1. B :PREMISE
*2. (A>C) :ASSUMPTION
*2. B ?

*?. (A—>C)—>B) —INTRO,?,?
?. (A— C)—B) :RETURN,?

The dots and question marks indicate parts of the proof yet to be filled in. The only
mystery is how to derive ‘B’. That, however, is easy to guess in this example: it was
“sent” into the subproof from the premise, ‘B’. The resulting proof, with comment lines
inserted, is:

1. B :PREMISE
/BEGIN: —INTRO to derive ((A — C) — B)/

*2. (A—>C) :ASSUMPTION

*3. B :SEND, 1

*4, (A—C)—B) :—INTRO,2,3 . S
/END: —INTRO to derive (A — C) — B)/ : o

5. (A—>C)—B) ‘RETURN,4 S

These two examples give us the basis of a strategy for creating proofs. An overall view
of the method we have just seen applied in devising a strategy is:

1. If the conclusion is a subformula in a previous line, then use the appropriate
ELIM rule to isolate this subformula on its own line.

229
——————— R, —————————
PRODUCING PROOFS

2. Ifthe conclusion is not a subformula of a previous line, then examine the structure
of this conclusion, and use the appropriate INTRO rule to reconstruct the con-
clusion.

'hese two suggestions are the basic elements in PROOF-GIVER.

In building up a derivation, we shall need two items. The first is simply the ongoing
lerivation. It will be composed of the steps of the proof, as far as we have gotten. The
second item is what we shall call the task list. The task list will be our list of the steps
/et needed to complete the proof. The task list is best thought of as our notes to ourselves
n how to complete the proof. In this respect, the task list is little more than what we
ave been calling “comments.”

This task list can be written immediately following any portion ot the proof we have
ompleted (or it can be kept in a separate place) and constitutes instructions on our
plan of attack” for how best to complete the proof. When we are first given the premises
ind the conclusion that validly follows from them, the first instruction is to derive that
onclusion. We would write: |

PROOF
1. A :PREMISE
2. (A—>(B—>C) :PREMISE

TASK LIST
Derive (B — C)

[he last line, ‘Derive (B — C)', is our first task and so is the sole item in our task list at
he beginning of our attempt to create a proof.

The rest of the method consists of replacing ‘Derive <the conclusion>’ with more
1elpful advice; accordingly, the task list grows. Furthermore, as some of these tasks
ecome precise enough to be turned into lines of a proof, the proof itself also grows.

Tree-Searching Strategies
L]

One of the main areas of research in artificial intelligence concerns the topic of a “search”:
ow to program computers to find solutions or reach goals by guided, or “intelligent,”
nethods (including trial and error), rather than by “exhaustively” searching all possibilities.
'he possession of such methods seems to be essential for anything claiming to employ
intelligence.”

We have already drawn some parallels between the problem of constructing a proof
ind other problems that require a search. Let us now display with more precision what
ur search looks like when we are attempting to construct a proof.

[230

" & ¢‘“(
" & %
A .. (A&{AvC)) ~~(AvC) ((AvCivD)..

: 9~° o
\V\< £
. @ g

CHAPTER 11

Argument A
(A—B)
. B

A
{A~B)

.. (F>A) (A&(A-B)) (A&A) -=A {{A>B}VE) (AvC) (AvD)..

.. (A—>(A&{A—B)))

\
<
k SELIM)
B

Figure 11-3 Search tree for the argument A, (A — B), .. B

Such diagrams are called “trees.” Our starting point is the set of our premises. Our goal
is the conclusion. After correctly applying a rule, we call the point that we have reached
a node of the tree. At this node, we write the new sentence that the rule allowed us to
derive. We also have available at this node any of the previous sentences—the sentences
we have derived above this node. We can apply any of the rules to these available
sentences. (Another way of thinking about the proof-search tree is that at each node
there is a set of “available” sentences. This set “grows” each time a rule is applied, and
we can stop when the conclusion is included in the new set.) Such a display is called
a search tree, and what it displays is called the search space of the problem.

Acceptable means of “traveling” from the premises to the conclusion are restricted
by the available rules. Let us now introduce some terminology. We can measure the
distance ot a sentence from the premises (or the conclusion) by the number of rules
used on the shortest path between the premises and the sentence. For example, all the
sentences on the first row below the premises have a distance of one unit from the
premises.

We can now make some observations about the above display of a rather typical
proof problem.

1. The number of sentences in the tree whose distance is one unit from the premises
is infinite—no matter what the premises are. The rules VINTRO and —INTRO

can be used to add indefinitely many new nodes.

231
—— N ————————
PRODUCING PROOFS

2. If there is one path through the tree from the premises to the conclusion, then
there are an infinite number of such paths.

3. If there is a path of length n from the premises to the conclusion, then there is
also a path of still greater length.

4. There are an infinite number of sentences whose distances are one unit from
the conclusion.

5. The tree branches endlessly into directions that are not especially close to the
premises or conclusion.

The job of PROOF-GIVER is to find a reasonably short path from the premises to
the conclusion. Two strategies for searching a tree for a particular node are the “breadth-
first” search and the “depth-first” search, illustrated in Figure 11-4.

A breadth-first search considers, first, all the nodes that are one unit distant from
the starting node. Then it considers all the nodes that are one unit distant from those
nodes, and so on until the goal is reached. It is a search which seeks its goal by first
checking out all the nearest nodes from the starting node, then the next-nearest nodes,
and so on.

Consider this analogy. In conducting a breadth-first search for a lost dollar, | might
begin by visiting all the places where | might have lost it and only then turn to more
“distant” options—for example, that | dropped it on the sidewalk, but it then blew away.

A breadth-first search of our proof tree would not be a reasonable way of discovering
a proof. The number of sentences one unit distant from our premises is infinite (as we
observed above). So we would first have to consider all of these sentences before going
further with the search. But this first step would itself take forever. In short, a breadth-
first search is not reasonable when our search tree has “unlimited branching,” which
rules such as VINTRO and —INTRO permit.

Although an “all-out” breadth-first search would not be feasibie in our case, we might
consider a limited breadth-first search. For example, we might ignore certain of the
branches. (Carrying on the “ree” metaphor, researchers in artificial intelligence speak
of this technique as “pruning” the tree.) The branches we might ignore would be:

1. Branches that use vINTRO or —INTRO and result in a sentence containing an
atomic sentence that is contained in neither the premises nor the conclusion

2. Branches that use &INTRO and result in a sentence that is not contained as a
subformula in any of the premises or in the conclusion

3. Branches that use &ELIM and result in a sentence that is neither a subformula
of any premise or conclusion nor are the premises or conclusion a subformula
of the sentence.

The result of this limited breadth-first search would be a much-pruned search tree that
would usually reach the conclusion. But the tree would still often be quite large.

The second major search strategy is a depth-first search. In depth-first search, we
make a single, deep plunge into the search tree, hoping to catch our guarry, the goal,
in one quick thrust. This strategy contrasts with the many, equally shallow plunges (or
“guesses”) of breadth-first search. The depth-first strategy might also be described as
pursuing our “best guesses” as far as we can take them.

232

R

CHAPTER 11
The Breadth — first Strategy

First Stage
Starting point

® GOAL
Second Stage

®GOAL

Third Stage

GOAL

The Depth —first Strategy

Starting point

Figure 11-4 Breadth-first and depth-first search strategies.

The Method: PROOF-GIVER
I —————

Several concepts will be useful in our presentation of PROOF-GIVER. First, recall the
notion of subproof depth from Chapter 10. A subproof of any depth may be said to
contain itself. A subproof S of depth n may be said to contain a subproof S’ of a depth
greater than n iff there is no line with fewer than n stars between the last line of S and

233
—— e
PRODUCING PROOFS

the first line of S'. In particular, the main proof (which is a subproof of depth 0) contains
itself and all subproofs of any depth.
Intuitively, proofs can be pictured as “nested boxes,” as in Figure 11-5.

MAIN PROOF

LINE 1:

SUBPROOF 1
LINE #2:

SUB-SUBPROOF 2
LINE »+3:

SUBPROOF 3
LINE #4:

Figure 11-5 Diagram of a proof.

In Figure 11-5, the main proof contains itself and all three subproofs. The first subproof
contains only itself and subproof 2. The second and third subproofs contain only them-
selves.

234

— R ———————
CHAPTER 11

We can now say that a line L is accessible to a later line L’ iff the subproof that L
is in contains the subproof that L’ is in. For instance, in Figure 11-5, line 1 is accessible
to lines in all subproofs, line 2 is only accessible to lines in subproofs 1 and 2, line 3 is
only accessible to lines in subproof 2, and line 4 is only accessible to lines in subproof
3. We shall sometimes simply say that “the line is accessible.” (In the terminology of
computer science, a sentence in a particular subproof is said to be “local” to that subproof
and “global” to all subproofs contained within that subproof. Thus line L is accessible to
line L’ iff the sentence on line L is global to the subproof that L’ isinor L and L' are in
the same subproof, in which case the sentence is local.)

Second, an asterisk before a task will indicate that a subproof must be begun. Third,
a sentence in brackets, such as [P], will indicate that the first accessible line number
containing sentence P should be cited. Fourth, we shall always call the sentence in the
first ‘Derive’ statement in the task list the “desired result,” sometimes representing it as
‘DR'.

Finally, suppose that a sentence, Q, is on an accessible line L and that we wish to
use Q in our derivation. If the line we wish to use it on is in the same subproof as L,
then we need do nothing special. But if that line is in a sub-subproof, we need to SEND
Q into that sub-subproof. In addition, there will be some “bookkeeping” to take care of.
To make our presentation of PROOF-GIVER simpler, we shall use a procedure called
‘OBTAIN Q'

PROCEDURE OBTAIN Q
1. IF the line containing Q has fewer asterisks than the desired result (that is,

Q is in a containing proof)
THEN

(a) Replace the first ‘Derive’ statement in the task list with: SEND,[Q].

(b) Let all subsequent references to line [DR] in the current subproof be
replaced by the line number of this SEND line. (This is the “book-
keeping.”)

2. IF the line containing Q has the same number of asterisks as the desired
result (that is, Q is in the same subproof)
THEN

(a) Delete the first ‘Derive’ statement from the task list
(b) Let all subsequent references to line [DR] in the current subproof be
replaced with the line number of this previous line (more “bookkeep-

ing”).
We now have enough background to present the method.

METHOD PROOF-GIVER:

1. INPUT the premises, with the justification ‘PREMISE’, in the standard format
for proofs.
2. Add ‘Derive {conclusion)’ to the task list.

235
—_—— R, —————

PRODUCING PROOFS

3. WHILE the task list is not empty and there is a ‘Derive’ statement in the task
list, keep repeating (a) to (c):

(a) IF DR = a subformula of a sentence, Q, on an accessible line

THEN
() OBTAIN Q.
(i) IFDR = Q

THEN GO TO step 3(c).
(iii) IF DR is a proper subformula of Q
THEN

(1) IF Q is a conditional
and the desired resuit is a subformula of Q's consequent
THEN replace the first ‘Derive’ statement in the task list

with:
Derive (antecedent of Q)
Apply —ELIM,[Q@],[{antecedent of Q)]
Derive DR (if DR # (consequent of Q))

and GO TO step 3(c).

(2) IF Q is a conjunction
and the desired result is a subformula of one of its conjuncts
THEN replace the first ‘Derive’ statement in the task list
with:
Apply &ELIM,[Q] (to obtain conjunct containing DR)
Derive DR (if DR # the inferred conjunct)
and GO TO step 3(c).

(3) IF Qis a disjunction, (P v R),
and the desired result is a subformula of one of its disjuncts,
say R
THEN replace the first ‘Derive’ statement in the task list

with:
Derive ~P
Apply VELIM, [Q],[~P]
Derive DR (if DR # R)

and GO TO step 3(c).

(4) IF Qs a negation, say ~P, and DR is a subformula of P, say
R
THEN replace the first ‘Derive’ statement in the task list
with:
*Assume ~R
:OBTAIN Q
Derive P
*Apply ~ELIM,[~R],[P1[Q]
RETURN,|R]
and GO TO step 3(c).

236
—_— R, ——————————
CHAPTER 11

(b) IF DR is not a subformula of a sentence on an accessible line meeting
the above conditions
THEN

(i) IF the desired result has the form (P — Q)
THEN replace the first ‘Derive (P — Q)’ in the task list with:
*Assume P
*Derive Q
*Apply —INTRO,[P],[Q]
Apply RETURN,[P — Q]
and GO TO step 3(c).

(i) IF the desired result has the form (P & Q)
THEN replace the first ‘Derive (P & Q) in the task list with:
Derive P
Derive Q
Apply &INTRO,[P],[Q]
and GO TO step 3(c).

(iii}y IF the desired result has the form (P v Q)
THEN replace the first ‘Derive’ statement in the task list either
with:
(1) *Assume ~(P v Q)
*Derive R
*Derive ~R
“Apply ~ELIM,[~(P v Q)],[R],[~R]
RETURN,[(P v Q)]
or with:
(2) Derive P
Apply VINTRO,[P] to obtain (P v Q)
or with: ‘
(3) Derive Q
Apply vINTRO,[Q] to obtain (P v Q)
and GO TO step 3(c).

(iv) IF the desired result has the form ~P

THEN replace the first ‘Derive ~P’ in the task list with:
*Assume P
*Derive R
*Derive ~R
*Apply ~INTRO,[P],[R],[~R]
RETURN,[~P]

and GO TO step 3(c).

(v) IF none of the previous steps have been applied
THEN replace the first ‘Derive P’ in the task list with:
*Assume ~P
*Derive R

237
— R, ————————

PRODUCING PROOFS

*Derive ~R ‘
*Apply ~ELIM,[~P), [R], [~R]
RETURN,[P]

and GO TO step 3(c).

(c) Convert all statements in the task list that precede the first ‘Derive’
statement into iines of proof, removing them from the task list.

4. STOP.

Applications of PROOF-GIVER

Let us now apply the method to an argument:
A
B
D
. ((A&B) & (C— D))

Following steps 1 and 2 of PROOF-GIVER, we obtain:

PROOF
1. A :PREMISE
2. B :PREMISE
3.D :PREMISE

TASK LIST
Derive ((A & B) & (C— D))

The desired result is ‘((A & B) & (C— D))’. At step 3(a) we can see that it does not
appear in the previous lines (the premises), so we pass on to step 3(b).

Since the desired result is a conjunction, step 3(b)(ii) applies, and we replace the
original ‘Derive ((A & B) & (C — D))’ in our task list with:

Derive (A & B)
Derive (C— D)
Apply &INTRO,[(A & B)],[(C — D)]

obtaining:

PROOF
1. A :PREMISE
2. B :PREMISE
3. D :PREMISE

238
— R, ———
CHAPTER 1
TASK LIST

Derive (A & B)
Derive (C — D)
Apply &INTRO,[(A & B)],[(C — D))

We now go to step 3(c), which returns us to step 3(a).
At this point, ‘(A & B)’ becomes our “desired result.” It is a conjunction, so again
step 3(b)(ii) is applied, resulting in:

PROOF
1. A :PREMISE
2. B :PREMISE
3. D :PREMISE

TASK LIST
Derive A
Derive B
Apply &INTRO,[A},[B]
Derive (C — D)
Apply &INTRO,[(A & B)],[(C — D)]

After step 3(c), we again return to step 3(a). Now, however, the desired result is
simply ‘A’, and it is contained in a previous line—namely, it is identical to the first premise.
So, step 3(a)(i) requires us to delete the first ‘Derive’ statement and replace references
to [A] with 1. Looking at the task list only, we see that the result is:

Derive B

Apply &INTRO,1,[B]

Derive (C — D)

Apply &INTRO,[(A & B)],[(C — D)]

Since there is a ‘Derive’ statement at the top of the task list, step 3(c) again returns us
to step 3(a).

Now the desired result is ‘B’, which is identical to the second premise. After following
the directions in the appropriate clause of step 3(a), we find that our task list looks like
this:

Apply &INTRO,1,2
Derive (C — D)
Apply &INTRO,[(A & B)],[(C — D)]

We again drop down to step 3(c), but this time we do not simply return to step 3(a). It
tells us to convert the first line in the task list, ‘Apply &INTRO,1,2', into a line of proof.
The result is:

239
————— R, ——————————
PRODUCING PROOFS

PROOF
1. A :PREMISE
2. B :PREMISE
3.D :PREMISE

4. (A&B) :&INTRO,1,2

TASK LIST
Derive (C — D)
Apply &INTRO,4,[(C — D)]

Returning to step 3(a), we see that our desired result is now, (C — D). It is not
contained in a previous line, including our newly acquired line 4, so we proceed to step
3(b). The desired result is a conditional, so, applying 3(b) (i), we find that our task list
becomes:

*Assume C

*Derive D

*Apply —INTRO,[C],[D]
Apply RETURN,[(C — D)]
Apply &INTRO,4,[(C — D)]

Dropping down to step 3(c), we must convert every statement that occurs in the task
files before the first ‘Derive’ statement into a new line of proof. We obtain:

PROOF
1. A ‘PREMISE
2. B ‘PREMISE
3.D ‘PREMISE
4. (A&B) -&INTRO,1,2
*5. C :ASSUMPTION
TASK LIST
*Derive D

*Apply —INTRO,5,[D]
Apply RETURN,[(C — D)]
Apply &INTRO,4,[(C — D)]

Returning to step 3(a), we see that ‘D’ is now the desired result. It is part of a
previous sentence, so step 3(a)(i) applies. Following those directions, we have in the
task list:

*SEND,3

*Apply —INTRO,5,[D]
Apply RETURN,[(C — D)}
Apply &INTRO,4,[(C — D)]

240

., ———————
CHAPTER 11

Dropping down to step 3(c), we now see that there are no ‘Derive’ statements left in the
task list. This means that all instructions in the task list must be converted into lines of
proof. Applying the instructions in the task list line by line, we obtain the following result:

1. A :PREMISE
2. B :PREMISE

3. D :PREMISE

4. (A&B) :&INTRO,1,2
*5. C :ASSUMPTION
*6. D :SEND,3

*7. (C— D) —INTRO,5,6
8. (C— D) :‘RETURN,7

9. (A&B)&(C—> D)) :&INTRO,4,8

Limitations of PROOF-GIVER
. |

PROOF-GIVER, as we have described it, falls short of being a true algorithm. The
construction of proofs for some arguments requires imagination or inspiration. The short-
comings of PROOF-GIVER fall into three major areas.

First, the application of several rules requires the user of the procedure to make
additional “guesses.” Chief among these are arguments that take us to steps 3(b)(iii),
3(b)(iv), and 3(b)(v). Although many steps in PROOF-GIVER could be straightforwardly
translated into algorithms, these steps are not among them. Step 3(b)(iii) requires us to
choose among three ways of introducing a disjunction. Steps 3(b)(iv) and 3(b)(v) require
us to derive a contradiction: some sentence, R, on one line and its neggtion, ~R, on
another. But which sentence and its negation should be derived? This is left to our own
invention.

The second and third parts of step 3(b)(iii) apply the rule vINTRO. There is no
ambiguity concerning what to derive. But this technique will not always work; where it
does work, it works easily. So we find ourselves in a dilemma: the first technique, of
indirect proof, always works (and so is listed first) but requires “creativity” to find a
contradiction. The second method does not always work, but when it does, it requires
no creativity.

The kinds of cases where the two different techniques of 3(b)(iii) are appropriate
can be illustrated by two examples.

Consider:

(A & B)
. (AvC)

Using the first technique, we start with:

PROOF
1. (A&B) :PREMISE

241
—_——
PRODUCING PROOFS

TASK LIST
Derive (Av C)

Then we have (by step 3(b)(iii)(2)):

PROOF e
1. (A&B) :PREMISE - -

TASK LIST
Derive A
Apply VINTRO,[A] to obtain (A v C)

Going back to step 3(a), we arrive at step 3(a)(iii)(2), which results in:

PROOF
1. (A&B) :PREMISE

TASK LIST
Apply &ELIM,1 to obtain A
Apply VINTRO,[A] to obtain (Av C)

And finally, after step 3(c) is performed, we have:

PROOF
1. (A&B) :PREMISE
2. A :&ELIM,1

3. (AvC) vINTRO,2

Step 3(b)(iii)(1) could also be applied—since it always works. Its application might
result in:

PROOF

1. (A &B) :PREMISE .
*2. ~(AvC) :ASSUMPTION

*3. (A&B) "SEND, 1

*4. A :&ELIM,3

*5. (AvC) VINTRO,4

*6. (AvC) ~ELIM,2,5,2

7. (AvC) ‘RETURN,6

in this proof, ‘(A v Gy functions as the R. This choice of R results in citing line 2 twice:
once as the assumption of the ~ELIM, and again as part of the contradiction. The
unusual appearance of line 6 of this proof is in fact a symptom that there is an easier
way to construct a proof of ‘(A v C)—namely, using the VINTRO strategy.

Sometimes, however, the VINTRO option in 3(b)(iii) cannot be applied successfully
at all. In these cases, we must resort to the longer, indirect method of proof. This

242

— R, ———————
CHAPTER 11

unfortunate circumstance will arise when neither disjunct of the desired disjunction is
derivable by itself. Consider, for example, the following argument:

(AvB)

(A—C)

(B— D)
~ (CvD)

The “natural” strategy might be to derive ‘(C v D)’ by first deriving ‘C’ or ‘D’ and then
applying vVINTRO. But in this example, the sad fact is that ‘C’ alone cannot be derived,
and neither can ‘D’. So we would find ourselves blocked if we tried to use step 3(b)(iii)(2)
on this argument:

PROOF
1. (AvB) :PREMISE
2. (A—>C) :PREMISE
3. (B— D) :PREMISE

TASK LIST
Derive C [You should note that ‘Derive D’ is just as bad.]
Apply VINTRO,[C] to obtain (C v D)

We could never derive C from these premises—a fact that could be shown by using
truth tables—and so the task list would never be emptied. Hence, we could never
complete the proof with these instructions.

A successful proof, using step 3(b){iii)(1), would be:

1. (AvB) 'PREMISE
2. (A—C) :PREMISE
3. (B— D) :‘PREMISE
*s8. ~(CvD) :ASSUMPTION
:5. (~C & ~D) ‘RR DM,4
6. (A—>0) ‘SEND,2
7. (B—>D) :SEND,3
8. (AvB) ‘SEND, 1
9. ~C -&ELIM,5
210 ~A ‘MT,9,6
1. B -vELIM,8,10
“12. ~D :&ELIM,5
13. ~B MT,7,12
*14. (Cv D) :~ELIM,4,11,13
15. (C v D) ‘RETURN,14

In this proof, the contradiction derived involved the sentences ‘B’ and ‘~B’. This was,
however, a matter of choice (and discovery): contradictions could be derived invoiving
the sentences ‘A’ and ‘~A’, or ‘C’ and ‘~C’, or even ‘(A v B)’ and ‘~(A v By. PROOF-
GIVER can help get us to line 4; after that, we’re on our own.

243
———— R, ————————
PRODUCING PROOFS

Step 3(b)(iv) also cannot easily be transformed into a mechanical procedure, for it
requires us to derive contradictory sentences R and ~R, but we are not told which
sentences this might involve.

A second difficulty with PROOF-GIVER is that it builds a task list based on whether
a sentence is identical to a previous sentence or subformula in the derivation. Sometimes,
however, a sentence might not be exactly identical to a previous sentence but might be
logically equivalent to it. Consider this argument:

(~A & ~B)
(~(AvB)— C)
- C

Our task list would at first contain only:
Derive C

Since sentence ‘C’ is contained in the second premise, PROOF-GIVER would then direct
us to step 3(a)(iii)(1), at which point the task list would become:

Derive ~(A v B)
Apply —ELIM,2,[~(A v B))

But how do we derive ‘~(A v B)'? Glancing at our list of logical equivalences, we might
see that ‘~(A v B)' is logically equivalent to ‘(~A & ~B)’ and so can be derived in one
step using the rule RR DM. But PROOF-GIVER does not see this and notices only that
the two are not identical. PROOF-GIVER directs us to step 3(b)(iv).

PROOF-GIVER could be corrected to allow it to “see” logical equivalences as iden-
tities and then use RR. In other words, every time PROOF-GIVER refers to “identical”
sentences, we could replace this with “identical or logically equivalent” sentences. But
then, unfortunately, testing to see whether a sentence might be logically equivalent to
a previous sentence or subformula would consume almost all the time used in applying
PROOF-GIVER. Consequently, the astute user of PROOF-GIVER should keep a sharp
eye out for when a rule of replacement might be used. But such equivalences will not
be built into PROOF-GIVER.

A still worse problem is that we can occasionally be “hung up” at step 3(a), when
we should go to step 3(b). Consider the following argument:

(A— (B &C))
B

c
. (B&C)

After performing steps 1 and 2 of PROOF-GIVER, we have:

PROOF
1. (A—> (B&C)) :PREMISE
2. B :PREMISE
3. C ‘PREMISE

244

—— SN
CHAPTER 11

TASK LIST
Derive (B & C)

We now go to step 3(a), because the desired result, ‘(B & C)’, is contained in an earlier
line (the first premise). After step 3(a)(iii)(1) we have:

PROOF
1. (A—> (B&CQC)) :PREMISE
2. B ‘PREMISE
3. C :PREMISE
TASK LIST
Derive A

Apply —ELIM,1,[A]
-
But it is easy to see—and could be shown by a truth table—that ‘A’ does not validly
follow from the premises. Consequently, we would never be able to derive ‘A’ on a line
by itself. (More precisely, we would never be able to eliminate all the ‘Derive’ statements
from the task list for this argument, once it is begun in this way.)

The problem lies with step 3(a). Whenever the desired result is a subformula of an
accessible line, step 3(a) applies. But sometimes the desired result can only be derived
by using parts of step 3(b). As an example, if we went to step 3(b)(ii) instead of step
3(a), we would have in the task list

Derive B
Derive C
Apply &INTRO,[B],[C]

which would eventually result in this proof:

1. (A—> (B&C)) :PREMISE
2. B :PREMISE
3. C :PREMISE
4. (B&C) :&INTRO,2,3

The problem is not easy to correct. About the only symptom that we are hung up
is if we feel that our proof is not going anywhere. Another symptom is that our task list
grows and grows, with no end in sight. In these cases, we should retrace our steps to
find where our task list seems to have gone wrong. That will be a step where PROOF-
GIVER placed us at step 3(a) when it would have been more fruitful to be at step 3(b)(i).
Once we have found where the difficulty seems to lie, we should rebuild the task list,
this time going to step 3(b)(i) instead of step 3(a).

In our discussion of the method PROOF-GIVER, we may have become too immersed
in the details of constructing proofs. Let us rise above the sometimes dreary details for
a moment and review the general significance of the steps in PROOF-GIVER.

As we mentioned earlier, certain features of the construction of proofs—notably the
infinitely many possible connections between the premises and the conclusion using our

f

245

—— N, —
PRODUCING PROOFS

rules—require that we “work backward” from the conclusion. We must first somehow
determine how the conclusion might have arisen.

There are essentially two ways that a conclusion can be derived: It can be “part of”
an earlier line of the proof (such as a premise), or it can be “reconstituted” from information
contained somewhere in the premises.

it is the purpose of steps 3(a) and 3(b) to deal with these possibilities. If the con-
clusion is contained in some part of a previous line, we are at step 3(a), which then tells
us how to extract the conclusion from the previous line. If the conclusion is not contained
in a previous line, we are at step 3(b). There, there are numerous recipes for building
up the conclusion from other bits of information that might somehow be contained in the
premises.

PROOF-GIVER, as we have described it, is primarily a depth-first search strategy:
It guides us on a single path through the search tree. The main flaw with PROOF-GIVER,
as with other depth-first strategies, is that if we are wrong—that is, if we do not reach
our goal easily—we must back up and reconsider one of the branches we earlier ignored.
In other words, depth-first strategies will often require us to “backtrack.”

AN

Summary
S

In this chapter, we presented a method PROOF-GIVER, for constructing proofs of ar-
guments known to be valid. PROOF-GIVER is not an algorithm, since it will not always
work and, at certain points, requires human intervention. Nevertheless, it can be useful
and illustrates some important techniques. PROOF-GIVER uses a depth-first search
strategy to search a tree of possible lines of a proof; that is, it follows a “best guess” as
to how the proof should proceed rather than trying all possibilities at once. You should
find it helpful in constructing proofs of arguments.

Exercises
-]

A. 1. Using PROOF-GIVER, determine what the next change of the proof or task
list should be.
a. PROOF
1. (A—>B) :PREMISE
2. (C&A) :PREMISE
TASK LIST
Derive (B & C)
b. PROOF :
1. (A— ~B)—> D) :PREMISE
2. ~B :PREMISE
3. (D> (EvB) :PREMISE
TASK LIST
Derive D
Apply —ELIM,3,[D]

246
— R, —————————————

CHAPTER 11
c. PROOF
1. (A& (BvD)) ‘PREMISE
2. (BvD)— (A— ~E)) ‘PREMISE
3. A :&ELIM, 1
TASK LIST
Apply &ELIM,1

Apply —ELIM, [(B v D)],2
Apply —ELIM, [(A— ~E)),3
2. From an inspection of the proof and task list of (c), what is the desired
conclusion of the argument?

B. Using PROOF-GIVER, construct proofs of the following arguments:

1. (A&A—>((B-0)) 6. ~A
- (B—>C) (Av ~B)
2. (A—>B)&(B—C)) “ (B— ~C)
(C— D) ~(~B&B—->~C)
- (A—>D) 7. (A— ~C)
3. (A& (~B&Q)) (B—C)
- ~B L {~Av~B)
4, (A—>B) 8. (~B e (A&D))
(A— ~E) (~B& (A< E)
so~A - E
5. (A—B) 9. (A— (B— (~C— D))
(A&D) (A&B)
B . (~C—D)
C. Add a step to PROOF-GIVER that will enable it to handle ‘Derive (P < Q)’
in a task list.

D. For programmers:

1. Why doesn't “Apply &INTRO,n,m” in a task list require a goal sentence?
That is, why is the goal sentence optional?

2. Assume that premises and the conclusion contain only atomic-sentence
letters and the symbol &. Write a program to input such an argument
and construct a proof of it.

3. Assume that premises and the conclusion contain only atomic-sentence
letters, parentheses, and the symbol —. Write a program to input such
an argument and construct a proof of it.

Suggestions for Computer Implementation
.|

The full implementation of PROOF-GIVER should be supremely gratifying to any am-
bitious “hacker.” As in PROOF-CHECKER, an appropriate data structure (such as an
array) is necessary for storing the ongoing proof. Initially, of course, only the premises
would be stored; the conclusion—with its justifying rule left blank—might be stored
temporarily in some arbitrarily high line number of the final proof, sure to exceed the
other lines of the proof (say, 100).

247
e R, ———————
- PRODUCING PROOFS

A separate data structure is also needed to store the distinct elements of the task
list. Furthermore, since the contents of the task list are constantly changing, we frequently
need to “sort” these elements into their order of priority.

We have not been as rigid in the text with the format of each record in the task list
as we would have to be if we wished to implement PROOF-GIVER. We can impose the
required rigidity here. The ‘Derive’ statement should have four fields:

1. A RANK: a number to indicate the priority of a task in the task list
2. A TASK: the task to be done—‘DERIVE” (or “APPLY")

3. A sentence to be derived (our “goal”)

4. The subproof-depth of the task

For example, consider the following argument:

A X
B
.. (A&B)

Our task list might at first contain

RANK(1) = 1
TASK(1) = DERIVE
TSEN(1) = (A &B)
TSUB(1) = 0

indicating, respectively, that the first element in the task list is first in order of priority,
that the task is to derive a sentence, that the goal is to derive the sentence ‘(A & By,
and that it is not in a subproof. The names TSEN and TSUB indicate task-list sentences
and subproof depths.

The other kind of statement in the task list is the ‘APPLY’ statement, which could
have the following fields:

1. A RANK

2. The TASK: Here, ‘APPLY’

3. The goal sentence (optional, except in the case of rules, ASSUMPTION, &ELIM,
VINTRO)

4. The TRULE to be applied

5. The line(s) to which the rule is to be applied—expressed either as a line number
or as a sentence

6. The subproof depth of the apply line

Thus we might have

RANK(2) =3

TASK(2) = APPLY

TSEN(2) = (AvB)

TRULE(2) = VINTRO L
TCIT12) =1 - o

248

. —————————
CHAPTER 11

TCIT2(2)
TCIT3(2)
TSUB(2)

il
~ 00

indicating that the priority of task-list line 2 is 3, that the task is to APPLY, that the goal
sentence is ‘(A v B, that the rule is to be applied to line 1, and that the APPLY is in a
subproof of depth 1.

Note that the task can be stored in numerical fashion, since there are only two
possible tasks. For example, 1 = DERIVE, and 2 = APPLY. Similarly, TRULE can also
be stored numerically: 1 for &INTRO, 2 for &ELIM, 3 for vELIM, and so on. Using numbers
where possible might spare us some nasty string operations. A sentence, however, such
as ‘(A & (B v C))’' cannot (easily!) be converted into numerical information.

Once the stage is set in this fashion, it is relatively straightforward to convert METHOD
PROOF-GIVER into a computer program. Several features of the problem might, how-
ever, threaten this conversion.

1. Sometimes a line in a task list might be replaced by two (or more) lines. These
new lines are always inserted at the beginning, and so they disturb the order of
items in the task list. The clue to their priority in the task list is their RANK. If a
task of rank 1 is to be replaced by two tasks, we might let these two tasks have
ranks 1.1 and 1.2. We would first delete the original task, and we would know
that the task with rank 1.1 is to be performed before the task with rank 1.2 and
that both are to be performed before a task of rank 2.

Similarly, a task of rank 2.1 might be replaced by tasks of ranks 2.11, 2.12,
and 2.13. Including the RANK of a task performs an automatic sort or ordering
of the elements in our task list.

2. As we have noted, sometimes PROOF-GIVER is misled or tricked, and the task
list grows prodigiously—never getting closer to the conclusion. Since computers
work so quickly, it might be a matter of mere microseconds before the task list
is full of hundreds of tasks which will never allow PROOF-GIVER to reach the
conclusion.

There are two solutions to this problem—one a “quick fix,” the other more
elegant.

We could write our program so that any time the task list grows to a certain
size (say, twenty or thirty lines), then the program stops and alerts the user to
the problem. (This is a so-called “disaster cutoft.”)

Another solution is to display to the user each revision of the task list and
ask the user if he or she wishes to:

Go on.

. Stop.

Back up to an earlier stage of the proof and task list.

Override step 3(a).

Intervene and make a “human” suggestion on what to do: what contra-

diction to aim for, what step to foilow, or what goal sentence to have.

3. The mention of “backing up” alerts us to the fact that we also need to store
information about past proofs and task lists, as well as about the current, ongoing
ones. We thus need to have the proof and task list of every previous step available

sapow

. 249
— RS ——————————
" PRODUCING PROOFS ’

to us if we are going to be able to “back up.” The easiest way to implement this
suggestion is to store the proofs and task lists in some data structure (such as
two-dimensional arrays). For example, TRULE(3,2) might be the TRULE in the
second element of a task-list array on the third step of applying PROOF-GIVER.
. It is possible to program other “hunches” and strategies into PROOF-GIVER
beyond the ones given in this chapter. Strategies for choosing the contradictions
to be aimed for with ~ELIM and ~INTRO could be given, as well as tips for
keeping proofs shorter. If the arguments PROOF-GIVER is attempting to prove
are all being created by a single person, we might also program strategies to
deal with what seem to be this person’s habits. The user might, for example,
use VINTRO frequently or —INTRO rarely.

