
CSE 463/563, Spring 2005

Programming Project 1
AUTOMATED THEOREM PROVING

In this project, you will write programs that could have passed the CS department’s old graduate-
level AI Qualifying Exam questions on logic :-)

As described in the syllabus, your final report should be a conference-style paper containing your
annotatedcode andcommentedsample runs either as appendices or incorporated into the body
of the report.

1. (WARNING: THIS PART IS RELATIVELY EASY.)

(a) In lecture, you will be given an algorithm forconverting a sentence of first-order
logic into “clause form” (this algorithm will be on the Web at:

http://www.cse.buffalo.edu/∼rapaport/563S05/clause-form.pdf
and
http://www.cse.buffalo.edu/∼rapaport/563S05/clause-form.html).

Using your favorite programming language, write a fully-commented algorithm (e.g.,
a Lisp function) that takes a well-formed formula of first-order logic as input and that
returns an equivalent sentence in clause form.

Suggestion 1:You should choose an input notation for wffs that is convenient
for the programming language that you are using. E.g., for Lisp,

(ˆ P Q)

might be more convenient than:

(P∧Q)
You do not need to write a parser (i.e., a compiler) that converts our text’s
FOL notation for wffs into yours. All you need to do is write a program that
converts your notation into clause form.

Suggestion 2:When you rename variables so that variables bound by differ-
ent quantifiers have unique names, you can use rewrite rules of the following
form:

(Q1v1F(v∗1) # Q2v1G(v∗1))→ (Q1v1F(v∗1) # Q2v2G(v∗2))

where theQi are quantifiers (either the same or different), # is either∨ or ∧,
the vi are variables such that ‘v1’ 6= ‘v2’, and ‘F(v∗1)’ represents a sentence
containing 0 or more occurrences of ‘v1’. An example would be:

(∀xP(a,x)∧∃xR(a))→ (∀xP(a,x)∧∃yR(a))

(b) Apply your algorithm to the following sentence:

∀x[Animal(x)⊃ (Predator(x)≡ ∃y[Animal(y)∧Eats(x,y)])]

1

2. (WARNING: THIS PART IS RELATIVELY HARD.)

(a) Preferably using the same programming language as for the previous part of this project
(since the two parts will eventually need to communicate), implement a fully-commented
unification algorithm (either the one in Brachman & Levesque, the version of that al-
gorithm (to be) given in lecture, or one that you find documented elsewhere; please be
sure to give a full citation to whichever version you choose).

More precisely, your algorithm should take a pair of sentences as input and either return
a most general unifier (MGU) for them, if they are unifiable, or else return a message
such as “NOT UNIFIABLE”. (Again, you may assume that the notationf (x,g(x)) can
be understood as:(f x (g x)) , if you prefer using Lispish notation.)

(b) Use your algorithm to answer the following question: For each of the following pairs
of terms, if they unify, show an MGU; if they don’t, say so, and state why. (Note: You
only need to statein your reportwhy a unification failed. Although a “trace” of your
unification algorithm might be useful, yourprogramdoes not have to indicate exactly
where unification failed). Assume thatu, v, x, y, andz are variables, and thata, b, and
c are individual constants:

i. P(a,x,c) andP(y,b,z)
ii. P(a,x,c) andP(y,b,y)

iii. P(x,x,c) andP(u,v,u)
iv. P(x, f (x), f (y)) andP(f (a), f (z),z)
v. P(x, f (x), f (a)) andP(f (z), f (z),z)

2

3. (a) (WARNING: THE COMPUTATIONAL IMPLEMENTATION OF THIS PART
IS RELATIVELY HARD.)
Write aresolution + unification + refutation theorem prover for first-order predicate
logic.

To do this, you will need to incorporate the two previous parts of the project into a fully-
commented theorem prover that uses a resolution algorithm with a refutation strategy.
You may either write such an algorithm from scratch (recommended, but difficult) or
adapt one that you find elsewhere. If you choose the latter option, please keep the
following in mind:

• You must give a full citation for the algorithm that you use.

• You must fully comment the algorithm so that the reader of your report can under-
stand it (this is especially important if the reader is not fluent in the programming
language that the algorithm is written in) and so thatweknow thatyouunderstand
it!

• Although this option has (as the philosopher Bertrand Russell once commented)
all the advantages of theft over honest toil, it is not necessarily going to be easier
than writing your own, since you will have to fully understand the one you will
be using and you will probably have to either adapt it to work with the previous
components of this project or else adapt those previous components to work with
it.

There are several strategies for selecting two target clauses to resolve. Instead of im-
plementing one or more of these strategies, your program can ask the user to input
two clauses for resolution (i.e., this aspect of resolution need not be automated). This
interaction can take place with each pass through the algorithm.

Since this part of the project relies on a working implementation of the clause-form
converter and unification algorithm (from parts 1 and 2, you should test those imple-
mentations thoroughly before you implement this part. If you find that you are getting
stuck on one of the first two parts (andonly if you are getting stuck), you should “hand
code” the clause form inputs or unified results for this part. In general, you should
“hand code” anything in your automated theorem prover that you are unable to auto-
mate.

3

(b) DO PART 3b (AT LEAST BY HAND) WHETHER OR NOT YOU ARE ABLE
TO DO PART 3a.
This part is inspired by an example in Moore 1982: 429; in your report, explain the
relationship between Moore’s example and this problem: Using resolution, show that
the following set of clauses is inconsistent. Assume thata, b, andc are individual
constants, and thatx andy are variables:

i. [Next-to(a,b)]
ii. [Next-to(b,c)]

iii. [Green(a)]
iv. [¬Green(c)]
v. [¬Green(x),Green(y),¬Next-to(x,y)]

NOTE: Please doall exercises at leastby hand (in addition to, or instead of, implementing
them in a programming language) as part of yourreport. I will hand out a tentative grading
scheme to make it easier for you to organize your final report.

********** NEW **********
DUE AT START OF LECTURE, FRIDAY, APRIL 15.

********** NEW **********

4

