|
Last Update: 17 March 2005
Note: |
Here's another example of the use of Refutation + Resolution + Unification to show the validity of a first-order inference:
Show that the following inference is valid:
x[P(x) v Q(x)],
x.¬P(x)
x.Q(x)
x[P(x) v Q(x)]
--->
P(x) v Q(x)
--->
[P(x), Q(x)] (where "--->" means "rewrites as")
x.¬P(x)
--->
[¬P(c)] (where c is a Skolem constant)
¬
x.Q(x)
--->
x.¬Q(x)
--->
[¬Q(x)]
{[P(x),Q(x)], [¬P(c)], [¬Q(y)]}
[P(x),Q(x)] -P(c) -Q(y)
\ / /
\ / /
{x/c} \ / /
\/ /
Q(c) /
\ /
{y/c} \ /
\/
[]
Alternatively:
[P(x),Q(x)] -Q(y) -P(c)
\ / /
\ / /
\ / /
{y/x} \ / /
\ / /
P(x) / {x/c}
\ /
\ /
\ /
\/
[]